

DEVELOPMENT OF AN ARTIFICIAL INTELLIGENCE SYSTEM

FOR THE INSTRUCTION AND CONTROL OF COOPERATING

MOBILE ROBOTS

BY

PRANEEL CHAND

A thesis

submitted to the Victoria University of Wellington

in fulfilment of the requirements for the degree of

Doctor of Philosophy

Victoria University of Wellington

(2011)

Abstract

i

Abstract

This thesis focuses on the development of an artificial intelligence system for a

heterogeneous ensemble of mobile robots. Many robots in the ensemble may have

limited processing, communication, sensing, and/or actuation capabilities. This means

that each robot may not be able to execute all tasks that are input to the system. A

hierarchical system is proposed to permit robots with superior processing and

communication abilities to assign tasks and coordinate the less computationally able

robots. The limited processing robots may also utilise the resources of superior robots

during task execution. Effective task allocation and coordination should result in

efficient execution of a global task. Many existing approaches to robot task allocation

assume expert knowledge for task specification. This is not ideal if a non-expert

human user wants to modify the task requirements.

A novel reduced human user input task allocation and feedback coordination

technique for limited capability mobile robots is developed and implemented. Unlike

existing approaches, the presented method focuses on expressing tasks and robots in

terms of processing, communication, sensing, and actuation physical resources. This

has the potential to allow non-expert human users to specify tasks to the team of

robots. Fuzzy inference systems are utilised to simplify detailed robot information for

comparison with simple human user inputs that represent task resource requirements.

Like many existing task allocation methods, a greedy algorithm is employed to select

robots. This can result in suboptimal task allocation. In addition to this, the non-expert

user’s task specifications might be erroneous in some instances. Hence, a feedback

coordination component monitors robot performance during task execution.

In this thesis, a customised multi-robot mapping and exploration task is utilised as a

model task to test the effectiveness of the developed task allocation and feedback

coordination strategy. Extensive simulation experiments with various robot team

configurations are executed in environments of varying sizes and obstacle densities to

assess the performance of the technique. Task allocation is able to identify suitable

robots and is robust to selection weight variation. The task allocation process is

subjective to fuzzy membership function parameters which may vary for different

ii Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

users. Feedback coordination is robust to variation in weights and thresholds for

failure detection. This permits the correction of suboptimal allocations arising from

greedy task allocation, incorrect initial task specifications or unexpected failures. By

being robust within the tested limits, weights and thresholds can be intuitively

selected. However, other parameters such as ideal achievement data can be difficult to

accurately characterise in some instances.

A hierarchical hybrid deliberative-reactive navigation system for memory constrained

heterogeneous robots to navigate obstructed environments is developed. Deliberative

control is developed using a modified version of the A* algorithm and a rectangular

occupancy grid map. A novel two-tiered path planner executes on limited memory

mobile robots utilising the memory of a computationally powerful robot to enable

navigation beyond localised regions of a large environment. Reactive control is

developed using a modified dynamic window approach and a polar histogram

technique to remove the need for periodic path planning.

A range of simulation experiments in different sized environments is conducted to

assess the performance of the two-tiered path planning strategy. The path planner is

able to achieve superior or comparable execution times to non-memory constrained

path planning when small sized local maps are employed in large global

environments. Performance of hybrid deliberative-reactive navigation is assessed in a

range of simulated environments and is also validated on a real robot. The developed

reactive control system outperforms the dynamic window method.

Acknowledgements

iii

Acknowledgements

I wish to express my sincere gratitude to the many people who have helped me during

this project. First, I would like to thank my supervisor Professor Dale Carnegie for his

invaluable advice and encouragement. I am also very grateful for his time and effort

in reviewing papers and thesis chapters.

A number of past graduate students are deserving of thanks for fruitful discussions,

assistance and support. In particular, I would like to thank Dr. Christopher Lee-

Johnson for providing feedback, contributing ides and collaborating on a conference

publication. Other students who have assisted me are Jason Edwards, Luke Cawley,

David Williamson and Thomas Roehr. I also appreciate the technical assistance

provided by Scott Forbes and Bruce Rhodes.

I am also grateful to my mum for proof reading draft chapters of this thesis and

continuously pushing me to get this thesis submitted as quickly as possible.

Mohammed Faizal’s assistance in compiling the thesis chapters into a single

document is also appreciated. I am also grateful to the University of the South Pacific

for funding to attend the oral examination.

Finally, I wish to thank the New Zealand Vice-Chancellors Committee (NZVCC) for

awarding me a Commonwealth PhD Scholarship to undertake the research presented

in this thesis.

Table of Contents

v

Table of Contents

Abstract ... i

Acknowledgements ...iii

Table of Contents ... v

List of Figures ... ix

List of Tables ... xv

1 Introduction .. 1

1.1 Objectives .. 4

1.2 Thesis Outline .. 6

2 Background and Related Work .. 9

2.1 Overview .. 9

2.2 Single Robot Control Architectures ... 10

2.3 Hybrid Navigation Systems ... 11

2.4 Reactive Motion Control and Obstacle Avoidance 14

2.5 Memory Constrained Path Planning .. 15

2.6 Multiple Robot Control Architectures ... 19

2.7 Task Allocation and Coordination ... 21

2.8 Fault Tolerance .. 26

2.9 Multi-Robot Map Building and Exploration ... 28

2.10 Summary .. 31

3 Basic Robot Navigation System .. 33

3.1 Navigation System Overview .. 33

3.2 Environment Representation and Path Planning 33

3.2.1 Environment Representation .. 33

3.2.2 Path Planning ... 35

3.3 Reactive Control Overview ... 37

3.4 Direction Sensor .. 38

3.5 Modified Dynamic Window Method ... 39

3.6 Simulation Experiments ... 48

3.6.1 Parameter Tuning ... 49

3.6.2 Experimental Configurations ... 51

3.6.3 Results .. 53

vi Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

3.7 Physical Robot Experiments .. 65

3.8 Alternative Techniques .. 68

3.9 Summary .. 72

4 Memory Constrained Path Planning .. 75

4.1 Overview .. 75

4.2 Global and Local Map Representations ... 77

4.3 Lower-Level A* Algorithm ... 80

4.4 Higher-Level A* Algorithm .. 81

4.5 Two-Tiered A* Algorithm ... 83

4.6 Simulation Experiments ... 88

4.6.1 General Trends of Local Map Size and Global Map Size Variation ... 89

4.6.2 Comparison of Cost Method 1 and Cost Method 2 93

4.6.3 Comparison of Overall Execution Time in the Three Largest Global

Worlds ………………………………………………………………………..97

4.6.4 Comparison of Overall Execution Time Using the Three Smallest

Local Map Sizes ... 101

4.6.5 Comparison of Overall Execution Time Using Various Local Map

Quantities ... 102

4.6.6 Sample Paths .. 103

4.7 Alternative Techniques .. 105

4.8 Summary .. 108

5 Task Allocation and Feedback Coordination Mechanism 111

5.1 Overview .. 111

5.2 Task Specification .. 113

5.3 Robot Specification Description .. 116

5.3.1 Processing Fuzzy Inference System ... 120

5.3.2 Communication Fuzzy Inference System .. 122

5.3.3 Sensing Fuzzy Inference System ... 123

5.3.4 Actuation Fuzzy Inference System .. 127

5.4 Task and Robot Specifications for a Multi-Robot Map Building and

Exploration Task .. 130

5.5 Task Devolution ... 138

5.5.1 Task Devolution Description ... 138

5.5.2 Multi-Robot Map Building and Exploration Task Devolution 141

Table of Contents

vii

5.6 Feedback Coordination Mechanism .. 142

5.6.1 Performance Monitoring .. 144

5.6.2 Task Reallocation... 148

5.6.3 Multi-Robot Map Building and Exploration Task Feedback Example

 ………………………………………………………………………149

5.7 Scalability of Task Allocation and Feedback Coordination 154

5.8 Summary .. 155

6 Multi-Robot Map Building and Exploration Task ... 157

6.1 Overview .. 157

6.2 Explorer Task ... 160

6.2.1 Exploring the Assigned Local Environment 162

6.2.2 Mapping the Assigned Local Environment 165

6.3 Planner Task .. 167

6.3.1 Local Environment Assignment .. 169

6.4 Manager Responsibilities ... 173

6.4.1 Job Queue Maintenance ... 173

6.4.2 Global Map Data and Local Environment Status Updates 177

6.4.3 Estimated Completion Time (ECT) Computation 178

6.5 Scalability .. 180

6.6 Summary .. 180

7 Task Allocation (Devolution) Experiments ... 183

7.1 Overview .. 183

7.2 Task Allocation (Devolution) Experiment Configurations 183

7.3 Primary Task Devolution Results .. 188

7.4 Secondary Task Devolution Results .. 194

7.4.1 Worker Task WT1 (Planner) ... 194

7.4.2 Worker Task WT2 (Explorer) .. 199

7.5 Alternative Techniques .. 207

7.6 Summary .. 209

8 Feedback Coordination Experiments ... 211

8.1 Overview .. 211

8.2 Feedback Coordination Experiment Configurations 211

8.3 Experiments without Feedback .. 216

8.4 Experiments with Task Score Feedback .. 221

viii Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

8.5 Experiments with Full Feedback ... 227

8.5.1 Poor Performance Experiments ... 227

8.5.2 Partial Failure Experiments .. 231

8.5.3 Complete Failure Experiments .. 236

8.5.4 Combined Feedback Experiments ... 238

8.6 Alternative Techniques .. 241

8.6.1 Mapping and Exploration .. 241

8.6.2 Fault Tolerance (Feedback Coordination) ... 244

8.7 Summary .. 245

9 Conclusions .. 249

9.1 Overview .. 249

9.2 Basic Robot Navigation System .. 249

9.3 Memory Constrained Path Planning .. 250

9.4 Task Allocation and Feedback Coordination Mechanism 252

9.5 Future Work ... 254

9.6 Publications .. 256

9.6.1 Refereed Conference Proceedings ... 257

9.6.2 Book Chapters .. 258

9.6.3 International Journal Articles ... 258

9.7 Summary of Achievements (Contributions) .. 258

References .. 261

List of Figures

ix

List of Figures

Figure 1.1: Overview of the multi-robot task allocation and coordination mechanism. 5

Figure 2.1: Block diagram of relevant literature areas reviewed. 9

Figure 3.1: Generic mobile robot control architecture. ... 34

Figure 3.2: Rectangular occupancy grid map. .. 35

Figure 3.3: Overview of reactive control strategy. ... 37

Figure 3.4: Direction sensor representation. ... 38

Figure 3.5: Modification of a robot’s reference frame to allow compatibility between

the direction sensor and dynamic window controls. .. 40

Figure 3.6: Overview of modified dynamic window method. 41

Figure 3.7: Flowchart of optimal velocity pair selection. ... 45

Figure 3.8: Tricycle robot stuck between closely positioned obstacles. 46

Figure 3.9: Tricycle robot traversing in a known environment. 48

Figure 3.10: Final reactive controller (FRC) results. .. 54

Figure 3.11: Results for hybrid reactive-deliberative navigation in known

environments (HRDK). .. 55

Figure 3.12: Hybrid reactive-deliberative navigation in unknown environments

(HRDU).. 56

Figure 3.13: Original dynamic window (ODW) reactive navigation results. 58

Figure 3.14: Reactive navigation with original dynamic window approach and

direction sensor (ODWDS). ... 59

Figure 3.15: Reduced parameter reactive controller (RFRC) results. 60

Figure 3.16: Comparison of HRDK navigation and FRC. .. 61

Figure 3.17: Comparison of HRDU navigation and FRC. .. 62

Figure 3.18: Comparison of ODW and FRC. ... 63

Figure 3.19: Comparison of ODWDS and FRC. .. 64

Figure 3.20: Comparison of RFRC and FRC.. 65

Figure 3.21: The tricycle robot Scratchy. ... 65

Figure 3.22: Screen shot of tricycle robot GUI... 66

Figure 3.23: Reactive control and environment map tabs. ... 67

Figure 3.24: Tricycle robot hybrid reactive-deliberative navigation. 68

Figure 4.1: Two-tiered A* algorithm overview. .. 76

x Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

Figure 4.2: Local map index and adjacency references algorithm pseudo code. 78

Figure 4.3: Global map divided into local maps. ... 79

Figure 4.4: Local map indices, dimensions and neighbours. 80

Figure 4.5: Flowchart of the two-tiered A* algorithm. .. 84

Figure 4.6: Two-tiered A* algorithm description. ... 85

Figure 4.7: Free space clusters and exit points. ... 86

Figure 4.8: Back tracking algorithm flowchart. ... 87

Figure 4.9: Results for planning in a 78 KB global map with 1 local map memory

using cost method 1. .. 89

Figure 4.10: Results for planning in a 390 KB global map with 1 local map memory

using cost method 1. .. 90

Figure 4.11: Results for planning in a 781 KB global map with 1 local map memory

using cost method 1. .. 91

Figure 4.12: Results for planning in a 3.81 MB global map with 1 local map memory

using cost method 1. .. 91

Figure 4.13: Results for planning in a 7.63 MB global map with 1 local map memory

using cost method 1. .. 92

Figure 4.14: Results for planning in a 38.15 MB global map with 1 local map memory

using cost method 1. .. 92

Figure 4.15: Comparison of the two cost methods in 3.81 MB worlds. 94

Figure 4.16: Comparison of the two cost methods in 7.63 MB worlds. 95

Figure 4.17: Comparison of the two cost methods in 38.15 MB worlds. 96

Figure 4.18: Overall execution time comparison in 3.81 MB global worlds employing

one (a), five (b) and fifteen (c) local map memories. .. 98

Figure 4.19: Overall execution time comparison in 7.63 MB global worlds employing

one (a), five (b) and fifteen (c) local map memories. .. 99

Figure 4.20: Overall execution time comparison in 38.15 MB global worlds

employing one (a), five (b) and fifteen (c) local map memories. 100

Figure 4.21: Overall execution time of memory constrained planning relative to

equivalent quantities of 64 KB local maps in 3.81 MB (a), 7.63 MB (b) and 38.15 MB

(c) global worlds. ... 101

Figure 4.22: Overall execution time comparison of memory constrained planning in

38.15 MB global worlds with 1 and 5 local map memories (a), 5 and 15 local map

memories (b), and 1 and 15 local map memories (c). .. 103

List of Figures

xi

Figure 4.23: Path comparison in a 5% obstacle density 38.15 MB global world

employing 64 KB local maps. .. 104

Figure 4.24: Path comparison in a 15% obstacle density 7.63 MB global world

employing 64 KB local maps. .. 105

Figure 5.1: Overview of task allocation and coordination mechanism. 112

Figure 5.2: Summary of task specification criteria. ... 113

Figure 5.3: Brief description of robot specification criteria. 116

Figure 5.4: FIS output membership functions. .. 119

Figure 5.5: Trapezoidal membership functions. .. 119

Table 5.1: Fuzzy inference function settings. .. 119

Figure 5.6: Diagrams of Microcontroller (MC) and PC Processing FISs.................. 120

Figure 5.7: Diagram of Communication FIS. .. 122

Figure 5.8: Diagram of Multi-sensor FIS. ... 123

Figure 5.9: Block Diagram of IR Sensing FIS. .. 124

Figure 5.10: Block Diagram of Actuation FIS. .. 128

Figure 5.11: Three mobile robots in the VUW fleet. ... 136

Figure 5.12: Feedback coordination mechanism block diagram. 143

Figure 6.1: A team of limited capability robots exploring a large environment. 158

Figure 6.2: Multi-robot map building and exploration task overview. 158

Figure 6.3: Explorer control flowchart. ... 161

Figure 6.4: Waypoint generation flowchart. .. 163

Figure 6.5: Graphical layout of waypoints. ... 164

Figure 6.6: Planner control flowchart. ... 168

Figure 6.7: Flowchart to propose a new local environment assignment for an explorer.

.. 170

Figure 6.8: Job queue maintenance flowcharts. ... 174

Figure 6.9: Updating the job queue when explorers and planners fail. 176

Figure 6.10: Global map data update flowcharts. .. 177

Figure 6.11: ECT flowchart. .. 179

Figure 7.1: VOTSWS data for manager task MT1. ... 188

Figure 7.3: Robot(s) assigned to manager task MT1. .. 190

Figure 7.4: VOTSWS data for manager task MT2. ... 191

Figure 7.5: Robot rankings for manager task MT2. ... 192

Figure 7.6: Robots assigned to manager task MT2.. 193

xii Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

Figure 7.7: Value data for worker task WT1 (planner). .. 194

Figure 7.8: Robot rankings for worker task WT1 (planner). 196

Figure 7.10: Robots assigned to worker task WT1 (planner). 199

Figure 7.11: Value data for worker task WT2 (explorer). ... 200

Figure 7.12: Robot rankings for worker task WT2 (explorer). 202

Figure 7.14: Robots assigned to worker task WT2 (explorer) when five explorers are

required. ... 205

Figure 7.15: Robots assigned to worker task WT2 (explorer) when three explorers are

required. ... 205

Figure 7.16: Robots assigned to worker task WT2 (explorer) when one explorer is

required. ... 206

Figure 8.1: Five worker robots exploring a 10% obstacle density world with 5%

boggy terrain. ... 212

Figure 8.2: Results of exploration without feedback for the various robot team –

environment combinations. .. 217

Figure 8.3: Reduction of non-feedback exploration results into single values. 218

Figure 8.4: Comparison of [1 3] and [1 5] robot team configurations with the [1 1]

robot team configuration. ... 219

Figure 8.5: Non-feedback exploration results with partial failures. 220

Figure 8.6: Non-feedback exploration results with complete failures. 220

Figure 8.7: Results of exploration with task score feedback. 221

Figure 8.8: Comparison of task score feedback and non-feedback results at Tm = 60

sec. ... 222

Figure 8.9: Comparison of task score feedback and non-feedback results for non-

boggy environments. .. 223

Figure 8.10: Comparison of task score feedback and non-feedback results for

environments with boggy terrain. .. 224

Figure 8.11: Comparison of task score feedback and non-feedback results for the [1 5]

team in a 25 local map world (a) and a 36 local map world (b). 225

Figure 8.12: Comparison of task score feedback and non-feedback results at Tm =

180 sec. .. 226

Figure 8.13: Comparison of task score feedback and non-feedback results at Tm =

300 sec. .. 227

Figure 8.14: Results of exploration with poor performance feedback. 228

List of Figures

xiii

Figure 8.15: Comparison of poor performance feedback and non-feedback results at

Tm = 60 sec. .. 229

Figure 8.16: Comparison of poor performance feedback and non-feedback results at

Tm = 180 sec. .. 230

Figure 8.17: Comparison of poor performance feedback and non-feedback results at

Tm = 300 sec. .. 231

Figure 8.18: Results of exploration with partial failure feedback. 232

Figure 8.19: Comparison of partial failure feedback and non-feedback results at Tm =

60 sec. .. 233

Figure 8.20: Comparison of partial failure feedback and non-feedback results at Tm =

180 sec. .. 234

Figure 8.21: Comparison of partial failure feedback and non-feedback results at Tm =

300 sec. .. 235

Figure 8.22: Results of exploration with complete failure feedback. 236

Figure 8.23: Comparison of complete failure feedback and non-feedback results. ... 237

Figure 8.24: Results of exploration with combined feedback. 239

Figure 8.25: Comparison of combined feedback and non-feedback results. 240

List of Tables

xv

List of Tables

Table 3.1: Simulated robot attributes. ... 49

Table 3.2: Direction sensor parameter data. ... 49

Table 3.3: Modified dynamic window parameter data. .. 50

Table 3.4: Acceleration and velocity constraints. ... 67

Table 5.2: Microcontroller processing FIS inputs. .. 121

Table 5.3: Rule table for MC and PC processing FISs. ... 121

Table 5.4: Desktop PC based equivalent processing FIS inputs. 121

Table 5.5: Communication FIS inputs. .. 122

Table 5.6: Communication FIS fuzzy rules. .. 123

Table 5.7: Sensor score FIS inputs. ... 125

Table 5.8: Sensor score FIS fuzzy rules. .. 125

Table 5.9: Obstacle avoidance FIS inputs. ... 125

Table 5.10: Obstacle avoidance FIS rules. ... 126

Table 5.11: Mapping/exploration FIS inputs. .. 126

Table 5.12: Mapping/exploration FIS fuzzy rules. .. 126

Table 5.13: Overall sensor score FIS fuzzy rules. ... 127

Table 5.14: Base performance FIS inputs. ... 128

Table 5.15: Base performance FIS fuzzy rules. ... 129

Table 5.16: Base size FIS input and output. .. 129

Table 5.17: Base size FIS fuzzy rules. ... 129

Table 5.18: Overall actuation score FIS inputs. ... 130

Table 5.19: Overall actuation score FIS fuzzy rules. ... 130

Table 5.20: Manager task specifications. ... 131

Table 5.21: Worker task specifications. ... 132

Table 5.22: Capability data of eight heterogeneous robots. 133

Table 5.23: Input/output details of robot quantity criteria FIS for a multi-robot map-

building task. .. 135

Table 5.24: Robot quantity criteria FIS fuzzy rules for a multi-robot map-building

task. .. 135

Table 5.25: VOTSWSij and Vij FIS input/output settings. ... 139

xvi Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

Table 5.26: Set of fuzzy rules to determine VOTSWSij and Vij. 139

Table 5.27: Resulting initial team and initial task allocations for the task and robot

specifications presented in Table 5.20-Table 5.22. .. 142

Table 5.28: Robot-task capability matrix for worker robots. 142

Table 5.29: Feedback weights for worker tasks. .. 150

Table 5.30: Instantaneous achievement data for two worker robots. 151

Table 5.31: Instantaneous expected achievement data for two worker robots. 152

Table 5.32: Instantaneous resource utilisation of two worker robots. 152

Table 5.33: TES and RLS data over three monitor intervals for two worker robots. 153

Table 5.34: Task score data over three monitor intervals for all worker robots. 154

Table 6.1: Utility and cost combination tradeoff data range. 172

Table 7.1: Manager and planner (worker) task VOTS summation weights. 184

Table 7.2: Explorer (worker) task VOTS summation weights. 185

Table 7.3: VOM data of five sets of eight heterogeneous mobile robots. 185

Table 7.4: VOM data of Table 7.3 simplified with FISs. .. 186

Table 8.1: Summary of feedback experiment configurations. 213

Introduction

1

1 Introduction

Cooperative robotic behaviour independent of human intervention is an active area of

mobile robotic research. Ideally, a human should only provide the initial command to

a team of robots that then decide for themselves how to execute the given task.

There are several advantages to cooperative behaviour in multi-robot systems. By

working in parallel, multiple robots can increase efficiency and reduce the time

required to complete a task. Reliability is increased by introducing redundancy when

using a team of robots, while cost can be reduced due to the use of smaller simplistic

machine designs. Application specific design and manufacturing costs can be reduced

by fabricating semi-generic robots. New complex tasks can be introduced to a team of

robots which are difficult for a single robot to achieve.

Multi-robot systems can be homogeneous or heterogeneous. Homogeneous systems

consist of robots with identical hardware and software elements. This provides good

robustness to individual robot failure. However, the robots are required to be

generalists that can perform any type of task given to team. It can be expensive to

manufacture a team of generalists. Hence, many conventional homogeneous systems

are limited to simplistic robot designs that employ detailed human user inputs for

control.

Similar to homogeneous systems, heterogeneous systems can be robust to individual

robot failure. But, heterogeneous systems comprise robots with non-identical

hardware and software elements. Hence, the thesis presented here is that a

heterogeneous ensemble of mobile robots can be hierarchically organised with task

feedback control, which significantly reduces the need for human user input.

Three broad categories of multi-robot system applications are transportation, sensing,

and foraging. Object transportation involves multiple robots transporting objects from

one location to another and has been exhibited in robot soccer teams [1-3] as well as

in object pushing [4, 5] and object lifting and carrying [6, 7]. Cooperative sensing

develops a group robotic system for localisation, map building, and exploration [8-

2 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

11]. In foraging, groups of robots must locate and move objects scattered in an

environment to a storage location [12-14].

A variety of mobile robots are currently under development at Victoria University of

Wellington (VUW). Amongst these is a pair of functionally equivalent tricycle robots

for investigating cooperative behaviour such as object transportation or sensing [15].

Another two robots, Rubble-bot [16] and Tank [17], are being developed as part of an

urban search and rescue (USAR) multi-robot application [18].

The VUW USAR hierarchical heterogeneous multi-robot system has three categories

of robots: grandmothers, mothers, and daughters. At the top of the hierarchy, the

grandmothers are physically the largest and most computationally powerful.

Grandmother robots are generally employed to manage the operation of a group task.

They achieve this by monitoring and coordinating lower tiered robots (mothers and

daughters). Mothers and daughters are smaller in size and less computationally

powerful. They are also limited in their sensing and actuation abilities. The smaller

size of the mother and daughter robots enables them to be deployed for searching the

environment as worker robots.

Coordinating a team of mobile robots such as the VUW USAR system usually

involves implementing task allocation and coordination mechanisms. Task allocation

mechanisms address the question: “which robot should execute which task?” [19]

Coordination mechanisms enable the actions performed by each robot to take into

consideration the actions of the other robots in the team resulting in coherent team

operation [20]. Recently research in multi-robot systems has also addressed coalition

formation, the organising of multiple robots into temporary subgroups to accomplish

an assigned task that would otherwise be impossible to complete [13, 21].

In certain multi-robot applications, such as exploration (section 2.9), predefined task

allocation and coordination may not always work as desired. This is due to the

inability to model all aspects of a robot’s interactions with the environment prior to

task execution. Task allocation may also fail if tasks are incorrectly specified. Robots

with limited capabilities also present the challenge of using resources effectively to

achieve the objectives of the group task.

Introduction

3

Allocating tasks to robots in a team like the VUW USAR system requires a strategy

that takes into account the physical capabilities (i.e. resources) of the different robots.

Generally, the resources present on a robot may be classified into four broad

categories: processing, communication, sensing and actuation.

Most of the existing task allocation methods require expert knowledge to specify tasks

to a team of robots. None of the methods reviewed in section 2.7 attempt to specify

tasks in terms of the four broad physical capability categories. Specifying tasks in

terms of these physical capability categories may have the potential to allow non-

expert users to intuitively select task requirements.

After initial task allocation, robots may not perform as desired due to the inability to

fully model all interactions with the environment accurately. Additionally, existing

task allocation algorithms (section 2.7) employ heuristic greedy methods to select

robots which can be suboptimal. It may also be possible for a user to inaccurately

specify tasks when using the four broad physical capability categories. These

problems need to be mitigated by employing a feedback mechanism that monitors

task execution. Task execution can be classified into four broad categories: planning,

communication, sensing and actuation. Hence, a feedback mechanism may be

designed in terms of these four categories to detect and correct abnormal

performance. Consequently, a group task should be executed with increased

efficiency.

Using limited capability robots also presents challenges in task execution. In

exploration tasks, robots are required to navigate beyond localised regions of an

environment. Memory constrained robots in a heterogeneous system require a hybrid

of deliberative and reactive control to achieve this. Deliberative control should be able

to provide a path to travel beyond the localised region of the environment. A limited

memory robot may be able to utilise the resources of computationally powerful robots

to achieve this. Reactive control must facilitate collision avoidance and modify the

path of travel when obstacles are encountered during movement.

4 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

1.1 Objectives

In this thesis, the aim is to develop an artificial intelligence system to instruct and

control a heterogeneous ensemble of mobile robots. Motivated by the VUW USAR

hierarchical system that is under development, the robots will have a variety of

processing, communication, sensing and actuation resources. Many of the robots will

have limited processing, sensing, and actuation capabilities.

One of the specific objectives is to develop a task allocation strategy based on

physical robot capabilities. Tasks and robots will need to be specified in terms of the

four broad physical capabilities (processing, communication, sensing and actuation).

Specifying tasks in terms of the four major physical capabilities should allow non-

expert human users to use the task allocation strategy.

Existing task allocation methods employ heuristic greedy techniques which can often

be suboptimal. Developing an optimal mapping of tasks to robots is NP-hard [22].

Therefore, another major objective is to develop a feedback coordination strategy that

monitors robots during task execution. Task execution performance will be

characterised in the broad categories of planning, communication, sensing and

actuation. By detecting and correcting failures, the feedback system should facilitate

improved group task execution.

A conceptual diagram of the task allocation and feedback coordination mechanism

(also motivated by the VUW USAR system) is shown in Figure 1.1. There are three

levels of control. At the highest level (level A) a remote base station computer is used

to specify the group task (management and worker tasks) and robots. Depending on

the management task requirements and robot capabilities, the remote computer

identifies manager robot(s) (level B). The manager robots are delegated the

responsibilities of global data maintenance, worker task devolution and performance

monitoring. After manager task devolution, the remote computer is no longer required

by the robot team since task management is essentially transferred to the manager

robot(s).

Introduction

5

Manager Task
Devolution

• task & robot
specifications

• identify managers

Remote Base
Station

Managers

Workers

Task
Management

Task
Execution

A

B

C

Task iTask i

Task j Task j Task j

Global Data
Maintenance

• update group
task shared

data

Worker Task
Devolution

• identify workers
• initial resource

use

Performance
Monitoring

• monitor workers
• change

resource use

Figure 1.1: Overview of the multi-robot task allocation and coordination
mechanism.

At the third level of control (level C), worker robots are responsible for executing the

objectives of the group task. Worker robots are selected by the manager robot(s)

during execution of a worker task devolution process. Depending on the nature of

worker tasks to be allocated, the worker robots are assigned a position in a predefined

hierarchy. Worker robots executing some tasks (e.g. Task i) could be supervising

robots executing other tasks (e.g. Task j). Following the worker task devolution

process, the worker robots perform their tasks and the manager robots monitor and

direct their performance using a feedback coordination mechanism.

To evaluate the developed task allocation and feedback coordination strategies, a

suitable multi-robot task needs to be implemented. A customised multi-robot map-

building and exploration task is developed for this objective.

In some situations, the limited memory worker robots may be required to perform

global path planning (deliberative control) to navigate beyond localised regions of the

global world. This can be problematic if the limited memory robots are unable to store

the entire map in their local memory. The methods reviewed in section 2.5 cannot be

applied to the multi-robot application presented in this thesis. Thus another objective

is to explore a new approach to global path planning for limited memory robots.

6 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

To successfully navigate obstructed environments, limited memory heterogeneous

robotics requires a hybrid of deliberative and reactive control. Hence, a navigation

system that combines the benefits of reactive and deliberative control for

heterogeneous mobile robots is also developed in this thesis.

1.2 Thesis Outline

• Chapter 2 – A review of relevant literature is presented. Topics of interest in

single robot and multiple robot control, such as control architectures,

navigation systems, task allocation and coordination techniques, and fault-

tolerance are reviewed. A review of multi-robot map building and exploration

strategies is also included.

• Chapter 3 – The hybrid generic navigation system employed by the

heterogeneous mobile robots is presented. Its design is based on the A*

algorithm, a polar histogram and a modified dynamic window approach.

Simulation experiments with three heterogeneous robots in a range of

environments are conducted. Initial hardware experiments demonstrate the

navigation system working in the real world.

• Chapter 4 – A two-tiered path planning technique to permit global path using

limited (processing and memory) capability mobile robots is presented. Using

a two-tiered A* algorithm that executes entirely on the limited capability

robots, a set of local maps describing the global map is searched for a global

path. Planning time, data communication and path length are evaluated for

various combinations of local and global maps.

• Chapter 5 – Details of the proposed task allocation and feedback coordination

technique for limited capability mobile robots are presented. The task

allocation component employs Fuzzy Inference Systems (FISs) to simplify

human user input at the task specification stage. FISs are also employed in the

primary (manager) and secondary (worker) task devolution processes.

Feedback coordination executes periodically to detect and correct three forms

of robot failure: poor performance, partial failure and complete failure. An

Introduction

7

exploration task (defined in chapter 6) is employed as a specific example to

demonstrate the technique.

• Chapter 6 – The customised multi-robot map building and exploration task is

detailed. A global environment is divided into local environments for limited

capability mobile robots to explore. Planner and explorer tasks are executed by

the limited capability robots to complete the exploration of a global world.

Explorer robots utilise the navigation system presented in chapter 3 and

planner robots plan global paths using the technique presented in chapter 4.

Exploration of global worlds with relatively flat terrain containing sections of

boggy terrain is considered.

• Chapter 7 – Experimental results of utilising the task allocation mechanism for

the customised multi-robot map building and exploration task are presented.

The influence of weight variation on ranking and selecting candidate robots is

evaluated for five sets of eight robots.

• Chapter 8 – Results obtained from executing the multi-robot mapping and

exploration task without any feedback is compared with task execution

employing feedback coordination. Each type of feedback (task score, poor

performance, partial failure and complete failure) is tuned and a complete

system with tuned parameters is also evaluated.

• Chapter 9 – A summary of the contributions and publications arising from this

research is presented as well as a discussion of future work.

Background and Related Work

9

2 Background and Related Work
2.1 Overview

The development of a hierarchical heterogeneous multi-robot system incorporates

several areas of both single robot and multiple robot control. Figure 2.1 illustrates the

relevant literature areas that have been reviewed. The chapter begins by discussing

topics related to single robot control. These areas include single robot control

architectures (section 2.2), hybrid navigation systems (section 2.3), reactive motion

control and obstacle avoidance (section2.4) and memory constrained path planning

(section 2.5).

Multi-Robot Control
Architecture
(Section 2.6)

Single Robot
Control

Architecture
(Section 2.2)

Task Allocation &
Coordination
(Section 2.7)

Fault Tolerance
(Section 2.8)

Multi-Robot (or
Group) Task

e.g. Mapping &
Exploration

(Section 2.9)

Hybrid Navigation
(Section 2.3)

Deliberative
e.g. Memory

Constrained Path
Planning

(Section 2.5)

Reactive
e.g. Obstacle

Avoidance
(Section 2.4)

Multi-Robot
Control

Single Robot
Control

Figure 2.1: Block diagram of relevant literature areas reviewed.

Next, the chapter proceeds to topics in multi-robot control. Relevant areas reviewed

include multi-robot control architectures (section 2.6), task allocation and

coordination (section 2.7), and fault tolerance (section 2.8). The primary objective of

a multi-robot system is to perform a multi-robot (or group) task. This thesis utilises a

10 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

multi-robot exploration and map building task as an example application. Hence, a

review of multi-robot map building and exploration is included (section 2.9).

2.2 Single Robot Control Architectures

A robot’s control architecture provides the framework in which a variety of control

algorithms are implemented to enable appropriate functionality. There are three main

categories of robot control architectures: reactive, deliberative, and hybrid systems.

Two popular reactive control architectures for mobile robots include the subsumption

architecture [23] and the motor schema architecture [24]. In the subsumption

architecture, reactive systems are structured from the bottom up using layered sets of

rules. Inspired by the biological sciences, the motor schema architecture provides

distributed and parallel primitive behaviours that are coordinated to produce an

intelligent robot.

Behaviour-based systems, such as those reviewed by Arkin [25], can also be classified

under reactive control architectures. However, Mataric [26] and Mataric and Michaud

[27] have argued that there is a distinction between reactive and behaviour-based

systems. Examples of behaviour-based systems include Control Architecture for

Multirobot Planetary OUTposts (CAMPOUT) [7], Architecture for Behaviour-Based

Agents (ABBA) [28], and Distributed Architecture for Mobile Navigation

(DAMN) [29].

Generally, there is a tight coupling between sensing and actuation in reactive and

behaviour-based systems. They feature real-time response, less dependence on

complete world models and reduced predictive capabilities when compared with

deliberative systems. However, tasks that require explicit world representations and

high level intelligence can be difficult to implement in reactive and behaviour-based

systems.

Before the development of reactive and behaviour-based architectures, deliberative

reasoning methods were extensively used in robotics research [25]. Deliberative

architectures [30, 31] integrate world knowledge into a robot’s control by maintaining

an explicit world representation. World knowledge is used to reason about the robot’s

Background and Related Work

11

actions by optimising its performance relative to the world representation. The

explicit world representation enables deliberative systems to solve certain types of

problems better than reactive systems. However, systems relying solely on

deliberative control are rare because they are generally too slow to cope with real

world dynamic environments. World knowledge maintenance and optimal action

selection computational overheads are the main causes of latency.

Hybrid architectures [32-35] have become popular in recent years as they combine the

benefits of reactive control and deliberative control. According to Arkin [25] and

Mataric and Michaud [27], reactive and deliberative control can be complementary.

The deliberative component can guide the reactive component to avoid local minima

situations. In turn, the reactive component can assist the deliberative component by

making subtle changes to plans during execution. Managing the interactions between

the reactive and deliberative components is a key challenge in hybrid architecture

design.

The Autonomous Robot Architecture (AuRA) [32] was one of the first implemented

hybrid architectures. AuRA uses motor schemas for reactive control and a traditional

AI spatial planner for deliberative control. In the Planner-Reactor architecture [33], a

planning mechanism is used to continuously modify a reactive controller according to

some high level objectives. The three level Atlantis architecture was developed by

Gat [34] and tested on the Mars rover Robby. In Atlantis, the deliberator and

sequencer levels acknowledge failures and adapt the reactive control level

accordingly. Layered behaviours link sensing to actuation via a local perceptual space

in the Saphira architecture [35]. Saphira’s Procedural Reasoning System (PRS)

controls the activation and deactivation of the layered behaviours.

Based on the benefits of hybrid systems, a hierarchical hybrid approach [36, 37] is

utilised to control individual robots in this thesis (chapter 3).

2.3 Hybrid Navigation Systems

Robot navigation systems are analogous to robot control architectures. A range of

algorithms to facilitate successful navigation to a goal location are implemented in

12 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

navigation systems. Part of this thesis focuses on the development of a navigation

system that can be employed on memory constrained heterogeneous robots. In

particular, heterogeneity refers to robots with varying size, shape, drive type and

sensor quantities for this thesis. A high degree of flexibility is needed for successful

navigation in known and unknown environments. Hence, a hybrid navigation system

that employs both reactive and deliberative control is favoured. A hierarchical hybrid

navigation system can achieve the benefits of deliberative and reactive control.

The dynamic window approach [38] is a popular reactive collision avoidance

technique. A weighted combination of goal-directedness, obstacle clearance and

linear velocity determines the suitability of angular and linear velocity pairs in most

implementations. It has been adapted, merged with other reactive techniques and

combined with deliberative navigation techniques to produce a range of navigation

systems.

A convergent dynamic window approach has been developed by Ogren and Leonard

[39]. This technique combines the dynamic window approach with exact robot

navigation using artificial potential functions. A framework suggested by Primbs et

al. [40] combines the complementary properties of the two navigation strategies.

Convergence is mathematically proved and a simulation example has been presented

for circular-shaped robots only.

The nearness diagram method and dynamic window approach have been combined to

produce reactive collision avoidance in dense and cluttered environments [41]. A

direction for the current situation is computed from seven situations in the nearness

diagram module. This direction is tracked using the dynamic window approach [42].

The framework has been implemented on a rectangular non-holonomic robot. Limited

experiments indicate the robot travelled at average speeds of 0.318 m/sec to

0.48 m/sec through a cluttered environment.

A navigation strategy that integrates the dynamic window approach, elastic band and

NF1 [43] path planning has been implemented for a differential drive tour guide robot

[42]. In this implementation, the dynamic window method has been modified to use

look-up tables for collision prediction. Collision prediction employs time to collision

instead of distance to collision. The NF1 planner generates new plans that are adapted

Background and Related Work

13

by the elastic band as the robot moves through the environment. This implementation

is hybrid deliberative-reactive and it is unclear how the modifications made to the

dynamic window method function in a reactive system.

The A* path planning algorithm and dynamic window method have been integrated

for indoor mobile robot navigation [44]. In this approach, the velocity space search

advantages of the dynamic window method are combined with the local minimum

free search characteristics of the A* algorithm. Global path planning is performed at

every control cycle for navigation in unknown environments. A circular differential

drive robot in a simulated environment is used to verify the method. This navigation

system is extended in [45] where the A* algorithm is replaced with the focused D*

algorithm [46] to achieve real-time control in dynamic environments.

A globalized version of the dynamic window approach similar to [44] is presented in

[47]. Here, the dynamic window approach is used with an NF1 path planner instead of

the A* algorithm. The framework permits goal-directed reactive motion in unknown

environments and has been demonstrated on a circular holonomic robot.

Robot navigation comprises a model stage and planning stage in [48]. A reduced

dynamic window (dynamic line) method accounts for robot shape and dynamics in the

model stage. In the planning stage, an NF1 path planner generates paths with a

curvature dependent velocity profile. The navigation system has been tested on two

rectangular differential drive robots. A disadvantage of this method is that it is not

discussed how the model stage copes if planning fails.

In [49], real-time obstacle avoidance based on the dynamic window approach is

achieved via robot-specific look-up tables. A wave front expansion algorithm is used

to generate intermediate way points for global navigation. The system has been tested

on a circular synchrodrive robot and a forklift tricycle robot.

The obstacle-restriction method for robot obstacle avoidance in difficult environments

is a two stage navigation technique [50]. A sub-goal selector stage identifies free

space and selects alternative sub-goals if necessary. In the motion computation stage,

motion towards the target direction is determined while avoiding collisions. The

motion computation stage, like the dynamic window method, accounts for motion

14 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

constraints and steering direction motion. This method has been demonstrated on

differential drive rectangular robots where reversing was not required.

A rudimentary hybrid navigation system that employs an A* path planner and the

dynamic window method has been developed by Lee-Johnson [51]. This rudimentary

system only supports differential drive robots with circular shapes. Hence, a major

shortfall is a lack of support for robots with varying drive types and shapes. A pre-

generated grid map with fixed binary occupancy data is employed for path planning.

Hence, the system does not have map updating capabilities. Additionally, the path

planner does not account for the size of the robot and varying occupancy probabilities.

Lee-Johnson has independently further developed the rudimentary navigation system

into an emotion-based control system [52].

The methods described above are not well suited for heterogeneous robots that may

have limited sensing and processing capabilities. Additionally, the reactive control

component is highly dependent on the deliberative component such that regular

(periodic) path re-planning is required in unexplored obstructed environments. Hence,

additional reactive control techniques and memory constrained path planning

strategies are reviewed in section 2.4 and section 2.5, respectively.

2.4 Reactive Motion Control and Obstacle Avoidance

Reactive control for point-to-point motion and local obstacle avoidance is an

important component of many autonomous mobile robots. Arras et al. [48] present a

brief overview of various obstacle avoidance techniques. Some of these techniques

include: potential field approaches [53-55], the elastic band concept [56], nearness

diagram concept [57], vector field histogram concept [58], curvature velocity

approach [59] and dynamic window approach [38].

Many obstacle avoidance approaches are restricted to a simplified robot shape

(mainly circular) [48]. With the exception of [36, 37, 48, 49, 60, 61] all reviewed

techniques assume a circular shaped robot. However, a circular shaped robot may not

be ideal for some tasks. For instance, tricycle robots can provide good stability and

manoeuvrability for object manipulation [15]. Approximating a non-circular robot

Background and Related Work

15

with a circle often results in highly conservative obstacle avoidance behaviour. The

ego-kinodynamic space [62] is a complex framework that abstracts vehicle constraints

from reactive control methods allowing robots with different shapes to use common

obstacle avoidance approaches.

Many obstacle avoidance techniques can be broadly classified into directional

methods [53-55, 58] and velocity space approaches [38, 59]. These methods are of

interest because they deduce a motion command from the current sensor readings by

applying a single rule. These techniques have been improved. Search-based look-

ahead verification has been added to the vector field histogram concept [63]. The lane

curvature approach [64] overcomes problems arising from the curvature velocity

assumption that the robot always moves on circular arcs. A globalized version of the

dynamic window approach is presented in [47]. The dynamic window approach is

used with an NF1 path planner in [49], where real-time capability is achieved via a

robot-specific look-up table. In [48] a reduced dynamic window (dynamic line) is

used with an NF1 path planner to avoid the use of look-up tables.

Directional methods generally have limited ability to account for kinematics and

dynamics of a robot. As a result, they are generally unsuitable for high speed

navigation. On the other hand, velocity space approaches account for kinematics and

dynamics but can be overly conservative.

The methods presented in this section have not been tested on a variety of robot

shapes and drive types. Additionally, they do not explicitly combine directional

methods and velocity space techniques. A hybrid of directional methods and velocity

space approaches is presented in [36, 37] to mitigate their weaknesses. Chapter 3

details this hybrid approach to reactive collision avoidance.

2.5 Memory Constrained Path Planning

Microcontroller based mobile robots often have limited memory capacity and hence

cannot store large volumes of environment data. In certain applications, these memory

constrained robots may need to perform path planning to navigate beyond their local

16 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

region [65]. However, several reviews of path planning strategies do not outline any

memory efficient implementations that enable these robots to perform such a function.

In this thesis, a rectangular occupancy grid [66] is used to represent the robot’s

environment. This has been favoured over more complex decompositions [67] or

roadmap methods [68], [69] because of its simplicity and usability in a range of

environments. Occupancy grids can be searched using algorithms such as A* [70],

Dynamic A* (D*) [46], spreading activation [26] or wavefront propagation [43]. The

A* algorithm has been selected for its ease of implementation.

The A* algorithm [70] is a best-first heuristic search algorithm that is often used for

path planning on mobile robots that maintain node based maps [36], [43]. While A* is

an efficient algorithm that utilises heuristics to guide the path planning process, its

scalability is limited by the size of the map it has to search, just like any other path

planning algorithm. Multi-tiered path planning strategies that do not utilise A* have

previously been investigated primarily to facilitate faster plan generation rather than

addressing memory limitations [71-74]. A review of multi-tiered and memory

efficient implementations of A* based path planning is considered in the context of

this thesis.

Warren [75] has developed a path planner using a modified A* method. The method

involves using trial vectors that span several cells to perform a “loose” search in a fine

grid, sacrificing path optimality in favour of speed. However, the issue of memory

requirements for map storage and path planning variables is not addressed.

Zhao et al. [76] consider implementing a navigation system on mobile robots with

limited on-board memory and communication bandwidth by using cache memories

and auxiliary memory. The auxiliary memory and cache memories are physically

(locally) available on the robot. A modified A* heuristic-search algorithm is used to

plan global paths in a node-based map. For local planning, a potential field method

searches a grid map for a path. The effect of various local and global cache policies

on data access and planning times is investigated. Portions of the local map cached

vary in size depending on robot velocity and a desired sample interval. Global cache

data varies based on the environment type. Overall, this method addresses limited

memory planning by installing additional memory on a robot.

Background and Related Work

17

Agent-centred search (also known as real-time or local search) is a technique for

interleaving the planning and execution of paths. This type of search trades off

planning and execution cost and may lead to memory savings. Learning real-time A*

(LRTA*) [77] uses state values in a local search space to navigate towards a goal

incrementally. Several other agent-centred methods similar to LRTA* are also

discussed in [77].

Additional agent-centred search methods unlike LRTA* include [78] that employs

rapidly-exploring random trees and [79] where a complex neural network and

evolution strategy trades-off computation and memory search times. Agent-centred

methods may require a robot to revisit a local search space while traversing towards

the goal, especially if it has limited sensing abilities. Also, execution costs can be

significantly higher than planning costs for mobile robots thus the local search space

needs to be carefully selected.

Razavian and Sun [80] have developed an adaptive path planning algorithm that

consists of a primary path stage and a refined path stage. Their adaptive algorithm’s

performance is compared to the A* algorithm. The performance metric used is the

ratio of cells in the final path to the number of cells searched in determining the path.

While their method reduces the number of cells searched and may save memory in

path finding, the approach will not necessarily always produce a near optimal path.

The method also implicitly assumes that the entire grid map is locally available on the

robot.

Holte et al. [81] use a STAR abstraction technique to implement a hierarchical A*

search algorithm. Path planning using their technique essentially involves searching

for a path in an abstracted search space followed by using the abstract path to guide

the search in the original search space. The emphasis of their work was to reduce path

planning time and analysis of memory usage is not considered.

Game programmers have also developed hierarchical variants of the A* algorithm for

path planning [82]. These methods employ a macro level search to produce a coarse

resolution path followed by micro level search between coarse path nodes to refine

the path. Schneider et al. [83] take a similar approach to address the issue of real-time

18 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

non-holonomic path planning in huge terrain datasets. These approaches are mainly

used for faster plan generation and do not address memory issues involved in storing

large grid maps.

The framed-quadtree approach [84] uses a grid based representation that lumps free

space into single cells to save memory. This approach has been used with the D*

algorithm [46] to plan paths for mobile robots in sparse environments [85]. However,

as shown in [85] the memory requirements for this method of path planning increase

with obstacle density and eventually exceeds that used by a regular grid

representation. Similarly, the execution time increases with obstacle density to

eventually exceed that of a regular grid. In addition to this, a framed-quadtree

approach presents difficulties in planning paths to avoid other robot territories and

obstacles simultaneously.

The memory requirements for storing variables associated with the A* search can be

reduced by implementing linear space variants of A* such as iterative deepening A*

(IDA*) [86] and recursive best-first search (RBFS) [87]. However, these methods

have been shown to perform poorly in grid maps [88].

Alternatively, memory can be saved by not storing the closed list when searching for

a path using A*. This has been demonstrated in [88] where a divide-and-conquer

technique is employed to plan paths while avoiding duplicate search. Optimal paths

can be produced using this method. However, this method is unable to produce partial

paths that can be useful in mobile robot navigation. Zhou and Hansen [89]

implemented a similar sparse-memory A* algorithm that only stores a small part of

the closed list to save memory. These techniques are not well suited for a limited

memory implementation where the entire map cannot be stored locally. This is due to

essential recursive calls to the algorithm that may introduce significant

communication overheads.

Since the methods reviewed in this section are not directly suitable for the

heterogeneous limited memory robots and multi-robot application presented in this

thesis, an alternative strategy is proposed (chapter 4). This alternative technique is a

two-tiered global path planning method based on the A* algorithm.

Background and Related Work

19

2.6 Multiple Robot Control Architectures

The multi-robot or group architecture provides the infrastructure upon which

collective behaviours are implemented and determines the capabilities and limitations

of a multi-robot system [90]. One of the key features of a group architecture for

mobile robots is whether the system is centralised or decentralised. Centralised

architectures are characterised by a single control agent whereas decentralised

architectures allow multiple control agents. In pure centralised architectures, all slave

robots are completely dependent on a central master robot for commands and control.

If communication is lost at any point in time then the slave robots fail to function. The

decentralised architecture has been the dominant group architecture since it has

several inherent advantages over centralised structures. Two types of decentralised

architectures include hierarchical architectures and distributed architectures [90].

Hierarchical architectures are locally centralised and can consist of multiple master

control agents. Subordinate robots are independent in carrying out tasks to achieve

certain goals but they communicate with a master or host that has a global view of

operations and assigns goals to the agents. The subordinate robots can remain

functional with intermittent loss of communication. CEBOT, a hierarchical

architecture, consists of a group robotic system that is dynamically reconfigurable,

has been simulated [91]. The GOFER architecture, which uses a central task planning

and scheduling system, was used to study distributed problem solving by multiple

robots in an indoor environment using traditional AI techniques and was successfully

used with three physical robots [90]. Cooperative behaviour based on fuzzy logic

optimized by micro genetic algorithms for fixed obstacle and multiple robot

avoidance in a centrally managed robot system has been simulated in [92].

Hierarchical architectures have also been implemented in cooperative robot soccer

teams where autonomous soccer robots are linked to a host computer system [2]. The

use of two cooperative robots operating in a master/slave configuration to facilitate

localization and mapping has also been studied [93].

Distributed architecture implementations remove the need for a master or host. All

robots have equal control and are largely autonomous in their decisional process,

20 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

relying only on critical information from other robots. Robots in distributed systems

can function autonomously when communication is partially or completely lost. A

practical application based on a distributed architecture is map building for

exploration in an unknown environment using two cooperative robots [8]. In this

application the robots share perceptual information, but maintain separate maps and

make independent decisions which leads to the system being robust to the loss of

communication between them as well as to the loss of a robot. A distributed system

carrying out a box pushing task using explicit communication for coordination has

been shown to perform more effectively than a single robot or two non-

communicating robots [4].

A cooperative box pushing mission by two heterogeneous robots has been achieved

using a fully distributed system at both the individual robot and team levels based on

the ALLIANCE architecture [12]. This architecture has also been implemented on a

physical robot team performing a laboratory version of a hazardous waste cleanup.

The ALLIANCE architecture has the advantage of using adaptive actions to achieve

fault tolerant control within small to medium sized teams of heterogeneous robots.

The ABBA architecture [28], which is designed for distributed cooperative planning,

has been utilized in the implementation of a cooperative cleaning task with two

autonomous mobile robots. This implementation has also shown the advantage of

robustness in the face of failures. CAMPOUT [7], a distributed control architecture

for tightly coupled coordination of multiple robot systems has been developed at the

Jet Propulsion Laboratory. It has been applied to ongoing physical experiments

involving the exploration of cliff faces and the deployment of extended payloads.

A fully distributed architecture is cost expensive to implement if there are many

robots in the system. All robots will need to have sufficient processing abilities to

plan and execute tasks independently. However, in this thesis, many of the robots will

have limited processing, sensing, and actuation capabilities. Hence, a decentralised

hierarchical architecture is proposed for the multi-robot system (section 1.1). Manager

robots act as master control agents. Subordinate worker robots are independent in

carrying out tasks to achieve certain goals, but they communicate with the mangers to

receive their goals and tasks.

Background and Related Work

21

2.7 Task Allocation and Coordination

Central to the success of many multi-robot systems is the ability of the individual

robots to cooperate and coordinate their activities. This can result in advantages such

as increased efficiency in performing tasks and robustness to failure of individual

robots. Coordinating a team of mobile robots usually involves implementing task

allocation and coordination mechanisms. Various methods for coordination and task

allocation in multi-robot systems have been discussed in [19, 20, 94]. Whereas [20]

focuses on coordination, [19, 94] address task allocation.

Of the classifications based on coordination identified in [20], the weakly centralised

systems [95-97] are of particular interest since they can be utilised in hierarchical

heterogeneous systems. In these systems, a leader robot is selected dynamically

during task execution based on the situation of the team and the environment.

A weakly centralised approach is proposed in [95] where the robots start auctions and

bid to become the team leader. The proposed method intends to take into account the

physical capabilities of robots but has not been fully implemented. A fixed set of

robots and fixed task assignments are employed in experiments. In [96] the robots are

heterogeneous and a leader is selected based on specific sensing or actuation

capabilities. A pair of robots (a supervisor and pusher) is utilised to accomplish a box

pushing task. Experiments with larger teams of robots are neither simulated nor

physically implemented. Market based strategies (described below) are employed for

dynamic selection in [97]. Pockets of centralisation improve task allocation optimality

when compared to purely distributed methods. Revenue and cost functions need to be

defined but these are not expressed in terms of physical robot capabilities. A task

domain specific clustering algorithm is required to process bids and select a leader

robot in a timely manner.

In [94] a taxonomy has been developed for the multi-robot task allocation problem,

differentiating robots as either single-task (ST) or multi-task (MT), tasks as either

single-robot (SR) or multi-robot (MR), and assignment types as either instantaneous

(IA) or time-extended (TA). Representative approaches to multi-robot task allocation

[9, 12, 98-102] are analysed in [94] based on the developed taxonomy. In these

approaches, a set of indivisible tasks is distributed amongst a team of robots such that

22 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

each robot executes an individual task. It has been shown that developing an optimal

mapping of tasks to robots is NP-hard [22]. Hence, existing approaches employ

heuristic greedy methods to achieve this mapping, leading to suboptimal solutions.

ALLIANCE [12] and BLE [102] are examples of behaviour-based approaches to

multi-robot task allocation. Behaviour sets typically represent tasks in these

approaches and action selection mechanisms are utilised to enable or disable

behaviours representing tasks. ALLIANCE uses motivational behaviours to monitor

and dynamically reallocate tasks thus achieving fault tolerance and adaptive

behaviour. In the BLE system, each robot has a corresponding behaviour that is

capable of executing each task. The robots select a task to execute by continuously

broadcasting locally computed eligibilities followed by determining the most eligible

task using a greedy algorithm. A behaviour-based approach to multi-robot task

allocation that uses the concept of “vacancy chains” [103] is presented in [104].

Vacancy chains are social structures capable of resource redistribution. In [104], the

resources to be redistributed are the tasks requiring allocation or reallocation. The

approach is demonstrated in groups of homogeneous robots where “vacancy chains”

emerge through reinforcement learning.

Market-based task allocation methods [9, 97, 98, 100, 101, 105] have also been

widely utilised in multi-robot systems. In these approaches, the global task consists of

a set of tasks that the robots bid and negotiate on. Costs and revenues are associated to

the tasks, and robots can trade the tasks trying to maximise their revenue. An

auctioning mechanism utilises a task to revenue/cost mapping function to greedily

assign tasks to the highest bidders. TraderBots [106] is a market-based approach that

has the ability to allocate resources and roles in addition to tasks. This is achieved via

a RoboTrader module that executes on each robot. Complex tasks comprising sets of

atomic tasks with some constraints placed on them can be represented as task trees in

market-based techniques [107]. Robots can bid on combinations of task tree nodes

resulting in a complex task being assigned to one or more robots. A drawback of

market-based methods is that it can be difficult to express revenue and cost functions

in terms of robot physical capabilities such as processing, communication, sensing

and actuation. Additionally, the reviewed market based methods assume that a robot

already meets the physical capability requirements of a task when it makes a bid.

Background and Related Work

23

Dynamic role assignment [99] assigns roles to each robot in the team. The behaviour

of robots is modelled using a continuous state space representation. A hybrid

automaton [18] models robot behaviour together with the roles, role assignments and

associated variables. Each role is a control mode of the hybrid automaton. During the

execution of a cooperative task, robots within a team can dynamically exchange roles

in a synchronised manner adapting to changes in the environment. Specialised

dynamic role assignment methods have been used for robotic soccer [3, 108] where

the robots dynamically switch between roles such as attacker and defender or master

and supporter. These approaches do not address the issue of robots autonomously

determining contributions to the solution based upon processing, communication,

sensing and actuation capabilities. Additionally, the robot team is known a priori in

dynamic role assignment.

Burgard et al. [11] address task allocation and coordination in multi-robot exploration.

For each robot, they trade-off the utility and cost of potential target points for

exploration. In this manner, each robot is assigned a target point for exploring. A

more recent example using a similar technique for coordination is [109]. The

coordination strategies of [11, 109] are not explicitly based on the computational and

physical resources that each robot possesses and assumes that each robot is capable of

solving the exploration problem. Additionally, robot malfunctions are not addressed

in these implementations.

Teamwork models have been developed that provide mechanisms for agents to form

teams to accomplish a common goal [110, 111]. A general model of teamwork,

STEAM (Shell for TEAMwork) is presented in [111]. It facilitates monitoring of team

performance and allows team reorganisation. STEAM is based on a hybrid of joint

intentions theory [112] and SharedPlans theory [113]. Joint intentions theory relies on

high level conditions that are based on robots having mutual goals (joint persistent

goals). SharedPlans is not based on a joint team mental attitude, unlike joint

intentions. Instead, individual agents intend that a collaborator is able to produce a

solution for a required action. STEAM has been applied to the simulated tasks of

helicopter attack and transport formation and RoboCup synthetic soccer.

24 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

Another general model based on joint intentions theory is the joint responsibility

GRATE (Generic Rules and Agent model Testbed Environment) system [110]. This

system involves satisfying defined preconditions before collaboration can begin in

addition to generating plans for agent behaviour during collaboration. Hence, it is able

to provide an explicit model of cooperative problem solving for industrial

applications. GRATE agents have two components; a cooperation layer and a domain

level system. The GRATE system has been applied to the real-world domain of

electricity transportation management.

STEAM and GRATE provide high-level models for problem solving and role

assignment. However, the contributions and requirements of physical robot

capabilities (such as processing, communication, sensing and actuation) are not

addressed in these approaches.

Parker and Tang [21] consider the problem of single-task robots performing multi-

robot tasks in the development of heterogeneous robot coalitions that solve single

multi-robot tasks. They use an approach called ASyMTRe (Automated Synthesis of

Multirobot Task solutions through software Reconfiguration) to generate multi-robot

coalitions using complete information. The approach employs perceptual and motor

control schemas to encode robot capabilities. Connections between schemas across

multiple robots are determined and evaluated to find a task solution. Hence,

ASyMTRe is primarily suited to reactive or behaviour-based systems. The approach is

demonstrated on multi-robot transportation tasks that require robots to share sensor

and effector capabilities. Due to its dependence on schemas, ASyMTRe may be

difficult to apply to systems that do not employ schemas or are not behaviour-based.

Vig and Adams [13] identify issues that arise while attempting to use multi-agent

coalition formation algorithms for multi-robot systems. Their work also addresses the

problem of single-task robots performing multi-robot tasks. They develop a multi-

robot coalition formation algorithm using an adaptation of Shehory and Kraus’ [114]

algorithm for multi-agent coalitions. Shehory and Kraus’ algorithm is a distributed

task allocation strategy that assigns a task to a group of agents. It consists of greedy

distributed set-partitioning and set-covering algorithms. Their algorithm considers

cases where tasks have a precedence order and is applied to a Blocks World domain

Background and Related Work

25

problem where blocks are moved from an initial configuration to a final configuration

using multiple agents. A drawback of Shehory and Kraus’ algorithm is that no

auxiliary mechanisms are employed to monitor the potentially suboptimal coalitions

during task execution. Subsequently, unexpected failures during task execution are

also not accounted for.

By addressing the issues of computation versus communication, task format, and

coalition imbalance, Vig and Adams develop their multi-robot coalition algorithm.

The first stage of the algorithm involves distributively calculating initial coalition

values for all possible coalitions while a second stage involves robots agreeing on

coalitions and forming them. Iteratively, the algorithm is able to form multiple

coalitions, hence assigning multiple robots to multiple tasks. Coalition sizes of two to

five robots have been demonstrated for box pushing, cleanup and sentry duty tasks.

Vig and Adams multi-robot coalition formation method also suffers from the

drawbacks of Shehory and Kraus’ algorithm.

Vig and Adams [115] also developed RACHNA (Robot Allocation through Coalitions

using Heterogeneous Non-Cooperative Agents), a market-based multi-robot task

allocation scheme. A multi-unit combinatorial auction is employed to allocate

resources (robots) to the best (optimal) set of tasks through overall utility

maximisation. This reverse auction strategy is achievable due to the inherent

redundancy in sensor and actuator capabilities of robots. Service agents and task

agents are required to facilitate the bidding process of the auction. Tasks are classified

in three categories (urgent, standard and non-preemtable) to achieve successful

coalition formation. Preliminary simulations show that RACHNA is able to

outperform global greedy (best task first) algorithms in terms of overall utility. A

disadvantage of RACHNA is that the formed teams are highly dependent on the initial

utilities assigned to tasks. Task utility usually incorporates a balance between quality

(revenue) and cost. It can be difficult to quantify the quality of task execution prior to

coalition formation. Additionally, no performance monitoring system is employed

during task execution.

An area of task allocation and coordination that has not been addressed in the

literature is the ability to specify tasks in a generic format such that non-expert human

users can adapt and utilise multi-robot systems. This requires a reduction of human

26 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

user inputs to the system. The requirements of physical robot capabilities (such as

processing, communication, sensing and actuation) can be specified as graded inputs

by non-expert human users. Specifying task requirements explicitly in terms of

physical robot capabilities and utilising this information to determine the

contributions of robots towards a global task has not been addressed in the reported

approaches. Chapter 5 presents a task allocation strategy that utilises reduced human

user inputs and has the potential to be utilised by non-expert human users.

A potential problem faced after task allocation is the failure of robots during task

execution. This may be due to hardware failures, interactions with the environment, or

incorrect task-robot matching. Some form of feedback is required to address this

issue.

2.8 Fault Tolerance

Fault tolerance in multi-robot systems can be viewed as a specialised form of multi-

robot coordination. In fault tolerant multi-robot systems performance metrics and

monitors are used to detect robot failures. The team responds to individual robot

failures by dynamically reselecting or reassigning the tasks of the failed robot.

Parker [22] has implemented performance monitors for behaviour sets in the L-

ALLIANCE architecture. Task completion time is used as the performance metric in

this architecture. Hence, the performance monitor on each robot keeps track of task

completion times of any robots performing similar tasks to it. Task reallocation is

effected via a learning process that updates the control parameters of the behaviour

sets associated with the task that a robot executes. A drawback of L-ALLIANCE is

that it is tailored for behaviour based systems making it potentially difficult to apply

to non-behaviour based architectures.

Kannan and Parker [116] have developed task execution success and failure metrics to

investigate the influence of fault tolerance on overall system performance. In their

implementation, the robots are required to perform a number of tasks and each robot-

task pair contributes towards the overall performance. The overall performance is the

difference in the reward gained from successfully executed tasks (success metric) and

Background and Related Work

27

the punishment for unsuccessful task execution (failure metric). Experimental data are

used to quantify the performance of a large-scale locate-and-protect mission involving

a large team of heterogeneous robots. A drawback of this approach is that

performance is only determined after task execution completes and not during task

execution.

An extension to Kannan and Parker’s work on fault tolerance [117] measures the

effectiveness of fault tolerance in box pushing and deployment tasks. Fault tolerance

in these tasks is tested using predefined and adaptive causal model methods. A case-

based reasoning approach is utilised in the implementation of the adaptive causal

model. Their results indicate that adaptive models provide more effective fault

tolerance than predefined models. However, the implementation of causal model

methods can be cumbersome when there are many robots, fault nodes, and fault

combinations. Additionally, causal model methods need to be tailored for the task that

the robots execute and the environment that they operate in.

Tolerance to sensor failures in a small team of distributed robots has been investigated

in [118]. This research extends the sensing fault tolerance capability of the Sensor

Fusion Effects (SFX-EH) architecture [119] to multiple robots. Sensor failures are

diagnosed by allowing the robots to share knowledge of state of their sensors and task

execution via communication. Tasks are redistributed when robots become

inoperable. The distributed nature of the multi-robot system allows robots with failed

sensors to attempt recovery by accessing sensory information from other robots in the

team. A target search scenario using two robots demonstrates the usefulness of the

fault tolerance mechanism. The main drawback of this implementation is that it only

addresses sensing failures. Also, the implementation uses cameras and it would be

difficult to apply this technique to limited capability robots that do not employ vision

sensors.

None of the reviewed fault tolerance methods monitor the four broad categories of

robot hardware resources (processing, communication, sensing and actuation)

explicitly. Such an approach is required if tasks are specified to robots in terms of

these resource categories. It is envisioned that this will enable the detection and

correction of various types of hardware failures and failures due to poor interaction

with the environment (possibly due to incorrect task-robot matching). A feedback

28 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

coordination mechanism that achieves fault tolerance by monitoring the four broad

categories of robot resources is presented in chapter 5.

2.9 Multi-Robot Map Building and Exploration

In a multi-robot map building or exploration task, a team of mobile robots is utilised

to construct a map of an unknown environment in a minimum period of time. Several

techniques for multi-robot map building and exploration have been proposed.

Generally, these techniques can be classified into either hierarchical [11, 120, 121] or

distributed [8-10, 122, 123] approaches similar to the multi-robot control architecture

classification of section 2.6.

Some research in multi-robot exploration and mapping (e.g. simultaneous localisation

and mapping (SLAM)) [67] has focussed on issues relating to sensor data and robot

position uncertainty. SLAM methods employ alternating localisation and mapping

steps. Sensor data is used to improve the position of a robot based on the current map

in the localisation stage. In the mapping stage, the improved robot position and sensor

data updates the map data. The SLAM problem can be “solved” by spending money

on sophisticated sensing and processing based robots. This is the general approach

taken in many implementations [67, 124-126]. However, practical mapping with

inexpensive robots must handle limitations in sensing, computing and memory. In

such a scenario, navigation aids such as beacons or GPS (DGPS) can be employed to

correct imprecise localisation.

This thesis considers the issue of implementing efficient exploration strategies for

multiple robots. The central question in implementing an efficient exploration strategy

is: “Given the current location of a robot, what is the best place or area to move to in

an environment that consists of unexplored space?” Many exploration strategies are

based on the distance to traverse to unexplored space and the expected information

gain from the unexplored space [8] [120] [11] [9] [10] [127] [121]. Other strategies

take advantage of robot capabilities to select robots for special situations [122] [123] .

Singh and Fujimura [122] address cooperation in heterogeneous multi-robot

exploration. Heterogeneity arises due to varying robot sizes. During exploration, the

Background and Related Work

29

robots identify “tunnels” to unexplored regions. If a robot is too large to pass through

a tunnel, a delegation process informs other robots and the tunnel is assigned to a

smaller robot. The robots use a north-south horizontal sweeping heuristic to explore

the environment. Robots utilising this approach do not take into account the

allocations of other robots. Hence, there can be interference between robots or

overlapping of areas explored by the robots.

Yamauchi [8] presents a decentralised strategy for multi-robot exploration where

robots share perceptual information but maintain separate grid maps. Frontier based

exploration directs the robots independently to areas that are likely to provide new

information. Experimental results are presented for a pair of homogeneous robots.

The minimal coordination arising from independent navigation can cause robots to

waste time exploring areas previously covered by other robots. Also, the performance

of the team is not quantitatively analysed.

A centralised approach to merge maps and explicitly coordinate robots has been

implemented by Simmons [120]. A relatively low cost algorithm attempts to produce

good results by maximising overall utility such that overlapping information is

minimised. Local map data are forwarded by each robot to the central mapper unit to

create a consistent global map. Experiments were carried out using a team of three

robots. In environments with minimal obstacles, this approach can produce significant

interference between multiple robots.

Burgard et al. [11] carried out extensive experiments to validate Simmons’ approach

for teams of up to twenty robots in three types of environments. The results indicate

that the coordinated approach significantly outperforms an uncoordinated system.

Burgard et al. also extends the technique to robot teams with limited communication

range. Limited communication experimental results indicate that a communication

range of 30% of the diameter of the environment produces similar performance to

exploration with unlimited communication. The authors remark that their research on

multi-robot exploration and mapping can be extended to investigate scenarios in

which robots may malfunction or break.

Zlot et al. [9] applied a market based approach to multi-robot exploration. In this

approach each robot generates a set of goal points that are organised into a tour.

30 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

Exploration is achieved by subsequently refining the tours through continuous inter-

robot negotiation. Experimental results suggest that selecting goal points using a

greedy strategy yields poor performance compared to random and quadtree methods.

The authors remark that incorporating time-based cost information could improve

exploration efficiency and that their approach does not handle robot losses explicitly.

Stroupe et al. [10] present the Move Value Estimation for Robot Teams (MVERT)

approach for directing the movement of robots mapping objects in their environment.

In this approach, each robot maximises a value function with the objective of reducing

uncertainty in target measurements. Hence, multiple robots are initially drawn

towards uncertain targets when they are found. As a target’s uncertainty reduces, the

robots disperse to specialise in observing other targets. Overlapping exploration by

robots is a necessity in this approach to improve observation accuracy. Experimental

results indicate that MVERT can initially reduce uncertainty much faster than a non-

cooperative approach. However, the eventual improvement in value is between three

and thirteen percent.

A new cost function for multi-robot exploration has been proposed [127]. The new

cost function includes a value for robot separation expressed in terms of the distance

between assigned frontier cells. This facilitates maximum robot separation in a

reduced period of time during exploration. For simplicity, a greedy algorithm is

employed to assign frontier locations. Experiments are carried out to compare the

performance of the new cost function with Yamauchi [128] and Burgard et al. [129].

Yamauchi [128] employs a similar cost function to Yamauchi [8] and Burgard et al.

[129] uses a cost function similar to Simmons [120]. Results from exploration in a

tunnel-type environment with no obstacles suggest that the new cost function yields

lower exploration times.

Diosdado [123] developed the BEhavioural ROle DEcentralised (BERODE)

architecture to address limited communication in multi-robot exploration and

mapping. A minimum spanning tree (MST) control network maintains connectivity

between the team of robots. During exploration the MST control network is updated

to improve the signal quality of the network. The robots use behavioural roles to

balance the tasks of exploration and network maintenance to improve the efficiency of

Background and Related Work

31

the team. It is assumed that robots are selected a priori for the exploration task.

Diosdado remarks that robots can only explore a limited size environment using this

approach due to computational costs associated with map updates. The performance

could be improved using local maps.

An exploration strategy that balances two priorities has been proposed [121]. One

priority is to explore unknown regions of an environment, while the other is to

maintain a small amount of overlap with explored areas to improve localisation. A

complex utility function is optimised by a randomised sampling scheme to achieve

this balance. Simulations and experiments with real robots are presented. The authors

argue that their strategy reduces robot proximity to objects thus reducing sensing

blindness or short-sightedness.

All of the map building and exploration approaches reviewed assume that the robots

have sufficient memory to locally store the entire map of the global area to be

explored. However, this may not always be the case, especially if a robot uses a

microcontroller as its main processor. Hence, an alternative method for map building

and exploration is required (chapter 6). Additionally, using a feedback coordination

strategy (chapter 5) scenarios where robots malfunction or break-down are also

investigated.

2.10 Summary

Several areas of single robot and multiple robot control have been reviewed. From the

relevant literature reviewed in single robot control, hybrid control architectures have

been identified as the best option since they combine the benefits of reactive and

deliberative control. Consequently, a hybrid system is the best option for navigation.

Previously implemented hybrid navigation systems are not well suited for

heterogeneous robots that may have limited sensing and processing capabilities.

A method that does not need periodic planning like the approaches reviewed is

required for navigation in unexplored obstructed environments utilising limited

memory robots. Existing approaches to reactive control have not attempted to

explicitly combine the benefits of directional methods and velocity space techniques

32 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

such that dependence on periodic planning can be removed. Additionally, the memory

constrained path planning methods reviewed for deliberative control are not suitable

for the limited memory robots in the hierarchical multi-robot system outlined in

chapter 1. Chapter 3 and chapter 4 present methods for hybrid navigation and memory

constrained path planning that can be applied to a hierarchical heterogeneous multi-

robot system comprising limited capability robots.

In the area of multi-robot control, justification for the selection of a decentralised

hierarchical architecture for the heterogeneous robots has been presented. While a lot

of research has been carried out in the area of task allocation and coordination, there

has been no work attempting to reduce human user input for task specification such

that non-expert users can adapt and utilise multi-robot systems. Specifying tasks in

terms of physical robot capabilities (such as processing, communication, sensing and

actuation) may enable non-expert users to specify tasks. There is always the

possibility that tasks specified by non-expert users can be erroneous. Hence, some

form of feedback to achieve fault tolerance is needed. Existing methods for fault

tolerance cannot be utilised as they do not attempt to monitor the four broad physical

capability categories of robots. Chapter 5 presents a task allocation and feedback

coordination strategy that permits reduced human user input for task specification and

detects abnormalities during task execution.

Existing approaches to multi-robot mapping and exploration assume that robots have

sufficient memory to locally store the entire map of the global area. However, this

may not always be possible in a hierarchical heterogeneous system that consists of

limited memory robots. A customised multi-robot mapping and exploration task that

exploits the benefits of hierarchical heterogeneous systems to permit exploration with

limited capability robots is presented in chapter 6.

Basic Robot Navigation System

33

3 Basic Robot Navigation System

3.1 Navigation System Overview

A hierarchical hybrid system has been selected to implement basic robot navigation.

This allows the navigation system to exhibit the benefits of both reactive and

deliberative control. A rudimentary version of Lee-Johnson’s navigation system [51]

has been adapted for use. There were several bugs and shortfalls in this initial

navigation system (highlighted in section 2.3) that have been addressed independently

of Lee-Johnson [51].

The generic control architecture used by the mobile robots in this project is illustrated

in Figure 3.1. It consists of a number of modules for sensing (information extraction

and sensor fusion), modelling (localisation, environment map), planning (multi-robot

coordination interface, task planning and decomposition, deliberative control) and

acting (reactive control, low-level motion control/execution). The hierarchy of the

modules provides an indication of the temporal decomposition of control. Modules on

the left and right represent perception/representation and action/planning respectively.

The indicated update rates are employed for the tricycle robots Itchy and Scratchy.

These frequencies can be adjusted for other robots.

3.2 Environment Representation and Path Planning

3.2.1 Environment Representation

As outlined in section 2.5, a rectangular occupancy grid has been selected for

representing a robot’s environment because of its simplicity and usability in a range

of environments. An occupancy grid map is generated by dividing the environment

into discrete cells and assigning unit interval values to represent occupancy

probability. Figure 3.2 illustrates a 30 cm resolution occupancy grid map for a 38.4 m

by 38.4 m environment. Darker shaded cells represent higher occupancy probability.

34 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

While navigating towards a goal location, a robot can update occupancy probability

data using Bayes’ rule [8, 130]. To ensure that Bayes’ rule updates probabilities

correctly, occupancy probability data are restricted to a range of [0.05,0.95]. Updating

occupancy probability data is further detailed in section 6.2.2.

Hardware & Real
World

Hardware Interface

Low Level Motion
Control/Execution

Information Extraction
& Sensor Fusion

Multi-robot
Coordination

Interface

Reactive Control

Path TrackerEnvironment Map

Robot j

Human operator/
Manager/

Superior robot

Robot i
Asynchronous inter-
robot communication

Localisation

Local map and

Map update Absolute position

Grid map

Functions to
subsume path

planner and reactive
control (event

triggered)

Update plan when
required (event

triggered)

~10Hz update

~20Hz update

~40Hz PWM update
via micro

Data acquisitionActuator inputs

Actuator Pulse Width Modulation
(PWM) commands

Velocity targets

Sensor data

Current velocity

Target
heading

Cooperative
decision-making

Path Planner

Task Planning &
Decomposition

~10Hz update

Path Re-plan
path

Navigation
System

Figure 3.1: Generic mobile robot control architecture.

Basic Robot Navigation System

35

x node

y
no

de

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Figure 3.2: Rectangular occupancy grid map.

3.2.2 Path Planning

A single-tiered modified A* algorithm is employed for path planning if the occupancy

grid to be searched can be stored in the robot’s local memory. Where the entire

occupancy grid map cannot be stored locally, a two-tiered (memory constrained) A*

algorithm searches for a path (chapter 4).

The A* algorithm is a best-first heuristic search algorithm that ranks nodes based on

the cost of travelling through them. Cost is usually represented by node distances

where lower cost values denote a better path to travel. The total cost f(x) of node x is

the sum of two cost values, g(x) and h(x). g(x) represents the cost of travelling from

the start node to node x while h(x) is a heuristic cost of travelling from x to the goal

node.

 () () ()f x g x h x= + (3.1)

Normally, the A* algorithm [70] considers binary occupancy values where the nodes

are either traversable or non-traversable. Hence, g(x) is dependent on the node

distance of the lowest cost path from the start node to the parent node xpar and the

Euclidean distance dn(x,xpar) between x and xpar. Heuristic cost h(x) is generally an

optimistic estimate represented by the Euclidean or Manhattan distance from the

current node x to the goal node. Infinity cost is represented by the Inf variable in the

MATLAB code. Alternatively, it can be represented by a large number such as 1012.

36 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

() (,) if traversable

()
otherwise

par n parg x d x x
g x

+
= ∞

 (3.2)

Inspired by frontier-based exploration [8], the g(x) and h(x) costs have been modified

to account for a varying degree of occupancy probability pi ranging from 0.05 to 0.95.

Nodes whose occupancy probabilities exceed a threshold PT are eliminated from the

cost calculation. The cost of all other nodes is linearly dependent on a cost multiplier

cm.

() (,). () if ()

()
otherwise

par n par m i Tg x d x x c x p x P
g x

+ <
= ∞

 (3.3)

(,). () if ()

()
otherwise

n goal m i Td x x c x p x P
h x

<
= ∞

 (3.4)

Before calculating cm, occupancy probability pi(x) is modified by cost function cp

which can favour nodes within critical probabilities pcmin and pcmax. This can be useful

when exploring unknown environments.

max min

1 min max

2

() if ()
() (1) () if () & () 0.5

(1) () if () 0.5

i c i c

p p i c i c i

p i i

p x p p x p
c x w p x p p x p p x

w p x p x

 < <
= − ≤ ≤ ≠
 − =

 (3.5)

For path planning in known environments, weights wp1 and wp2 can be set to zero. In

unknown environments the weights are unit interval values varied dynamically based

on the progress distance dprog towards the goal. The weights are multiplied by factor fw

when progress is below threshold dprogmin, otherwise default initial values are used. In

this way the balance between navigating through known and unknown terrain can be

controlled.

 min. if
otherwise

old w prog prog
new

init

w f d d
w

w
<

= 


 (3.6)

The unit interval cost multiplier cm takes into account the occupancy probability cost

cp(x) of node x. It also includes a mean occupancy probability cost cprc(x) representing

a robot clearance of r nodes around node x. Weights wpi and wprc control the balance

between the two inputs and are set to 0.5 for equal preference.

Basic Robot Navigation System

37

 () 1 () ()m pi p prc prcc x w c x w c x= + + (3.7)

 1() ()
r

prc p i
i

c x c x
r

= ∑ (3.8)

If the path planner cannot find a path to the goal, it is able to retain a partial path

closest to the goal. After the last node in a partial path the mobile robot can employ

reactive control techniques in an attempt to reach the goal.

3.3 Reactive Control Overview

An outline of various approaches for reactive control of mobile robots has been

presented in section 2.4. A reactive control strategy has been implemented that

combines a modified dynamic window approach [38] with a polar histogram

technique similar to the vector field histogram method [58]. Figure 3.3 shows a

simplified block diagram of the two-stage optimisation process that can track paths

and avoid obstacles. All heading (orientation) values are normalised to lie within the

interval [−π,π). A target heading angle is input to the direction sensor that produces a

modified target heading as output. The modified target heading angle is decomposed

into linear and angular wheel velocities (v,ω) by the modified dynamic window

approach.

Direction Sensor

Objective function:

Target heading

1
max

()1 dir t ob

ob

smooth do
d

θ θ
α β

π
 −  

= × − + ×       

Modified Dynamic Window Approach

Objective function:

modtθ
Modified target

heading

mod
2

max

()
1 t c T

o
θ θ ω ν

α γ
π ν

   − −
= × − + ×      

   

1tan t c
t

t c

x x
y y

θ −  −
=  − 

(,)v ω

Circular

Circular or
Non-circular

Figure 3.3: Overview of reactive control strategy.

38 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

3.4 Direction Sensor

At the direction sensor stage, the kinematic constraints, dynamic constraints and non-

circular shapes are all ignored. A circular shape represents the robot as shown in

Figure 3.4. Robot radius rm is selected to encompass the entire robot. The current

pose and goal pose of the robot are defined as (xc,yc,θc) and (xg,yg,θg) respectively. If

the robot is following a planned path, (xg,yg,θg) represents the coordinates of a node

that is Nt nodes ahead of the node closest to the robot. Otherwise, (xg,yg,θg) points to

the final destination of the robot. Target heading angle θt is calculated from the

current and goal pose of the robot and input to the direction sensor.

x

y

Obstacle 1

Obstacle 2

R

Robot

maxobd obd

dir cθ θ−

t cθ θ−
Target

direction

mr

Figure 3.4: Direction sensor representation.

 1tan g c
t

g c

x x
y y

θ −
 −

=   − 
 (3.9)

To determine the most appropriate direction, the robot is represented as a point and

each obstacle is enlarged by the radius of the robot. The region surrounding the robot

is then divided by an arbitrary number of lines Nθ (Table 3.2) to represent candidate

orientations θdir. All orientation angles are converted to the robot’s reference frame R

by subtracting the current absolute orientation θc of the robot.

Goal directedness |θdir − θt| and distance to obstacles dob is maximised by applying an

objective function to each candidate orientation (3.10). A higher objective function

Basic Robot Navigation System

39

value denotes a better direction. The maximum obstacle distance, dobmax, is set to the

maximum sensing range and the minimum obstacle distance is set to rm. A smoothing

function, smooth, is applied to obstacle distances to achieve better clearance around

obstacles. Essentially, smooth is a one-dimensional filter that takes a weighted

average of adjacent obstacle distances at θdir. α1 and β are unit interval weightings for

goal directness and obstacle clearance. Smaller weights and larger weights translate to

lower and higher preferences respectively. Hence, an α1 value of 0.5 and β value of 1

is sufficient to balance goal directedness and obstacle clearance for robots tested in

this thesis.

 1
max

()() 1 dir t ob
ds dir

ob

smooth do
d

θ θ
θ α β

π
 −   

= − +   
  

 (3.10)

3.5 Modified Dynamic Window Method

In the dynamic window approach, a portion of the velocity space that is achievable

within the next control cycle is searched for a velocity pair (v,ω). The achievable

velocity space depends on the current velocities, acceleration and kinematic

constraints and the shape of the robot. Originally, the dynamic window method [38]

has been demonstrated on synchronous drive (holonomic) robots where linear and

angular acceleration is independently varied at all speeds. However, in nonholonomic

robots such as tricycle drive or differential drive robots, linear and angular

acceleration are implicitly dependent. Linear and angular acceleration depend on the

current velocity and kinematic constraints for these robot types.

The minimum velocity limit is dynamic in this thesis to enable robots to perform

reversing manoeuvres when necessary. This is especially useful for tricycle drive

robots as they cannot perform point turns. Also, the estimated distance to collision at

velocity (vcd,ωcd) DCcd is not explicitly used to maximise the objective function since

the direction sensor (section 3.4) adjusts the target heading using obstacle distances.

Instead, DCcd is employed as additional admissible velocity criteria to control

reversing and avoid collisions.

40 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

Integrating the direction sensor with the dynamic window method requires the robot

reference frame, R, to be translated to the physical centre of the robot as shown in

Figure 3.5. The linear velocity v1 and curvature radius r1 also have to be adjusted to

this new reference before the dynamic window approach can be applied. The

curvature radius at the centre r is a function of the y axis offset in R and the minimum

curvature radius r1min (3.11). Linear velocity v at the centre of the robot can be

computed from angular velocity ω and radius r (3.12).

22
1 1 1min

22
1 1 1min

,

,

off

off

r y r r
r

r y r r

 + ≥
= 

− + ≤ −

 (3.11)

 1
1

rv v r
r

ω= = (3.12)

A velocity-axis angle θv between velocity vector v and the robot frame y axis is

calculated for each (v,ω) pair (3.13). This velocity-axis angle is employed to perform

an axes rotation of the robot reference frame and obstacles so that the collision

distance can be computed as described in [48].

 1sin off
v

y
r

θ −
 
 =
 
 

 (3.13)

x

y W

v
1v ω

ω

(,)c cx y

cθ

R

x

y

ICC

vθ

1r
r

offy

Figure 3.5: Modification of a robot’s reference frame to allow compatibility

between the direction sensor and dynamic window controls.

Basic Robot Navigation System

41

Limit max.
linear velocity

Goal

Apply modified dynamic window
objective function

Kinematic
constraints

Global max.
linear velocity

Current
velocity

Dynamic
constraints Obstacles

Limit min.
linear velocity

Determine obstacles
within robot safety

margin

Generate linear
velocity window

Generate angular
velocity window

Limit min. max.
angular velocity

Target
heading

Next velocity
Figure 3.6: Overview of modified dynamic window method.

An overview of the modified dynamic window method employed on robots in this

thesis is shown in Figure 3.6. There are seven major inputs to the algorithm. A target

heading θtmod is the output from the direction sensor. The Euclidean distance to the

final goal location dtgt, current velocity (vc,ωc) and global maximum linear velocity

vgmax are also input. Additionally, the kinematic constraints, dynamic constraints and

obstacle distances dob are input to the dynamic window algorithm. These inputs limit

the maximum and minimum linear and angular velocities used to generate velocity

windows. The velocity windows, target heading and obstacles are evaluated with a

modified dynamic window objective function (Figure 3.7) to select an optimal

velocity pair (vn,ωn) for the next control cycle.

The maximum linear velocity vmax is derived from vgmax and varies depending on goal

proximity dtgt and front obstacle distances dobfr. When the robot is within deceleration

42 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

and stopping distances, ddecel and dstop, the goal maximum linear velocity limit vglmax is

linearly varied between vgmax and zero (3.14). The set of Nfs sensors situated at the

front of the robot FRS determines the obstacle maximum linear velocity limit vobmax

(3.15)–(3.17). If the maximum front sensor distance dobfr is greater than a minimum

distance dobfrmin but less than a maximum limit dobfrmax, vobmax is linearly varied

between vgmax and a minimum obstacle speed vobmin. The minimum of vglmax and vobmax

is selected as vmax (3.18).

 max max

max

0 if

. if

otherwise

tgt stop

tgt
gl g stop tgt decel

decel

g

d d
d

v v d d d
d

v

 ≤

= < ≤



 (3.14)

 { }1 2, ,...,

fsobfr obfr obfrNFRS d d d= (3.15)

 min()obfrd FRS= (3.16)

min min

min
max max min min max

max min

max

if

. if

otherwise

ob obfr obfr

obfr obfr
ob g ob obfr obfr obfr

obfr obfr

g

v d d
d d

v v v d d d
d d

v

 ≤


−= + < ≤ −



 (3.17)

 max max maxmin(,)gl obv v v= (3.18)

To dynamically adjust the minimum linear velocity (for reversing) vmin, obstacle

distances at the front dobfr, rear dobrr and immediate rear dobirr of the robot are obtained.

The obstacle distance at the front of the robot is determined from the set of front

sensors FRS using (3.15) and (3.16). Similarly, dobrr and dobirr are determined from the

set of rear sensors RRS and immediate rear IRRS sensors respectively (3.19)–(3.22).

The obstacle distances are compared with threshold values dobfrT1, dobfrT2, dobrrT and

dobirrT to adjust the minimum velocity limit between zero and −vgmax (3.23). Reversing

is subsumed if an obstacle is located directly behind the robot (dobirr < dobirrT) (3.23).

Two threshold values are employed for the front sensors such that dobfrT2 is less than

dobfrT1 (3.23). When dobfr is less than dobfrT2, a robot can back away from an obstacle.

Forward motion can be resumed when dobfr is greater than dobfrT1. The minimum

Basic Robot Navigation System

43

velocity is also set to –vgmax when a tricycle drive robot is close to a goal location but

requires orientation correction.

 { }1 2, ,...,

rsobrr obrr obrrNRRS d d d= (3.19)

 min()obrrd RRS= (3.20)

 { }1 2, ,...,

irsobirr obirr obirrNIRRS d d d= (3.21)

 min()obirrd IRRS= (3.22)

max 2

min 2

1

if
0 if and
0 if or

g obfr obfrT

obirr obirrT obfr obfrT

obfr obfrT obrr obrrT

v d d
v d d d d

d d d d

− <
= < <
 > <

 (3.23)

Dynamic constraints (linear acceleration aa and deceleration ad) and linear velocity

limits (vmin and vmax) are applied to the current velocity to produce a linear velocity

window [vwmin,vwmax] for the next control cycle. The velocity window is discretised

into an arbitrary number of divisions Nvd for evaluation.

The angular velocity of each robot has a global maximum ωgmax and a global

minimum −ωgmax. A minimum cmin and maximum cmax curvature for the next control

cycle is determined from the current state, kinematic and dynamic constraints of a

robot’s drive. Dynamic constraints considered in a differential drive robot include the

maximum linear wheel acceleration and deceleration while the state corresponds to

the current linear speed of the robot’s wheels. For a tricycle drive, the state

corresponds to the current steering wheel angle while the steering rate is the dynamic

constraint. Combinations of cmin, cmax, vwmin and vwmax are tested to determine the

minimum and maximum angular velocity for the next control cycle (3.24)–(3.25).

 min max max min max max min min minmin(, , ,)w w w wc v c v c v c vω = (3.24)

 max max max min max max min min minmax(, , ,)w w w wc v c v c v c vω = (3.25)

The difference of ωmax and ωmin from current angular velocity ωc is used to determine

angular acceleration αa and deceleration αd. A minimum angular acceleration αmin

44 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

employed by the modified dynamic window objective function calculation is set to the

minimum of the absolute values of αa and αd.

Dynamic constraints (angular acceleration αa and deceleration αd limits), angular

velocity limits (ωmin and ωmax) and global velocity limits are applied to the current

angular velocity to produce an angular velocity window [ωwmin,ωwmax] for the next

control cycle. The angular velocity window is also discretised into an arbitrary

number of divisions Nωd for evaluation.

A safety margin SM is added to the robot’s perimeter to allow it to stop or reverse

before colliding with obstacles. If obstacle dob breaches the safety margin, a proximity

flag PRob is set to enable velocity rejection in the obstacle’s direction (3.26). The

safety margin has a minimum value of SMmin and is increased proportionally based on

the robot’s current linear velocity vc and a safety margin growth factor kSM (3.27).

Non-circular robots can have independent safety margins for each side of the robot.

This arrangement enables the front and rear of the robot to have greater safety

margins when travelling forward or reverse.

1 if
0 otherwise

ob
ob

d SM
PR

≤
= 


 (3.26)

 min SM cSM SM k v= + (3.27)

A flowchart of the process to select an optimal velocity pair (vn,ωn) for the next

control cycle is shown in Figure 3.7. The angular and linear velocity windows are

used to generate (vcd,ωcd) candidate velocity pairs for evaluation. Each candidate

velocity pair is checked for curvature constraint satisfaction. Four curvature

constraints, CC1, CC2, CC3 and CC4 are employed to determine the overall constraint

satisfaction CCT for tricycle robot candidate curvatures ccd (3.28)–(3.32). These

conditions coordinate forward and reverse movement while preventing deadlock at

zero velocity. Candidate curvature ccd needs to be within [cmin,cmax] to satisfy the

curvature constraint CCD for differential drive robots.

 1 max min().().(0).(0)cd cd cd cdCC c c c c v ω= ≤ ≥ = ≠ (3.28)

 2 max min().().(0).(0)cd cd c cdCC c c c c v v= ≤ ≥ > < (3.29)

Basic Robot Navigation System

45

 3 max min().().(0).(0)cd cd c cdCC c c c c v v= ≤ ≥ < > (3.30)

 4 (0).(0)c cdCC v v= = = (3.31)

 1 2 3 4(| |).TCC CC CC CC CC= (3.32)

Generate velocity
pairs

All velocity pairs
checked?

Curvature constraints
satisfied?

Evaluate collision
distance for

candidate velocity
pair

Valid collision distance?

Can robot stop in time?

Calculate primary
objective function

value

Calculate
secondary

objective function
value

Find velocity pair
with maximum

primary objective
value

Valid velocity pair?

Select linear
velocity to oppose

current velocity

Find angular velocity
with maximum

secondary objective
value

Valid angular velocity?

Select angular
velocity from

average curvature
and linear velocity

Output linear and
angular velocity

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Figure 3.7: Flowchart of optimal velocity pair selection.

46 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

Next, the distance to collision DCcd if the robot travels at the candidate velocity pair is

determined [48]. Tricycle robot collision distances are multiplied by a reduction factor

DCF if the candidate velocity pair steers the robot towards a close obstacle CLob on

the side the robot. The reduction factor attempts to reduce instances of the robot being

stuck in v-shaped corners that can result from closely positioned obstacles (Figure

3.8). If the distance to collision is satisfactory (DCcd > 0), it is used to determine if the

robot can stop in sufficient time to avoid collision. The Boolean variables STv and STω

represent the robot’s ability to successfully stop at the candidate linear and angular

velocities respectively (3.33)–(3.34). Tricycle drive robots utilise only STv for

stopping distance checking.

21 if 2.

0 otherwise
cd cd a

v
DC v a

ST
 >

= 


 (3.33)

2

min1 if 2.
0 otherwise

cd cdDC
STω

ω α >
= 


 (3.34)

Obstacle 1

O
bstacle 2

Figure 3.8: Tricycle robot stuck between closely positioned obstacles.

If the robot is able to stop in sufficient time to avoid collision, a primary objective

function value is computed for the candidate velocity pair (3.35). A secondary

objective function value is calculated for ωcd if the robot is unable to stop in time. The

secondary objective function attempts to steer the robot away from an obstacle even if

it is too close to stop. Secondary objective functions odwst(ωcd) and odwsd(ωcd) are

calculated for tricycle and differential drive robots respectively (3.36)–(3.37). Smaller

Basic Robot Navigation System

47

and larger weightings for each parameter translate to lower and higher preferences

respectively. Hence, an α2 value of 0.4 and γ value of 0.2 is sufficient to balance goal

directedness and velocity for robots tested in this thesis. If α2 is reduced, the robot

may not be drawn to the goal location. On the other hand, an increase in α2 can

compromise obstacle avoidance as the robot may not deviate from its goal direction.

Similarly, the robot may not travel at a reasonable speed if γ is too low. A large value

of γ can compromise obstacle avoidance since it favours higher speeds. An α3 value of

0.01 is sufficient to reduce objective values when collision distance DCcd is below

threshold DCcdmin.

mod
2 min

max

mod
3 2 min

max

()
if and

()
(,) if and

1 otherwise

t c cd cd
v cd cd

t c cd cd
dwp cd cd v cd cd

v
ST DC DC

v

v
o v ST DC DC

v

θ θ ω
α γ

π

θ θ ω
ω α α γ

π

  − −   
+ >    

   
   − −   = + ≤           
−


 (3.35)

mod
2 min

2
mod

2 min2
max

()
. if and and

()
() . . if and and

1 otherwise

t c cd
ob v cd cd

t c cd cd
dwst cd ob v cd cd

cd

CL ST DC DC

DCo CL ST DC DC
DC

θ θ ω
α

π

θ θ ω
ω α

π

  − − 
≤  

 
  − − = ≤  

 
−



 (3.36)

mod
2

mod
2

()
. if and (0).(0)

()
() . if and and (0).(0)

1 otherwise

t c cd
v c cd

t c cd
dwsd cd v c cd

ST v v

o ST ST v vω

θ θ ω
α

π

θ θ ω
ω α

π

  − − 
= =  

 
  − − = = =  

 
−



 (3.37)

48 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

After all velocity pairs have been checked and evaluated, a velocity pair with the

maximum primary objective value is searched for. If a valid velocity pair is found

then it is set as the target velocity for the next control cycle. However, if a valid pair is

not found then a linear velocity that opposes the current direction is selected. This

enables the robot to avoid collisions in the current direction of movement. Candidate

angular velocities are searched for the maximum secondary objective value. If a valid

angular velocity is obtained then it is set as the angular velocity for the next control

cycle. When the primary and secondary objective value searches both return invalid

data, the next angular velocity is determined from the average curvature and linear

velocity that opposes the current motion.

3.6 Simulation Experiments

The navigation system has been implemented for simulated robotic agents using

MATLAB® 2007a. Figure 3.9 illustrates the MATLAB simulator developed to test

the navigation system. Robot A (Table 3.1) is travelling from the top-left corner to

bottom-right corner of a 20% obstacle density environment. The simulator accounts

partially for uncertainties and delays by adding and filtering Gaussian noise to sensing

and actuation signals.

0 5 10 15

0

5

10

15
x (m)

y
(m

)

Figure 3.9: Tricycle robot traversing in a known environment.

Basic Robot Navigation System

49

Table 3.1: Simulated robot attributes.

Robot A B C
Shape pentagon circle rectangle
Drive tricycle differential differential
Size (minimum circular radius) [m] 0.5 0.35 0.67
Max. linear velocity vgmax [m/sec] 0.5 0.5 0.3
Max. angular velocity ωgmax [rad/sec] π/7 π/7 π/7
IR Sensors Qty 11 10 14

Range [m] 1.5 1.5 1.5

3.6.1 Parameter Tuning

The tested robots (Table 3.1) used the direction sensor parameters outlined in Table

3.2. The direction sensor parameters have been empirically tuned. Initially, dobmax is

set to the maximum range of the infrared sensors. Next, Nθ is selected to balance

computational effort and direction resolution. Finally, α1 followed by β is adjusted to

balance goal-directness and obstacle avoidance.

The modified dynamic window parameters (Table 3.3) have also been empirically

tuned. Acceleration aa and deceleration ad are determined from the robot’s dynamic

constraints. Parameters that are largely independent of obstacles can then be tuned.

Initially, α2 and γ are tuned to attract the robot to a goal in environments with minimal

obstacles. Next, Nvd and Nωd can be adjusted to balance computational speed and

motion smoothness. Following this, the parameters for decelerating and stopping the

robot are determined. Stopping distance dstop is calculated from velocity profile data

[131], while decelerating distance ddecel is tuned to slow down the robot when it is

near the goal location.

Table 3.2: Direction sensor parameter data.

Parameter Numerical Value
α1 0.5
β 1

dobmax 1.5 m
Nθ 41

50 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

Table 3.3: Modified dynamic window parameter data.

Parameter Numerical Value
aa 0.1 m/sec2
ad -0.1 m/sec2
α2 0.4
α3 0.01
γ 0.2

DCcdmax 3 m
DCcdmin 0.6 m

DCF 0
ddecel 2 m

dobfrmax 2 m
dobfrmin 0.5 m
dobfrT1 0.95 m
dobfrT2 0.75 m
dobirrT 0.5 m
dobrrT 0.7 m
dstop 0.3162 m
kSM 0.1 sec
Nvd 5
Nωd 11

vobmin 0.2 m/sec

Obstacle dependent parameters can be tuned after obstacle independent parameters

have been tuned. The parameters used to determine vobmax can be tuned first. dobfrmax

and dobfrmin are approximately the maximum and minimum sensing ranges relative to

the centre of the robot respectively. vobmin is selected such that the robot can stop

within a couple of control cycles if necessary. Next, the front and rear obstacle

distances (dobfrT1, dobfrT2, dobirrT, and dobrrT) to control the minimum velocity limit for

reversing are empirically tuned.

Parameters employed in optimal velocity pair selection can be tuned next. Maximum

collision distance DCcdmax is determined from curvature data and the maximum

sensing range of the robot. Safety margin growth gain kSM is tuned to ensure that

higher linear velocities in the dynamic window are rejected quickly when the robot

travels close to its maximum velocity. Minimum collision distance DCcdmin and α3 are

tuned to reduce the preference of candidate velocities before STv becomes zero.

Collision distance reduction factor DCF is tuned to quickly reject candidate velocities

that steer a robot toward close side obstacles.

Basic Robot Navigation System

51

All parameters can be further tuned if the combined performance is not adequate.

3.6.2 Experimental Configurations

Table 3.1 details the attributes of three robots employed to evaluate the navigation

system’s performance. Evenly distributed obstacles at 5%, 10%, 15% and 20%

densities were automatically generated for 15 m × 15 m worlds. It was

computationally difficult to achieve evenly distributed automatically positioned

obstacles at higher obstacle densities. Ten worlds were generated for each obstacle

density. The performance of pure reactive and hybrid reactive-deliberative navigation

in known and unknown environments has been evaluated. Experiments on each

navigation technique were repeated ten times for all worlds tested. This produced a

total of 100 samples for each obstacle density.

In pure reactive control, the robot attempts to travel in a straight line to the goal

location while avoiding any obstacles it encounters. A path is initially planned and

tracked while the robot navigates towards the goal in the hybrid reactive-deliberative

approaches. In unknown environment navigation, the robot regularly updates the

occupancy grid map and re-plans accordingly as it travels towards the goal.

Three additional configurations have been evaluated to compare the performance of

the final reactive controller (FRC). Firstly, the performance of employing only the

original dynamic window (ODW) method for reactive navigation is evaluated.

Secondly, the original dynamic window method coupled with the developed direction

sensor is evaluated (ODWDS). Finally, a reduced parameter modified dynamic

window method is coupled with the developed direction sensor to produce a reduced

final reactive controller (RFRC).

The original dynamic window method does not employ (3.18)–(3.23), (3.28)–(3.32)

and (3.35)–(3.37). Hence, vobmax is set to vgmax while vmin is set to –vgmax. The tricycle

curvature constraint CCT is determined in a similar manner to the differential drive

curvature constraint CCD. Additionally, tricycle robot collision distances are not

influenced by the reduction factor DCF. Equations (3.35)–(3.37) are replaced with

(3.38). Obstacle clearance weight β1 has been empirically tuned to 0.3. A β1 weight of

52 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

0.005 has been tuned when the original dynamic window method is combined with

the direction sensor. The direction sensor’s ability to provide obstacle clearance

causes the reduced weighting.

mod
2 1

max max

()
if and

(, ,)

1 otherwise

t c cd cd cd
v

dw cd cd cd cd

v DC ST ST
o v DC v DC ω

θ θ ω
α γ β

ω π
  − −     

+ +      =      
−

 (3.38)

In the reduced parameter modified dynamic window method, parameters considered

to have the least impact on performance have been removed. For tricycle robots, the

collision distance reduction factor DCF is set to 1 and close obstacles CLob are not

monitored. Weight α3 is removed from the primary objective function (3.35) to

produce (3.39). With the removal of CLob, the secondary objective function for

tricycle robots (3.36) is reduced to (3.40).

mod

2
max

()
if

(,)

1 otherwise

t c cd cd
v

dwp cd cd

v
ST

o v v
θ θ ω

α γ
ω π

  − −   
+    =     

−

 (3.39)

mod

2

()
. if

()

1 otherwise

t c cd
v

dwst cd

ST
o

θ θ ω
α

ω π
  − − 
  =   
−

 (3.40)

It is unsuitable to compare the modified dynamic window method with the original

approach since the modified method is tailored for use with the direction sensor.

Consequently, unlike the original method, the modified dynamic window does not

explicitly maximise obstacle clearance in its objective function.

Each of the navigation approaches has been evaluated for navigation time NT, path

length index PI, success rate SR and average velocity AV. Navigation time is limited

to 300 sec for 5% and 10% obstacles, while it is restricted to 450 sec for the

remaining obstacle densities. Path length index is determined by comparing the length

of the optimal planned path with the actual path traversed by the robot. It is possible

for a robot to achieve a path length index greater than unity since the length of the

optimally planned path may not necessarily be the shortest path. The optimally

Basic Robot Navigation System

53

planned path is not always the shortest path because obstacle clearance is also

accounted for during path planning. Success rate, path length index and average

velocity have been combined with equal weightings to produce a score representing

overall success OS.

 () 3OS SR PI AV= + + (3.41)

In the results figures, each bar represents the average value and the corresponding

error bar illustrates standard deviation. A paired sample t-test with two-sided p-values

is used to compare the results of employing the various navigation approaches.

Comparisons are statistically significant if p-values are less than or equal to 0.05 (5%

statistical significance level). Performance ratios are computed to determine

superiority or inferiority by dividing the results obtained from one method by the

results obtained from another method.

3.6.3 Results

Figure 3.10 – Figure 3.15 illustrates the performance of the various navigation

strategies for the tested robots over obstacle density combinations. Each bar in the

graphs represents the mean value of the test configuration (obstacle density – robot

combination). The error bars denote the standard deviation of the tested

configurations.

Generally, the FRC, HRDK, HRDU, ODWDS and RFRC methods show similar

trends for each robot as obstacle density is varied. As obstacle density increases,

navigation time increases. Path length index generally decreases with increasing

obstacle density. Success rate tends to decrease for Robots A and B as obstacle

density increases. Average travelling velocity also decreases with obstacle density.

The kinematic constraints of Robot A (tricycle robot) generally cause it to travel

longer paths, requiring greater navigation time, than Robots B and C. Robots B and C

have the advantage of point turn manoeuvres since they are differential drive robots.

However, Robot C is the largest robot and its success rate deteriorates at higher

obstacle densities. Robot B, the smallest robot, has a circular shape and produces very

high success rates for all navigation strategies except the ODW method.

54 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

The FRC results are presented in Figure 3.10 (a)–(e). This navigation strategy can

work well on all three of the tested robots. The navigation time for all robots is less

than the maximum set limit (Figure 3.10 (a)). Good path length indices (>0.83) can

be achieved with Robots B and C (Figure 3.10 (b)).

Robot A Robot B Robot C
0

20

40

60

80

100

120

140

160

180

200
Navigation Time

Ti
m

e
(s

ec
)

5%
10%
15%
20%

Robot A Robot B Robot C
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Path Length Index

V
al

ue

5%
10%
15%
20%

(a) (b)

Robot A Robot B Robot C
0

10

20

30

40

50

60

70

80

90

100
Success Rate

S
uc

ce
ss

 (%
)

5%
10%
15%
20%

Robot A Robot B Robot C
0

10

20

30

40

50

60

70

80

90

100
Average Velocity

P
er

ce
nt

ag
e

M
ax

im
um

 V
el

oc
ity

 (%
)

5%
10%
15%
20%

 (c) (d)

Robot A Robot B Robot C
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Overall Score

V
al

ue

5%
10%
15%
20%

(e)

Figure 3.10: Final reactive controller (FRC) results.

Basic Robot Navigation System

55

Robot C’s success rate in 20% obstacle density environments is limited to 80%, while

Robots A and B achieve higher success rates (>88%) (Figure 3.10 (c)). The mean

overall scores of Robots A, B and C are greater than 0.75, 0.86 and 0.77 respectively

(Figure 3.10 (e)).

Robot A Robot B Robot C
0

20

40

60

80

100

120

140

160

180

200
Navigation Time

Ti
m

e
(s

ec
)

5%
10%
15%
20%

Robot A Robot B Robot C
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Path Length Index

V
al

ue

5%
10%
15%
20%

(a) (b)

Robot A Robot B Robot C
0

10

20

30

40

50

60

70

80

90

100
Success Rate

S
uc

ce
ss

 (%
)

5%
10%
15%
20%

Robot A Robot B Robot C
0

10

20

30

40

50

60

70

80

90

100
Average Velocity

P
er

ce
nt

ag
e

M
ax

im
um

 V
el

oc
ity

 (%
)

5%
10%
15%
20%

 (c) (d)

Robot A Robot B Robot C
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Overall Score

V
al

ue

5%
10%
15%
20%

(e)

Figure 3.11: Results for hybrid reactive-deliberative navigation in known

environments (HRDK).

56 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

Figure 3.11 (a)–(e) illustrates the results for HRDK navigation. Again, this method

works well on all three tested robots. Good path length indices (>0.89) are achievable

for Robots B and C at all obstacle densities (Figure 3.11 (b)). High success rates

(>94%) are possible for Robots A and B (Figure 3.11 (c)). The mean overall score of

each robot – obstacle density combination is comparable and varies between 0.73 and

0.97 (Figure 3.11 (e)).

Robot A Robot B Robot C
0

20

40

60

80

100

120

140

160

180

200
Navigation Time

Ti
m

e
(s

ec
)

5%
10%
15%
20%

Robot A Robot B Robot C
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Path Length Index

V
al

ue

5%
10%
15%
20%

(a) (b)

Robot A Robot B Robot C
0

10

20

30

40

50

60

70

80

90

100
Success Rate

S
uc

ce
ss

 (%
)

5%
10%
15%
20%

Robot A Robot B Robot C
0

10

20

30

40

50

60

70

80

90

100
Average Velocity

P
er

ce
nt

ag
e

M
ax

im
um

 V
el

oc
ity

 (%
)

5%
10%
15%
20%

 (c) (d)

Robot A Robot B Robot C
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Overall Score

V
al

ue

5%
10%
15%
20%

(e)

Figure 3.12: Hybrid reactive-deliberative navigation in unknown environments
(HRDU).

Basic Robot Navigation System

57

Hybrid reactive-deliberative navigation experiments in unknown environments

(HRDU navigation) results are shown in Figure 3.12 (a)–(e). This navigation

technique can also work on all three robots that have been tested. Navigation time

varies between 46 sec and 136 sec for the different combinations tested (Figure 3.12

(a)). Good path length indices (>0.80) are achievable with Robot B (Figure 3.12 (b)).

Robots A and C achieve path length indices greater than 0.59 and 0.74 respectively

(Figure 3.12 (b)).

Robot B can achieve 100% success in the tested environments (Figure 3.12 (c)).

Robot A has a good success rate (>81%) while Robot B can attain a success rate

greater than 65% (Figure 3.12 (c)). The mean overall scores of Robots A, B and C are

greater than 0.68, 0.85 and 0.77 respectively (Figure 3.12 (e)).

The evaluation of the ODW method is presented in Figure 3.13 (a)–(e). This method

yields poor performance on all the tested robots. Despite the average velocity of each

robot being greater than 53% (Figure 3.13 (d)), navigation time is significantly high

(Figure 3.13 (a)), indicating poor goal-directedness. The low path length index values

(<0.48) for all robots also indicate poor goal-directedness when relying solely on the

DWA method for navigation (Figure 3.13 (b)).

Extremely poor success rates (<5%) have been attained for Robots A and C (Figure

3.13 (c)). Robot B produces above average success rates at 15% and 20% obstacle

densities (Figure 3.13 (c)). Consequently, the overall scores are also poor with only

Robot B achieving above the 0.5 level at 15% and 20% obstacle densities (Figure

3.13 (e)).

When the direction sensor is combined with the ODW method, it can perform

adequately on all the tested robots (Figure 3.14 (a)–(e)). The average velocity

achieved by the robots is good (>70%) (Figure 3.14 (d)). For Robots B and C, above

average path length indices (>65%) are achievable (Figure 3.14 (b)). However, path

length index values are poor (0.28–0.50) for Robot A at 15% and 20% obstacle

densities (Figure 3.14 (b)).

58 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

Robot A Robot B Robot C
0

50

100

150

200

250

300

350

400

450

500
Navigation Time

Ti
m

e
(s

ec
)

5%
10%
15%
20%

Robot A Robot B Robot C
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Path Length Index

V
al

ue

5%
10%
15%
20%

(a) (b)

Robot A Robot B Robot C
0

10

20

30

40

50

60

70

80
Success Rate

S
uc

ce
ss

 (%
)

5%
10%
15%
20%

Robot A Robot B Robot C
0

20

40

60

80

100

120
Average Velocity

P
er

ce
nt

ag
e

M
ax

im
um

 V
el

oc
ity

 (%
)

5%
10%
15%
20%

 (c) (d)

Robot A Robot B Robot C
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Overall Score

V
al

ue

5%
10%
15%
20%

(e)

Figure 3.13: Original dynamic window (ODW) reactive navigation results.

The success rate of Robot B is high (>94%) for all obstacle densities (Figure 3.14

(c)). However, Robots A and C have significantly lower success rates at higher

obstacle densities (Figure 3.14 (c)). The mean overall scores of Robots A, B and C

are greater than 0.51, 0.78 and 0.64 respectively (Figure 3.14 (e)).

Basic Robot Navigation System

59

Robot A Robot B Robot C
0

50

100

150

200

250

300

350

400
Navigation Time

Ti
m

e
(s

ec
)

5%
10%
15%
20%

Robot A Robot B Robot C
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Path Length Index

V
al

ue

5%
10%
15%
20%

(a) (b)

Robot A Robot B Robot C
0

10

20

30

40

50

60

70

80

90

100
Success Rate

S
uc

ce
ss

 (%
)

5%
10%
15%
20%

Robot A Robot B Robot C
0

10

20

30

40

50

60

70

80

90

100
Average Velocity

P
er

ce
nt

ag
e

M
ax

im
um

 V
el

oc
ity

 (%
)

5%
10%
15%
20%

 (c) (d)

Robot A Robot B Robot C
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Overall Score

V
al

ue

5%
10%
15%
20%

(e)

Figure 3.14: Reactive navigation with original dynamic window approach and

direction sensor (ODWDS).

A reduced parameter reactive controller (RFRC) has also been evaluated (Figure 3.15

(a)–(e)). Similar to the FRC, this navigation strategy is capable of performing on all

the tested robots. The navigation time for all robots is less than the maximum set limit

(Figure 3.15 (a)). Robots B and C have good path length indices (>0.81) (Figure

3.15 (b)). Robot B has a high success rate (>91%), while Robots A and C have at least

60 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

76% and 75% success respectively (Figure 3.15 (c)). The mean overall score of each

robot – obstacle density combination is comparable and varies between 0.70 and 0.94

(Figure 3.15 (e)).

Robot A Robot B Robot C
0

20

40

60

80

100

120

140

160

180

200
Navigation Time

Ti
m

e
(s

ec
)

5%
10%
15%
20%

Robot A Robot B Robot C
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Path Length Index

V
al

ue

5%
10%
15%
20%

(a) (b)

Robot A Robot B Robot C
0

10

20

30

40

50

60

70

80

90

100
Success Rate

S
uc

ce
ss

 (%
)

5%
10%
15%
20%

Robot A Robot B Robot C
0

10

20

30

40

50

60

70

80

90

100
Average Velocity

P
er

ce
nt

ag
e

M
ax

im
um

 V
el

oc
ity

 (%
)

5%
10%
15%
20%

 (c) (d)

Robot A Robot B Robot C
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Overall Score

V
al

ue

5%
10%
15%
20%

(e)

Figure 3.15: Reduced parameter reactive controller (RFRC) results.

Basic Robot Navigation System

61

A comparison of the overall scores and navigation times of the various navigation

strategies is illustrated in Figure 3.16 – Figure 3.20. In each case, the alternative

navigation methods are compared with the final reactive controller (FRC). The first

two parts of each figure ((a) and (b)) illustrates the overall score comparison’s ratio

and navigation time ratio, respectively. Overall score ratio is calculated by dividing

the alternative navigation technique’s overall score by the FRC overall score. A ratio

less than unity represents inferior performance while a ratio greater than unity

indicates superior performance. The alternative navigation technique’s navigation

time divided by the FRC navigation time determines the navigation time ratio.

Superior performance is denoted by a ratio less than unity, while a ratio greater than

unity indicates inferior performance. The third part of each figure ((c)) shows the p-

values for the overall score and navigation time comparisons. P-values less than 0.05

(5% statistical significance level) are highlighted in blue to indicate comparisons that

are statistically significant.

Robot A Robot B Robot C
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Overall Score Comparison

R
at

io

5%
10%
15%
20%

Robot A Robot B Robot C
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Navigation Time Comparison

R
at

io

5%
10%
15%
20%

 (a) (b)

Robot A Robot B Robot C Robot A Robot B Robot C
5% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.08

10% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.06
15% < 0.01 < 0.01 < 0.01 0.18 < 0.01 < 0.01
20% < 0.01 < 0.01 0.02 0.34 < 0.01 0.01

p-values (two decimal places, < 0.05 shaded blue)
Overall Score Comparison (a) Navigation Time Comparison (b)Obstacle

Density

(c)

Figure 3.16: Comparison of HRDK navigation and FRC.

Figure 3.16 (a)–(c) shows a comparison of HRDK navigation and the FRC. For all

test configurations, the overall score ratio is greater than unity (Figure 3.16 (a)). The

62 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

comparison is statistically significant for all cases (Figure 3.16 (c)), with best case

improvement for HRDK navigation performance of 8% (Robot B in 15% obstacle

density environment). Figure 3.16 (c) also indicates that the comparison is

statistically significant for majority of the cases even at a 1% significance level.

Navigation time comparison suggests that the FRC is inferior (Figure 3.16 (b),(c)).

Eight out of twelve cases are statistically significant (Figure 3.16 (c)). The four cases

with p-values greater than 5% (Figure 3.16 (c) have navigation time ratios closer to

unity than the other cases.

Robot A Robot B Robot C
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Overall Score Comparison

R
at

io

5%
10%
15%
20%

Robot A Robot B Robot C
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Navigation Time Comparison

R
at

io

5%
10%
15%
20%

 (a) (b)

Robot A Robot B Robot C Robot A Robot B Robot C
5% 0.20 0.40 0.29 0.15 0.45 0.36

10% 0.07 < 0.01 0.45 0.42 < 0.01 0.38
15% 0.18 < 0.01 0.08 0.05 < 0.01 0.31
20% < 0.01 0.45 < 0.01 0.18 0.30 0.03

p-values (two decimal places, < 0.05 shaded blue)
Overall Score Comparison (a) Navigation Time Comparison (b)Obstacle

Density

(c)

Figure 3.17: Comparison of HRDU navigation and FRC.

A comparison of HRDU navigation and the FRC is shown in Figure 3.17 (a)–(c). The

overall score ratio is 0.83–1.04 with 11 out of 12 cases greater than 0.9 (Figure

3.17 (a)). However, only four out of twelve cases are statistically significant (Figure

3.17 (c)). Hence, at lower obstacle densities (5%–15%) HRDU navigation and FRC

have similar performance. However, at 20% density HRDU navigation is generally

inferior (Figure 3.17 (c)). Navigation time ratio is 0.84–1.15 with five out of twelve

cases greater than unity (Figure 3.17 (b)). Three out of twelve cases are statistically

significant (Figure 3.17 (c)). Two out these three statistically significant cases

Basic Robot Navigation System

63

indicate the HDRU navigation has inferior performance. The inferior performance of

HRDU navigation can be attributed to time delays before re-planning is triggered.

Additionally, path planning in unknown environments can favour unexplored areas of

the environment as re-planning frequency rises.

Robot A Robot B Robot C
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Overall Score Comparison

R
at

io

5%
10%
15%
20%

Robot A Robot B Robot C
0

1

2

3

4

5

6
Navigation Time Comparison

R
at

io

5%
10%
15%
20%

 (a) (b)

Robot A Robot B Robot C Robot A Robot B Robot C
5% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

10% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
15% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
20% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Obstacle
Density

p-values (two decimal places, < 0.05 shaded blue)
Overall Score Comparison (a) Navigation Time Comparison (b)

(c)

Figure 3.18: Comparison of ODW and FRC.

The original dynamic window (ODW) method has also been compared with the FRC

(Figure 3.18 (a)–(c)). From the overall score comparison (Figure 3.18 (a),(c)), the

FRC clearly outperforms the ODW method. The ODW method’s performance is

37%–74% lower than the FRC (Figure 3.18 (a)). A similar trend appears when

navigation time is compared (Figure 3.18 (b),(c)). Navigation time is increased by a

factor of up to 5.2 when the ODW method is used (Figure 3.18 (b)). The navigation

time comparison can be misleading for higher obstacle densities since navigation

difficulty is disproportionate to the maximum allowable navigation time.

Figure 3.19 (a)–(c) compares the ODWDS method and the FRC. All comparisons of

the overall scores are statistically significant with p-values less than 1% (Figure

3.19 (c)). The FRC outperforms the ODWDS method by up to 27.5% (Figure 3.19

(a)). Similar to the overall score comparison, the navigation time ratios are

64 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

statistically significant with p-values less than 1% (Figure 3.19 (c)). The navigation

time of the ODWDS method is 10%–98% greater than the FRC.

Robot A Robot B Robot C
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Overall Score Comparison

R
at

io

5%
10%
15%
20%

Robot A Robot B Robot C
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Navigation Time Comparison

R
at

io

5%
10%
15%
20%

 (a) (b)

Robot A Robot B Robot C Robot A Robot B Robot C
5% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

10% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
15% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
20% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Obstacle
Density

p-values (two decimal places, < 0.05 shaded blue)
Overall Score Comparison (a) Navigation Time Comparison (b)

(c)

Figure 3.19: Comparison of ODWDS and FRC.

A comparison of the performance of the RFRC and FRC is shown in Figure 3.20 (a)–

(c). There is no statistically significant difference in the overall score comparison for

Robot B (Figure 3.20 (c)). However, for Robot C there is a statistically significant

difference in performance in 15% and 20% obstacle density environments (Figure

3.20 (c)) indicating the RFRC is inferior (Figure 3.20 (a)). Additionally, the RFRC is

inferior in 20% obstacle density environments for Robot A (Figure 3.20 (a),(c)). This

result is expected since the additional features in the FRC are designed to improve

performance in higher obstacle density environments. Navigation time comparison

yields no statistically significant difference (Figure 3.20 (c)). There is still no

statistically significant difference in navigation time if the level of significance is

changed to 10% (Figure 3.20 (f)).

Basic Robot Navigation System

65

Robot A Robot B Robot C
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Overall Score Comparison

R
at

io

5%
10%
15%
20%

Robot A Robot B Robot C
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Navigation Time Comparison

R
at

io

5%
10%
15%
20%

 (a) (b)

Robot A Robot B Robot C Robot A Robot B Robot C
5% 0.06 0.38 0.37 0.29 0.41 0.47

10% 0.06 0.39 0.12 0.18 0.42 0.28
15% 0.11 0.15 < 0.01 0.18 0.41 0.29
20% 0.04 0.23 < 0.01 0.30 0.37 0.30

p-values (two decimal places, < 0.05 shaded blue)
Overall Score Comparison (a) Navigation Time Comparison (b)Obstacle

Density

(c)

Figure 3.20: Comparison of RFRC and FRC.

3.7 Physical Robot Experiments

Figure 3.21: The tricycle robot Scratchy.

66 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

Limited experiments have been conducted on real robots. Reactive and hybrid

reactive-deliberative navigation has been implemented on Itchy and Scratchy (Figure

3.21), a pair of functionally equivalent tricycle robots in the VUW mechatronics

group [15]. The MATLAB control algorithms were converted to Visual C++ to ensure

compatibility with the existing rudimentary control system on the robots.

Figure 3.22 shows a screen shot of the developed Visual C++ GUI. Controls for

manually and autonomously driving the robots are on the left side of the GUI. The

right side of the GUI has seven tabs for hardware, low-level control, robot settings,

other robot state, reactive control, environment map and planning.

Figure 3.23 displays the reactive control and environment map tabs. The environment

map tab displays the position of the robot in the world. Robot specific settings files

are required for network communication, sensing, low-level control, reactive control

and planning.

Figure 3.22: Screen shot of tricycle robot GUI.

Basic Robot Navigation System

67

Figure 3.23: Reactive control and environment map tabs.

Table 3.4 lists the acceleration and velocity constraints determined from experimental

data obtained from the pair of robots. Navigation experiments were conducted in an

office corridor environment. The reactive control parameters tuned in the simulations

required minimal adjustment.

Table 3.4: Acceleration and velocity constraints.

Parameter Numerical Value
Linear acceleration/deceleration ± 0.1 m/sec2
Angular acceleration/deceleration ± 0.15 rad/sec2
Maximum/minimum linear velocity ± 0.3 m/sec
Maximum/minimum angular velocity ± 0.3 rad/sec

Figure 3.24 shows the path travelled by one of the robots when reactive control is

combined with deliberative control. In this experiment, the robot was required to

navigate from one end of the corridor (4 m, 6 m) and perform a right turn to reach a

goal location in the adjacent corridor (14 m, 4 m). Orange lines in Figure 3.24

illustrate the corridor walls. The robot successfully reached the goal while avoiding

collision with the corridor wall. However, loss of localisation accuracy, actuator noise

and sensor noise resulted in the robot having to perform several reversing manoeuvres

to avoid collision. This indicates that the reactive control component can override

68 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

deliberative control to avoid collision. The black dots in Figure 3.24 represent points

of the corridor walls sensed by the robot as it traversed through the corridor.

3 5 7 9 11 13 15 16
2

4

6

8

x[m]

y[
m

]

start

goal

Figure 3.24: Tricycle robot hybrid reactive-deliberative navigation.

3.8 Alternative Techniques

The reactive control component of the developed hybrid-reactive deliberative

navigation system is based on a combination of directional and velocity space

methods. It is able to function on robots with different shapes and drive types in

scattered obstacle environments. Additionally, it works with limited sensors such as

infrared rangefinders and does not use complex algorithms.

Originally, the dynamic window approach (DWA) [38], a velocity space method, was

designed for and tested on a synchronous drive (holonomic) robot. In contrast, the

system developed in this chapter can function on the differential drive and tricycle

drive robots employed in this thesis that are non-holonomic in nature. The curvature

velocity method [59] is similar to the dynamic window method. Its main limitation is

that it assumes a circular shape for a robot. Many of the curvature calculations rely on

this assumption making it unsuitable for non-circular shapes. In contrast, the

developed reactive system can function on non-circular robots.

The Vector Field Histogram (VFH) [58] directional method also assumes a circular-

shaped robot and is similar to the direction sensor component of the reactive system.

Basic Robot Navigation System

69

It does not account for the dynamics and kinematics of a robot. Enhanced versions of

the VFH method (VFH+ [58] and VFH* [63]) are more complex and also assume

circular shapes. This limits their use to circular robots unlike the reactive system

developed in this chapter.

In the Nearness Diagram (ND) navigation method [61], a robot’s kinematics,

dynamics, and shape are accounted for. This method has three stages to achieve

reactive navigation: a nearness diagram stage, a motion generator stage, and a shape

corrector stage. Neither of these stages employs the DWA or a polar histogram. A

combination of the ND method and DWA has been developed [41] but this adds more

complexity to the existing ND method. In contrast, the developed reactive system

employs only two stages thus reducing complexity for limited processing robots.

Experiments are conducted in unknown, non-predictable, unstructured, cluttered,

dense and complex environments. However, the robots employed in the experiments

have sophisticated sensing such as 2D and 3D laser rangefinders and stereo cameras.

This is unlike the developed reactive system that works with limited sensors such as

infrared rangefinders albeit in less complex environments.

The ego-kinodynamic space approach [62] can also function on robots with different

shapes. A complex vehicle abstraction layer is employed to allow compatibility with a

variety of obstacle avoidance techniques. Hence, there will still be at least two stages

for reactive control using this method. Potentially, this offers no reduction in

complexity when compared with the developed reactive system. The technique is

tested using a potential field method [53] on a differential drive robot with a 2D laser

sensor (wheelchair) in an office environment. Performance on other types of robots

and in other environments is not evaluated.

Difficult environments such as dense and cluttered are considered in the obstacle-

restriction method (ORM) [50]. This reactive control method also employs two stages

to take into account a robot’s kinematics, dynamics, and shape. Free space is

identified and sub-goals are selected in the first stage. The second stage computes

motion towards the sub-goals while avoiding collisions. Identifying sub-goals requires

sophisticated sensors with long range such as laser rangefinders.

70 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

There are many navigation systems that employ hybrid deliberative-reactive control.

A convergent dynamic window approach [39] combines the dynamic window

approach, artificial potential functions, model predictive control and control

Lyapunov functions. This nonlinear method is designed and tested to work in known

environments using a circular robot. On the other hand, the hybrid navigation system

presented in this chapter also functions in unknown environments and performs on

heterogeneous robots. Using non-linear control also adds computational complexity

unlike the linear approach taken in this chapter.

The global dynamic window approach [47] has been tested on a circular holonomic

robot equipped with a laser rangefinder. An NF1 path planner is combined with the

DWA to allow the robot to navigate in unknown environments. However, the method

relies on periodic path planning (operates at 15 Hz).

A hybrid of the NF1 path planner, DWA, and elastic band method [42] has been

developed to produce smooth and efficient obstacle avoidance for a differential drive

tour guide robot with laser scanners. The robot is represented as a circular shape in the

control algorithms and the method also relies on periodic path planning for successful

navigation. Hence, a computationally powerful robot (Power PC G3) is utilised for

processing. Lookup tables are also utilised by the DWA which consumes additional

memory.

The A* path planner and DWA have been combined for navigation on a circular

differential drive robot with a laser sensor [44]. This technique also relies on periodic

path planning. Path planning is performed at every control cycle for navigation in

unknown environments. Planning time has been improved by using the D* algorithm

[46] with the DWA [45].

In contrast to [42, 44, 45, 47] the hybrid navigation system developed in this chapter

does not rely on periodic path planning or lookup tables and represents non-circular

shapes. Periodic path planning can be problematic if a limited memory robot cannot

store an entire map in its local memory (chapter 4). This makes the developed

navigation system more suitable for heterogeneous limited capability robots.

Basic Robot Navigation System

71

A reduced dynamic window approach for polygonal robots [48] has been tested on

differential drive robots equipped with laser rangefinders. In this method, the NF1

planner in the planning stage provides a linear velocity for the model stage (a reduced

dynamic window that selects an angular velocity). Hence, this method requires a

model of the environment or requires replanning whenever an obstacle is discovered

in unknown environments. In contrast, the navigation system presented in this chapter

can avoid discovered obstacles without the need to replan and functions with limited

range sensors.

Another dynamic window based navigation system [49] has been tested on non-

circular, differential drive, and tricycle drive robots equipped with laser rangefinders.

It uses lookup tables to store precalculated curvature related information. As

mentioned previously, this can be memory expensive and is not utilised in the

navigation system developed in this chapter. A wave front expansion algorithm

generates intermediate way points for global navigation. This navigation system has

only been tested in known environments. In contrast, the system presented in this

chapter also functions in unknown environments.

Unlike [42, 44, 47-49], the navigation system developed in this chapter utilises a

polar histogram with the DWA to allow robots with limited range sensors such as

infrared rangefinders to achieve adequate goal directedness and obstacle avoidance.

Lee-Johnson’s emotion based navigation system [52] is similar to the technique

presented in this chapter. However, it is tailored for indoor navigation and is more

complex utilising a computationally powerful circular shaped robot. The deliberative

control component employs stimuli, moods, emotions, and several occupancy grid

maps. In the reactive control component non-linear product objective functions are

utilised rather than linear weighted sum objective functions. Complexity is further

increased by utilising additional sub-components for directional and velocity control.

In contrast, the hybrid navigation system presented in this chapter relies on a single

occupancy grid map and has less complexity in the reactive control component.

72 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

3.9 Summary

A hierarchical hybrid navigation system that can be employed on heterogeneous

mobile robots with limited sensing (such as infrared rangefinders) has been developed

and evaluated. It can be utilised on robots with limited memory, provided there is

sufficient memory to store a global map locally on the limited memory robot. The

presented navigation system is generic and can be employed when heterogeneity

arises due to robot shape and drive type.

It comprises both deliberative and reactive components for operation in known and

unknown environments. The deliberative path planning component employs the A*

algorithm to search an occupancy grid map. A two stage polar histogram and

modified dynamic window method is utilized for the reactive system. This combines

the benefits of directional methods and velocity space techniques for reactive

navigation to produce a system that does not require periodic path planning.

Simulation experiments demonstrate the navigation system’s effectiveness in known

and unknown environments. The developed final reactive system (FRS) produces

favourable results on the tested robot – obstacle density combinations. When the FRS

is coupled with the deliberative system, navigation performance in known

environments is improved by up to 14%. For navigation in unknown environments,

the deliberative component does not affect performance significantly when compared

with reactive navigation. This is a desirable result as it removes the dependence on

periodic path planning for hybrid navigation in unexplored obstructed environments.

Physical robot experiments using a tricycle drive robot demonstrate that the

navigation system can function in the real world.

A drawback of the system is that it utilises many empirically tuned parameters to

achieve a reduced dependence on periodic path planning. The empirical tuning is also

performed in several steps. However, a fixed set of empirically tuned parameters has

been functional across the various robot and environment configurations in the

simulation experiments. A method to automatically tune the various parameters could

be explored as future work.

Basic Robot Navigation System

73

Employing the developed navigation system on limited memory robots requires an

alternative path planning technique if the global map cannot be entirely stored locally.

Chapter 4 presents a novel path planning strategy for limited memory robots that

exploits the benefits of hierarchical heterogeneous multi-robot systems.

Memory Constrained Path Planning

75

4 Memory Constrained Path Planning

4.1 Overview

In applications such as multi-robot exploration and mapping [1], storing an entire

global map of a large environment at the required resolution on every robot can be

memory and cost expensive when there are many robots. In a hierarchical and

heterogeneous multi-robot system [2] (chapter 1), computationally powerful robots

(managers) can be employed for processor and memory intensive requirements.

Limited computational ability robots (task executers or workers) can be employed

primarily for tasks such as exploring within localised regions of a global environment.

An essential part of exploration is the need for (task executer or worker) robots to

navigate beyond locally discovered space. Global path planning can be performed to

enable navigation beyond local regions. Manager robots capable of storing the entire

global map can apply standard search algorithms (section 2.2) to plan global paths for

worker robots if they have sufficient processing resources available.

However, due to limited processing ability or memory constraints, it may not be

possible for a manager robot to perform global path planning and maintain full

communication with all explorer robots. Additionally, the wireless communication

bandwidth and range of the explorer robots themselves are limited. This means that a

manager robot may be unable to maintain communication with a large number of

worker robots continuously in real-time.

Rather than rely on a single centralised path planning robot, global path planning can

be forwarded to some of the worker robots. However, this can be problematic since

the memory constraints of the worker robots will likely not permit them to store the

entire global map.

Alternative global path planning strategies based on multi-tiered and memory efficient

algorithms are discussed in section 2.5. However, these methods are not directly

suitable for the hierarchical heterogeneous system comprising limited memory robots

presented in this thesis. This chapter presents and evaluates an approach that is

76 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

significantly different from those reported in the literature. The technique involves

initially dividing a large global map into smaller local maps based on the worker

robot’s memory capacity. Following this, a two-tiered A* (memory constrained)

algorithm that executes entirely on the worker robot, searches the local maps for a

path to the destination.

Lower-level A*
(Search local maps)

Global Map
(Set of local maps)

Global
PathHigher-level A*

(Local map search
sequence)

Local map
path, cost

Two-tiered A*

Local map data

Local map
indices

Start,
Goal

Figure 4.1: Two-tiered A* algorithm overview.

Lower-level and higher-level A* algorithms are combined to produce the two-tiered

A* algorithm (Figure 4.1). The higher-level A* algorithm directs the lower-level A*

algorithm to search the local maps. Pairs of neighbouring local maps are searched for

a path using the lower-level A* algorithm. The path returned by the lower-level A*

algorithm is stored in the robot’s local memory and is used by the higher-level A*

algorithm as the cost of travelling through the local maps. A complete path from the

start to the goal is obtained by combining the paths through the minimum cost local

maps.

The effect of varying the size and quantity of local maps for different global map

sizes and obstacle densities is empirically investigated. Planning time, volume of data

transmitted and path length are the performance metrics used in the experiments.

While the approach is demonstrated on an occupancy grid environment

Memory Constrained Path Planning

77

representation, it can be extended to other node based representations such as

topological maps.

Simulation experiments show that memory constrained path planning can achieve

superior or comparable execution times to non-memory constrained planning if the

global map size is significantly larger than the local map size. In other words,

employing smaller local map sizes reduces memory constrained path planning time.

Furthermore, employing multiple memories of smaller local map sizes potentially

improves memory constrained planning time.

4.2 Global and Local Map Representations

Assume that a grid map representation of the global environment initially exists and

has been constructed by taking the size of the robots into consideration. This global

map has GMapRows rows and GMapCols columns. Thus, the total number of nodes in

the global map is:

 GMap GMap GMapNodes Rows Cols= × (4.1)

The data stored for each node of the global map represents the probability that the

region the node represents is occupied. Let the memory required to store the data for

each node of the global map be MNodeMem bytes. The value of MNodeMem will vary

depending on the precision of the data type used to store the probability information.

To facilitate path planning, the two-tiered A* algorithm requires index and adjacency

references for memory constrained portions of the global map. In the context of this

chapter, a memory constrained portion of the global map is defined as a local map.

Assume that each limited memory robot has LMapMaxTotMem bytes available for local

map storage. LMapMaxTotMem is used to store to a total of (Q + 2) local map memories.

A fixed quantity (or number) Q of local map memories is employed to store map data

retrieved from the manager robot. An additional memory equivalent to the size of two

local map memories is utilised by the lower-level A* algorithm (section 4.3) for

storing a merged local map. Hence, the maximum available memory per local map

LMapMaxMem can be determined from (4.2). Each local map can store a maximum of

78 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

LMapMaxNodes nodes derived from the maximum available local map memory

LMapMaxMem as shown in (4.3).

 (2)LMapMax LMapMaxTotMem Mem Q= + (4.2)

 LMapMax LMapMax MNodeNodes Mem Mem= (4.3)

Using LMapMaxNodes and the dimensions of the global map, the local map index and

adjacency references can be determined for the global map. The algorithm pseudo

code is shown in Figure 4.2. Square-shaped local maps are generated although

rectangular local maps can be produced if desired.

Figure 4.2: Local map index and adjacency references algorithm pseudo code.

The dimensions of each local map are stored as four variables in LMapDim . These

variables correspond to the minimum and maximum row and column indices of the

local map in the global map’s reference frame. Each local map also has between two

and four neighbours and the indices representing these neighbours are stored in

LMapNeighbours as adjacency references.

function partition_global_map(GMapRows , GMapCols , LMapMaxNodes)
1 % decompose maximum number of local map nodes into local
 map row and column sizes
2 (());LMap LMapMaxRowCol floor sqrt Nodes=
3 % determine the number of row and column partitions of the
 global map
4 ();P GMap LMapRows ceil Rows RowCol=
5 ();P GMap LMapCols ceil Cols RowCol=
6 % generate the dimensions and neighbours of each local map
7 1;LMapindex =
8 for 1 to P PRow Rows= and 1 to P PCol Cols=
9 () dimensions of the local map at (,);LMap LMap P PDim index Row Col=
10 () neighbours of the local mapLMap LMapNeighbours index =
 at (,);P PRow Col
11 1;LMap LMapindex index= +
12 end;
13 return LMapDim , ;LMapNeighbours

Memory Constrained Path Planning

79

In Figure 4.3, nine local grid maps have been created by the partition_global_map

function for a 40 nodes × 40 nodes global grid map with a maximum of 200 local map

nodes. Cells with a dark blue colour represent obstacles and the bold black lines mark

the boundaries of the local maps. Figure 4.4 details the corresponding index,

dimensions and neighbours of each local map. The actual maximum number of nodes

in the square local map after generating the local map index and adjacency references

is given by:

 LMap LMap LMapNodes RowCol RowCol= × (4.4)

Thus, the actual maximum memory utilized to store the local map is given by:

 LMap LMap MNodeMem Nodes Mem= × (4.5)

The memory savings from using local maps for path planning is expected to vary

depending on the size of the global and local maps as well as the structure of the

environment.

Figure 4.3: Global map divided into local maps.

80 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

Index: 1
Dimensions:
[1 14 1 14]
Neighbours: [2 4]

Index: 2
Dimensions:
 [1 14 15 28]
Neighbours: [1 3 5]

Index: 3
Dimensions:
[1 14 29 40]
Neighbours: [2 6]

Index: 4
Dimensions:
[15 28 1 14]
Neighbours: [1 5 7]

Index: 5
Dimensions:
[15 28 15 28]
Neighbours: [2 4 6 8]

Index: 6
Dimensions:
[15 28 29 40]
Neighbours: [3 5 9]

Index: 7
Dimensions:
[29 40 1 14]
Neighbours: [4 8]

Index: 8
Dimensions:
[29 40 15 28]
Neighbours: [5 7 9]

Index: 9
Dimensions:
[29 40 29 40]
Neighbours: [6 8]

Figure 4.4: Local map indices, dimensions and neighbours.

4.3 Lower-Level A* Algorithm

The lower-level A* algorithm is a modification of the standard A* algorithm [3] that

includes node occupancy probabilities in cost calculations and is similar to the path

planning method presented in section 3.2.2. The algorithm searches for a path within a

merged local map that is created from two adjacent local maps. One of these maps is

the minimum cost local map (section 4.5), while the other adjacent map is one of four

neighbouring local maps (section 4.2 and section 4.4).

A merged local map is searched to ensure that a robot can traverse between local

maps. The start location, goal location and merged local map are provided by the

higher-level A* as inputs to the algorithm. Similar to the standard A* algorithm, an

eight-direction search is performed within the merged local map to find a path to the

goal. The four adjacent and four diagonal nodes to the node under evaluation are the

eight-directions that are searched.

Inspired by frontier-based exploration [4], the g(x) and h(x) costs of the A* algorithm

have been modified to account for a varying degree of occupancy probability pi

ranging from 0.05 to 0.95. Nodes whose occupancy probabilities exceed a threshold

PT are eliminated from the cost calculation. The cost of all other nodes is linearly

Memory Constrained Path Planning

81

dependent on a cost multiplier cm. The reference index of the local map adjacent to the

minimum cost map, indexLMap, corresponds to node x’. Generally, a path is previously

obtained to an exit point (section 4.5) in the minimum cost local map. Hence, the

adjacent node x’ tends to dominate the search cost within the merged local map. Thus

the g(x) and h(x) costs are expressed as g(x,x’) and h(x,x’) respectively for the merged

local map (or neighbour local map).

(, ') (, , '). (, ') if (, ')

(, ')
otherwise

par n par m i Tg x x d x x x c x x p x x P
g x x

+ <
= ∞

 (4.6)

(, , '). (, ') if (, ')

(, ')
otherwise

n goal m i Td x x x c x x p x x P
h x x

<
= ∞

 (4.7)

The unit interval cost multiplier cm(x,x’) takes into account the occupancy probability

pi(x,x’) of node x inside local map x’. It also includes a mean occupancy probability

cost cprc(x,x’) representing a robot clearance of r nodes around node x within local

map x’. Weights wpi and wprc control the balance between the two inputs and are set to

0.5 for equal preference.

 (, ') 1 (, ') (, ')m pi i prc prcc x x w p x x w c x x= + + (4.8)

 1(, ') (, ')
r

prc i i
i

c x x p x x
r

= ∑ (4.9)

The overall cost f(x,x’) is the sum of the g(x,x’) and h(x,x’) costs.

4.4 Higher-Level A* Algorithm

The higher-level A* algorithm is based on the standard A* algorithm [3]. It

determines the order in which the local maps are searched. Each local map’s

reference index indexLMap (section 4.2) represents its node x’. An initial start location

and a final goal location, LMapDim and LMapNeighbours are input to the higher-level

A* algorithm. The initial start and final goal locations are converted to their

equivalent initial and final local map nodes. Local map data are retrieved from the

high memory capacity task manager robots and stored in a fixed number of local map

memories during the path planning process.

82 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

The higher-level A* algorithm performs a four-direction search where each of the

neighbouring local maps around the minimum cost local map is merged with the

minimum cost local map to produce a merged local map. The merged local map, the

end point of the path through the minimum cost local map (start location), and a

desired exit point from the merged local map (goal location) is passed into the lower-

level A* algorithm. The path returned by the lower-level A* algorithm, *(')LLAPath x ,

is stored with reference to the corresponding neighbour of the minimum cost local

map. Additionally, the total cost of travel through the neighbour local map f(x,x’) is

retained with the path.

Two cost methods (f1’(x’) and f2’(x’)) have been employed to search the local maps

for a global path. The two methods arise since cost of travelling through the

neighbour of the minimum cost local map can be evaluated in two ways, g1’(x’) and

g2’(x’). In cost method 1 (g1’(x’)), the length of *(')LLAPath x , *(('))LLAlength Path x ,

determines the cost of travelling through the neighbouring local map. Alternatively,

cost method 2 (g2’(x’)) retains the total cost of travel through the neighbour local map

f(x,x’) as the cost of travel. The planning times, volume of data transmitted and path

lengths of the two cost methods can differ and are compared in section 4.6.

The overall cost of travelling across the neighbour local map (g1’(x’) or g2’(x’))

depends on the cost of travel within the neighbour local map (*(('))LLAlength Path x or

f(x,x’)) and the lowest cost path from the starting local map to the parent local map

(g1’(x’par) or g2’(x’par)) (4.10),(4.11). The cost of travelling to the final goal from each

local map, h’(x’) or dn(x’,x’goal), is estimated as the Euclidean distance between the

last node of the path through the local map and the final goal (4.12). Total costs f1’(x’)

and f2’(x’) are shown in (4.13),(4.14). Hence, (4.10), (4.12) and (4.13) are employed

in cost method 1, while (4.11), (4.12) and (4.14) are utilised in cost method 2.

 1 1 *'(') '(') (('))par LLAg x g x length Path x= + (4.10)

 2 2'(') '(') (, ')parg x g x f x x= + (4.11)

 '(') (', ')n goalh x d x x= (4.12)

 1 1'(') '(') '(')f x g x h x= + (4.13)

Memory Constrained Path Planning

83

 2 2'(') '(') '(')f x g x h x= + (4.14)

4.5 Two-Tiered A* Algorithm

Combining the lower-level and higher-level A* algorithm’s yields the two-tiered A*

algorithm. A flowchart of the main steps of the two-tiered A* algorithm is presented

in Figure 4.5. Figure 4.6 is a more detailed description of the planning algorithm. The

complete path is reconstructed in a similar manner to that of the standard A*

algorithm. The main difference is that paths through local maps are combined to form

a complete path from the initial start to the final goal instead of combining nodes to

produce a path from the start to the goal. There is a small amount of overlap between

the paths during reconstruction that is easily removed by comparing the start and end

of adjacent partial paths.

To determine a set of exit points for each local map, the perimeter of the local map is

scanned to identify free space clusters. If a free space cluster is larger than the robot’s

diameter (or length or width), then three safe exit points are determined for the

cluster: one at either end of the cluster and one at the centre of the cluster. The exit

points at either extreme of the cluster have a clearance equivalent to the robot’s

radius. For example, in Figure 4.7 each node is equivalent to the robot’s radius.

Hence, a minimum of three unoccupied cells (nodes) is required to produce a free

space cluster. The red dots represent exit points within each free space cluster. It is

possible for all three exit points to correspond to the same point (single red dot in the

lower side free space cluster of Figure 4.7). In such a case, only the single unique exit

point is retained for evaluation. Similarly, the three exit points can be mapped to two

unique exit points (two red dots in upper left free space cluster of Figure 4.7) and,

only two exit points are retained for evaluation.

Each exit point’s utility is determined as a weighted sum of its distance to the final

goal, EP GoalDist − , and its distance from last node of the path through the parent local

map, EP ParDist − (4.15). The weights k3 and k4 are set to 0.5 for equal preference. The

exit points are then ranked in ascending order of utility. These ranked exit points are

84 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

converted to the merged local map’s reference frame to be used by the lower-level A*

algorithm.

Input Start & Goal

Goal reached?
Yes

Yes

No

No

Retrieve a neighbour of the
minimum cost local map from local

memory or task manager

Find index of minimum cost local
map

Retrieve minimum cost local map
data from local memory or task

manager

Create a merged local map

Find a set of exit points from the
merged local map

Find a path to an exit point

Store/update the f’, g’ & h’ costs of
the neighbour local map

Store/update the path through the
neighbour local map

No Path exists?

Back tracking algorithm

Reconstruct global path from start to
goal

Output global path

Back track?

Exit

Yes

No

A

B

Figure 4.5: Flowchart of the two-tiered A* algorithm.

Memory Constrained Path Planning

85

Figure 4.6: Two-tiered A* algorithm description.

Input initial start location, final goal location, LMapDim ,and LMapNeighbours .
Determine the initial and final local map references.
Set initial local map cost g’(x’) to 0.
Determine the initial local map h’(x’) and f’(x’) costs.
Store initial local map reference in the open list.
While the open list is not empty and a path to the final goal is not found
Find the minimum cost local map reference on the open list, remove it from the open
list and add it to the closed list.
 If the minimum cost local map data does not exist locally
 If there is at least one local map memory free
 Retrieve data from the task manager robot(s).
 Else
 Remove the local map with the highest cost from local memory.
 Retrieve data from the task manager robot(s).
 For all neighbours of the minimum cost local map not on the closed list
 If the neighbour local map data does not exist locally
 If there is at least one local map memory free
 Retrieve data from the task manager robot(s).
 Else
 Remove the local map with the highest cost from local
 memory.
 Retrieve data from the task manager robot(s).
 If exit points have not been determined for the neighbour local map
 Find a set of safe exit points on the boundaries of the neighbour
 local map and rank them.
 If the neighbour local map exit points set is not empty and the boundary
 between the two local maps is safe to pass
 Create a merged local map from the minimum cost local map
 and the neighbour local map data.
 Set start location to last node of path through minimum cost local map.
 Set goal location to first exit point.
 While a path is not found and all exit points haven’t been checked
 Find a path in the merged local map from the start location to
 the goal location using the lower-level A* algorithm.
 Set goal location to next unchecked exit point.
 If a path is found
 Determine/Update the g’(x’), h’(x’), and f’(x’) costs of the neighbour local
 map.
 Determine/Update the parent of the neighbour local map.
 Store/Update the path as the path through the neighbour local map.
 Add the neighbour local map reference to the open list.
If a path to the final goal is found
 Reconstruct and return a complete path from the initial start to the final goal.

86 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

Yes

Retrieve a neighbour of the
minimum cost local map from local

memory or task manager

Create a merged local map

Find a set of exit points from the
merged local map

Exit

Exit Point

Free Space
Cluster

Figure 4.7: Free space clusters and exit points.

 3 4EP EP Goal EP ParUtility k Dist k Dist− −= × + × (4.15)

The boundary between the minimum cost local map and each of its neighbours needs

to be checked for safe traversal. To determine the boundary (or border) row or column

of neighbouring local maps, their dimensions are compared. The boundary rows or

columns of the minimum cost map and its neighbour are then checked incrementally

to determine if a passage greater than the robot’s diameter exists. If such a passage

exists then checking is terminated and the boundary is deemed safe to pass. The

merged local map is created by comparing the dimensions of the neighbour local map

with the minimum cost map for correct positioning (i.e. top, bottom, left or right).

In some initial tests, especially when an entire subsection of a local map is blocked

due to large obstacles, the higher-level algorithm failed to find a path that existed.

This is due to the nature of the A* algorithm as it does not re-evaluate local maps

stored in the closed list. To deal with this situation a back tracking method has been

added to the algorithm.

Figure 4.8 details the back tracking procedure. When the open list becomes empty and

a complete path to the final goal has not been found (Figure 4.5), the partial path to

the final goal is stored in memory. Then, all the local map references which are in the

closed list but not in the partial path are removed from the closed list. Following this,

Memory Constrained Path Planning

87

the algorithm back tracks to the parent local map of the last local map on the optimal

partial path. This parent local map is removed from the closed list and placed in the

open list. Finally, the last local map in the optimal partial path is removed from the

parent local map’s neighbour list and also from the closed list. If the algorithm back

tracks to the very first local map that was searched then this means that a path to the

final goal does not exist and the search is terminated.

Yes

No

Remove all local map indices not on
the partial path from the closed list

Reconstruct new partial path

Overwrite closest partial path data
with new partial path data

Remove from the closed list, the
local map index (in partial path) with

minimum cost to the goal

Get parent local map index of the
minimum cost local map

Set parent local map index to be the
new current local map index for

evaluation

Put the parent local map index on
the open list and remove it from the

closed list

Remove the minimum cost local
map index from its parent’s list of

neighbours

A

B

New partial path closer
to goal?

Figure 4.8: Back tracking algorithm flowchart.

88 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

4.6 Simulation Experiments

The two-tiered (memory constrained) A* path planner has been implemented and

evaluated with Matlab 2007a. Randomly positioned obstacles at 5%, 10%, 15%, 20%

and 25% densities have been populated in rectilinear global worlds of six different

sizes. A grid map representation of these global worlds at 10 cm resolution resulted in

global maps ranging from 104 nodes to 5×106 nodes. Assuming eight bytes per node,

the global maps require 78 KB to 38.15 MB of memory. It is arbitrarily assumed that

a 15 cm radius circular worker robot is required to travel inside each world. Eight

local map sizes (64 KB, 128 KB, 256 KB, 512 KB, 1 MB, 2 MB, 4 MB, 8 MB) have

been tested for each global map size. A wireless communication link is assumed to be

present between the task manager and worker robots.

Thirty worlds have been generated and tested for the 5% to 20% obstacle density

global worlds. At 25% obstacle density, thirty global worlds have been evaluated for

the smaller global map sizes (78 KB, 390 KB, 781 KB, 3.81 MB). Ten worlds are

evaluated at 25% obstacle density for the larger global map sizes (7.63 MB and 38.15

MB) due to lengthy planning times. Experiments in each world have been repeated

ten times. For each test, a path is planned from a start location (S) near the top left

corner of the global map to a goal location (G) near the bottom right corner of the

map. Planning time, volume of map data received and path length have been

evaluated in the experiments. Three quantities of local map memories (one, five and

fifteen) have been evaluated for the worker robots. Additionally, the two cost methods

presented in section 4.4 have been tested.

In the results figures, each bar represents the average value and the corresponding

error bar illustrates standard deviation. A paired sample t-test with two-sided p-values

is used to compare the results of employing the various approaches. Comparisons are

statistically significant if p-values are less than or equal to 0.05 (5% statistical

significance level). Performance ratios are computed to determine superiority or

inferiority by dividing the results obtained from one method by the results obtained

from another method.

Memory Constrained Path Planning

89

4.6.1 General Trends of Local Map Size and Global Map Size
Variation

Figure 4.9 – Figure 4.14 illustrate the results of employing only path length for cost

calculations (cost method 1) in the higher-level A* component of the memory

constrained A* algorithm. The local map memory quantity was set to one for the

results of Figure 4.9 – Figure 4.14. In Figure 4.9 – Figure 4.14, the last set of bars in

each graph (Inf) illustrates non-memory constrained A* planning data. Note that the

vertical scale of planning time changes as the global map size is varied in Figure 4.9 –

Figure 4.14.

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Planning Time

Ti
m

e
(s

ec
)

Local Map Size

5%
10%
15%
20%
25%

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

10

20

30

40

50

60

70

80

90
Map Data Received

D
at

a
(K

B
)

Local Map Size

5%
10%
15%
20%
25%

(a) (b)

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

20

40

60

80

100

120

140
Path Length

N
od

es

Local Map Size

5%
10%
15%
20%
25%

 (c)

Figure 4.9: Results for planning in a 78 KB global map with 1 local map memory
using cost method 1.

As expected, planning time is generally proportional to obstacle density for all global

map sizes (Figure 4.9(a) – Figure 4.14(a)). Figure 4.12(a) – Figure 4.14(a) depict that

this trend is particularly evident when the local map size (64 KB, 128 KB) is much

smaller than the global map size (3.81 MB, 7.63 MB, 38.15 MB). This trend is also

evident as the quantity of local map memories is varied to five or fifteen.

90 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

Smaller local map sizes (64 KB, 128 KB) tend to produce lower planning times than

larger local map sizes if the global map is at least 3.81 MB and cannot be entirely

stored in local memory (Figure 4.12(a) – Figure 4.14(a)). This suggests that using

smaller local map sizes can be more efficient if the entire global map cannot be stored

locally (i.e. when the memory available for local map storage is smaller than the

global map size). This validates the approach.

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

0.5

1

1.5

2

2.5
Planning Time

Ti
m

e
(s

ec
)

Local Map Size

5%
10%
15%
20%
25%

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

100

200

300

400

500

600

700
Map Data Received

D
at

a
(K

B
)

Local Map Size

5%
10%
15%
20%
25%

(a) (b)

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

50

100

150

200

250

300

350

400
Path Length

N
od

es

Local Map Size

5%
10%
15%
20%
25%

 (c)

Figure 4.10: Results for planning in a 390 KB global map with 1 local map
memory using cost method 1.

As the global map size is increased, smaller local map sizes (64 KB, 128 KB) receive

a lower volume of map data than larger local map sizes if the global map is at least

3.81 MB and cannot be entirely stored in local memory (Figure 4.12(b) – Figure

4.14(b)). This indicates that a reduced search space may have contributed towards

planning time reduction. The reduced search space may affect the obstacle clearance

quality of path planning, particularly in higher obstacle density (20%, 25%)

environments.

Memory Constrained Path Planning

91

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

1

2

3

4

5

6

7

8

9
Planning Time

Ti
m

e
(s

ec
)

Local Map Size

5%
10%
15%
20%
25%

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

500

1000

1500
Map Data Received

D
at

a
(K

B
)

Local Map Size

5%
10%
15%
20%
25%

(a) (b)

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

100

200

300

400

500

600
Path Length

N
od

es

Local Map Size

5%
10%
15%
20%
25%

 (c)

Figure 4.11: Results for planning in a 781 KB global map with 1 local map
memory using cost method 1.

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

10

20

30

40

50

60

70

80

90

100
Planning Time

Ti
m

e
(s

ec
)

Local Map Size

5%
10%
15%
20%
25%

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

1000

2000

3000

4000

5000

6000

7000

8000
Map Data Received

D
at

a
(K

B
)

Local Map Size

5%
10%
15%
20%
25%

(a) (b)

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

200

400

600

800

1000

1200

1400
Path Length

N
od

es

Local Map Size

5%
10%
15%
20%
25%

 (c)

Figure 4.12: Results for planning in a 3.81 MB global map with 1 local map
memory using cost method 1.

92 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

50

100

150

200

250
Planning Time

Ti
m

e
(s

ec
)

Local Map Size

5%
10%
15%
20%
25%

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

2000

4000

6000

8000

10000

12000

14000
Map Data Received

D
at

a
(K

B
)

Local Map Size

5%
10%
15%
20%
25%

(a) (b)

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

200

400

600

800

1000

1200

1400

1600

1800
Path Length

N
od

es

Local Map Size

5%
10%
15%
20%
25%

 (c)

Figure 4.13: Results for planning in a 7.63 MB global map with 1 local map
memory using cost method 1.

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

200

400

600

800

1000

1200
Planning Time

Ti
m

e
(s

ec
)

Local Map Size

5%
10%
15%
20%
25%

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

1

2

3

4

5

6

7

8
x 104 Map Data Received

D
at

a
(K

B
)

Local Map Size

5%
10%
15%
20%
25%

(a) (b)

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Path Length

N
od

es

Local Map Size

5%
10%
15%
20%
25%

 (c)

Figure 4.14: Results for planning in a 38.15 MB global map with 1 local map
memory using cost method 1.

Memory Constrained Path Planning

93

While Figure 4.11(c) – Figure 4.14(c) show shorter memory constrained paths at

higher obstacle densities when smaller local map sizes are employed, this does not

necessarily indicate superiority. On the other hand, a reduction in the volume of map

data received can minimise communication latency (which is excluded in the planning

time graphs). The trends present in the one local map memory experiments are also

evident if the quantity of local map memories is changed to five or fifteen.

All of the trends discussed above for cost method 1 are also present when the total

cost of travel through a local map (f(x,x’)) is employed for cost calculations in the

higher-level A* algorithm (cost method 2).

4.6.2 Comparison of Cost Method 1 and Cost Method 2

The goal of the memory constrained planning method is to be efficient when the

global map size is much larger than the local map size. Hence, performance in the

larger global maps is statistically compared for both cost methods (Figure 4.15 –

Figure 4.17). Cost method 2 data is divided by cost method 1 data to calculate

planning time, map data received and path length ratios. For all data types, a ratio less

than unity indicates superiority of cost method 2. A statistically significant

comparison has a p-value threshold of 0.05 (5%).

Figure 4.15(a),(d), Figure 4.16(a),(d) and Figure 4.17(a),(d) reveal that planning time

increases by 16% – 65%, 25% – 160%, and 40% – 280% respectively when cost

method 2 is employed for smaller local map sizes (64 KB, 128 KB, 256 KB). There is

also a statistically significant increase in planning time when 512 KB and 1 MB local

maps are employed in 38.15 MB global worlds (Figure 4.17(a),(d)). The volume of

map data received for smaller local map sizes (64 KB, 128 KB, 256 KB, 512 KB)

increases by 5% – 90%, 20% – 70% and 40% – 360% when cost method 2 is

employed in 3.81 MB (Figure 4.15(b),(d)), 7.63 MB (Figure 4.16(b),(d)) and 38.15

MB (Figure 4.17(b),(d)) global worlds respectively. This suggests that the second cost

method has an increased search space when smaller local map sizes are used. It also

means that the second cost method has greater data communication delay costs if the

global map size is larger than the local map size.

94 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Planning Time Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Map Data Received Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

 (a) (b)

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Path Length Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

(c)

64 KB 128 KB 256 KB 512 KB 1 MB 2 MB 4 MB 8 MB
5% < 0.01 < 0.01 < 0.01 0.10 < 0.01 0.42 0.33 0.41

10% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01 0.20 0.47
15% < 0.01 < 0.01 < 0.01 < 0.01 0.35 0.12 0.10 0.33
20% < 0.01 < 0.01 < 0.01 < 0.01 0.47 0.43 0.43 0.26
25% < 0.01 < 0.01 < 0.01 < 0.01 0.50 0.30 0.33 0.35
5% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.50 < 0.01

10% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
15% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
20% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.50 < 0.01
25% < 0.01 < 0.01 < 0.01 < 0.01 0.04 < 0.01 < 0.01 < 0.01
5% 0.01 0.20 0.18 0.50 0.18 0.50 0.50 0.50

10% 0.02 < 0.01 0.02 0.15 0.09 0.06 0.50 0.50
15% < 0.01 0.34 0.44 0.29 0.34 0.42 0.50 0.50
20% 0.06 0.28 0.28 0.12 0.36 0.50 0.50 0.50
25% 0.42 0.18 0.50 0.42 0.50 0.09 0.50 0.50

Pl
an

ni
ng

 T
im

e
(a

)

M
ap

 D
at

a
R

ec
ei

ve
d

(b
)

Pa
th

 L
en

gt
h

(c
)

p-values (two decimal places, < 0.05 shaded blue)
Local Map SizeObstacle

Density

(d)

Figure 4.15: Comparison of the two cost methods in 3.81 MB worlds.

Memory Constrained Path Planning

95

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB
0

0.5

1

1.5

2

2.5

3
Planning Time Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB
0

0.5

1

1.5

2

2.5

3
Map Data Received Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

 (a) (b)

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Path Length Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

(c)

64 KB 128 KB 256 KB 512 KB 1 MB 2 MB 4 MB 8 MB
5% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.13 0.06 0.31

10% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.09 0.50 0.48
15% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.40 0.45 0.42
20% < 0.01 < 0.01 < 0.01 < 0.01 0.11 0.50 0.49 0.43
25% < 0.01 < 0.01 < 0.01 < 0.01 0.48 0.43 0.31 0.36

5% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.50 0.07 < 0.01
10% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.07 0.50 < 0.01
15% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.06 0.05 < 0.01
20% < 0.01 < 0.01 < 0.01 < 0.01 0.10 0.06 0.50 < 0.01
25% < 0.01 < 0.01 < 0.01 < 0.01 0.50 0.07 0.08 < 0.01
5% < 0.01 0.02 0.02 0.19 0.37 0.50 0.40 0.50

10% < 0.01 0.03 0.10 0.28 0.32 0.40 0.50 0.50
15% 0.50 0.50 0.44 0.20 0.05 0.40 0.50 0.50
20% 0.13 0.05 0.09 0.35 0.18 0.40 0.27 0.50
25% 0.43 0.32 0.42 0.41 0.44 0.50 0.42 0.50

M
ap

 D
at

a
R

ec
ei

ve
d

(b
)

Pa
th

 L
en

gt
h

(c
)

p-values (two decimal places, < 0.05 shaded blue)

Obstacle
Density

Local Map Size

Pl
an

ni
ng

 T
im

e
(a

)

(d)

Figure 4.16: Comparison of the two cost methods in 7.63 MB worlds.

96 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB
0

0.5

1

1.5

2

2.5

3

3.5

4
Planning Time Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Map Data Received Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

 (a) (b)

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Path Length Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

(c)

64 KB 128 KB 256 KB 512 KB 1 MB 2 MB 4 MB 8 MB
5% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.03 < 0.01

10% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
15% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
20% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.23
25% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.20 0.29 < 0.01
5% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

10% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
15% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
20% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
25% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.18 < 0.01
5% 0.22 0.07 0.19 0.34 0.05 0.01 0.02 < 0.01

10% 0.02 < 0.01 0.34 0.36 0.43 0.32 0.05 0.40
15% 0.08 0.07 0.28 0.02 0.15 0.17 0.19 0.11
20% < 0.01 < 0.01 0.14 0.33 0.50 0.34 0.16 0.50
25% < 0.01 0.35 0.24 0.34 < 0.01 0.39 0.35 0.34

M
ap

 D
at

a
R

ec
ei

ve
d

(b
)

Pa
th

 L
en

gt
h

(c
)

p-values (two decimal places, < 0.05 shaded blue)

Obstacle
Density

Local Map Size

Pl
an

ni
ng

 T
im

e
(a

)

(d)

Figure 4.17: Comparison of the two cost methods in 38.15 MB worlds.

There is no statistically significant difference in the path lengths of the two cost

methods for majority of the tested configurations (Figure 4.15(c),(d), Figure

Memory Constrained Path Planning

97

4.16(c),(d) and Figure 4.17(c),(d)). This indicates that cost method 1 is preferred if

communication delay and planning time is to be minimised.

4.6.3 Comparison of Overall Execution Time in the Three Largest
Global Worlds

Figure 4.18 – Figure 4.20 shows a comparison of the ratios of memory constrained

and non-memory constrained overall planning times (inclusive of data communication

delay) for the three largest global map sizes. Cost method 1 is employed in these

experiments. Again, the larger global map sizes are selected as they demonstrate the

purpose of memory constrained planning more appropriately. Data communication

delay consists of a number of factors such as processing delay, queuing delay,

transmission delay and propagation delay [5]. While processing delay and

propagation delay are generally negligible, queuing delay can be ignored if the traffic

intensity [5] is minimal.

A 54 MBit/sec 802.11g wireless communication is arbitrarily assumed to exist on the

high powered manager robot for map data transmission [6]. The low powered worker

robots are assumed to have 802.11b devices (maximum transmission rate of

11 Mbit/sec) as these are now low cost and easily available. However, as the worker

robots have limited processing capabilities and may encounter periods of inability to

communicate with the managers, or face other errors, it is assumed that the effective

data transmission rate is halved to approximately 5.5 MBit/sec.

Assuming there are only few mother nodes (approximately 2–3) for memory

constrained planning, queuing delay is expected to be negligible if the local map size

is small (64 KB to 256 KB). Moreover, Figure 4.9(a) – Figure 4.14(a) indicate that

using smaller local map sizes reduces planning time if the entire global map cannot be

stored locally. If larger local map sizes (512 KB to 8 MB) are employed, queuing

delay will become significant thus further increasing the overall planning time.

Hence, data communication delay is represented solely as transmission delay in

Figure 4.18 – Figure 4.20 where only smaller local map sizes (64 KB to 256 KB) are

analysed. The ratio of memory constrained and non-memory constrained overall

planning time (Figure 4.18 – Figure 4.20) is calculated by dividing memory

constrained data by non-memory constrained data. Superiority is denoted by a ratio

98 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

less than unity. A statistically significant comparison has a p-value less than 0.05

(5%).

64KB 128KB 256KB
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Overall Execution Time Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

64KB 128KB 256KB
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Overall Execution Time Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

 (a) (b)

64KB 128KB 256KB
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Overall Execution Time Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

(c)

64 KB 128 KB 256 KB 64 KB 128 KB 256 KB 64 KB 128 KB 256 KB
5% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

10% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
15% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
20% 0.02 0.40 0.04 0.01 0.50 0.08 < 0.01 0.29 0.07
25% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

p-values (two decimal places, < 0.05 shaded blue)

Obstacle
Density

1 Local Map Memory (a) 5 Local Map Memories (b) 15 Local Map Memories (c)

(d)

Figure 4.18: Overall execution time comparison in 3.81 MB global worlds
employing one (a), five (b) and fifteen (c) local map memories.

In 3.81 MB worlds (Figure 4.18), memory constrained path planning yields inferior

performance at lower obstacle densities (≤ 15%). At higher obstacle densities

(≥ 20%), memory constrained planning is generally superior or comparable to non-

memory constrained planning (Figure 4.18). The use of exit points in memory

constrained planning is likely to reduce its search space at higher obstacle densities

(≥ 20%) resulting in superior or comparable performance. On the other hand,

Memory Constrained Path Planning

99

inferiority at lower obstacle densities (≤ 15%) can be attributed to a larger overall

search space in comparison to non-memory constrained planning. Similar results are

obtained in 7.63 MB worlds (Figure 4.19). The key difference is that the ratio of

memory constrained to non-memory constrained data is lower.

64KB 128KB 256KB
0

0.5

1

1.5

2

2.5

3
Overall Execution Time Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

64KB 128KB 256KB
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Overall Execution Time Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

 (a) (b)

64KB 128KB 256KB
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Overall Execution Time Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

(c)

64 KB 128 KB 256 KB 64 KB 128 KB 256 KB 64 KB 128 KB 256 KB
5% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.05 < 0.01 < 0.01

10% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01 < 0.01 < 0.01
15% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
20% < 0.01 < 0.01 0.06 < 0.01 < 0.01 0.03 < 0.01 < 0.01 < 0.01
25% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

p-values (two decimal places, < 0.05 shaded blue)

Obstacle
Density

1 Local Map Memory (a) 5 Local Map Memories (b) 15 Local Map Memories (c)

(d)

Figure 4.19: Overall execution time comparison in 7.63 MB global worlds
employing one (a), five (b) and fifteen (c) local map memories.

The memory constrained algorithm achieves superior or comparable execution times

to the non-memory constrained method in 38.15 MB worlds for 64 KB and 128 KB

local map sizes (Figure 4.20). For a local map size of 256 KB, the memory

constrained algorithm is inferior at lower obstacle densities (≤ 15%). This inferiority

100 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

is likely to be due to the overall search space for memory constrained planning being

greater than the non-memory constrained search space. On the other hand, the use of

exit points in memory constrained planning is likely to reduce its search space at

higher obstacle densities (≥ 20%) resulting in superior performance.

64KB 128KB 256KB
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Overall Execution Time Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

64KB 128KB 256KB

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Overall Execution Time Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

 (a) (b)

64KB 128KB 256KB
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Overall Execution Time Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

(c)

64 KB 128 KB 256 KB 64 KB 128 KB 256 KB 64 KB 128 KB 256 KB
5% 0.02 0.13 < 0.01 < 0.01 0.25 < 0.01 < 0.01 0.47 < 0.01

10% < 0.01 0.28 < 0.01 < 0.01 0.15 0.01 < 0.01 0.04 0.01
15% < 0.01 < 0.01 0.45 < 0.01 < 0.01 0.50 < 0.01 < 0.01 0.43
20% 0.02 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
25% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

p-values (two decimal places, < 0.05 shaded blue)

Obstacle
Density

1 Local Map Memory (a) 5 Local Map Memories (b) 15 Local Map Memories (c)

(d)

Figure 4.20: Overall execution time comparison in 38.15 MB global worlds
employing one (a), five (b) and fifteen (c) local map memories.

From the analysis of Figure 4.18 – Figure 4.20, memory constrained path planning is

capable of achieving superior or comparable execution times to non-memory

constrained planning if the global map size much larger than the local map size.

Memory Constrained Path Planning

101

4.6.4 Comparison of Overall Execution Time Using the Three
Smallest Local Map Sizes

1 x 128 1 x 256 5 x 128 5 x 256 15 x 128 15 x 256
0

0.5

1

1.5

2

2.5
Overall Execution Time Ratio

R
at

io

Quantity x Local Map Size (KB)

5%
10%
15%
20%
25%

1 x 128 1 x 256 5 x 128 5 x 256 15 x 128 15 x 256
0

0.5

1

1.5

2

2.5
Overall Execution Time Ratio

R
at

io

Quantity x Local Map Size (KB)

5%
10%
15%
20%
25%

 (a) (b)

1 x 128 1 x 256 5 x 128 5 x 256 15 x 128 15 x 256
0

0.5

1

1.5

2

2.5

3
Overall Execution Time Ratio

R
at

io

Quantity x Local Map Size (KB)

5%
10%
15%
20%
25%

(c)

1×128 1×256 5×128 5×256 15×128 15×256
5% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

10% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
15% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
20% < 0.01 < 0.01 < 0.01 < 0.01 0.01 < 0.01
25% 0.02 < 0.01 0.02 < 0.01 0.02 < 0.01
5% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

10% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
15% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
20% 0.03 < 0.01 0.03 < 0.01 0.07 0.07
25% 0.28 < 0.01 0.29 < 0.01 0.30 < 0.01
5% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

10% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
15% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

20% < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

25% 0.09 < 0.01 0.10 < 0.01 0.07 < 0.0138
.1

5
M

B
 G

lo
ba

l
W

or
ld

s
(c

)

Quantity × Local Map Size (KB)
p-values (two decimal places, < 0.05 shaded blue)

Obstacle
Density

3.
81

 M
B

 G
lo

ba
l

W
or

ld
s

(a
)

7.
63

 M
B

 G
lo

ba
l

W
or

ld
s

(b
)

(d)

Figure 4.21: Overall execution time of memory constrained planning relative to
equivalent quantities of 64 KB local maps in 3.81 MB (a), 7.63 MB (b) and

38.15 MB (c) global worlds.

102 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

Figure 4.21 illustrates the overall execution time of memory constrained planning

relative to equivalent quantities of 64 KB local maps for the three largest global map

sizes (3.81 MB, 7.63 MB and 38.15 MB). In the comparison, the larger local map

(128 KB and 256 KB) data are divided by the 64 KB local map data. Superiority of

the 64 KB data is denoted by a ratio greater than unity. A statistically significant

comparison has a p-value threshold of 0.05 (5%). It is clearly evident that the 64 KB

local map size achieves a superior overall execution time regardless of global map

size or local map quantity. Hence, a smaller local map size reduces the overall

execution time of memory constrained path planning.

4.6.5 Comparison of Overall Execution Time Using Various Local
Map Quantities

A comparison of the ratios of overall memory constrained planning times (inclusive

of communication latency) in 38.15 MB worlds as the quantity of local map memories

is varied is shown in Figure 4.22. The largest global map size is selected since it

demonstrates the purpose of memory constrained planning most appropriately.

In all comparisons, the ratio is computed by dividing the larger local map quantity

data by the smaller local map quantity data. Superiority is denoted by a ratio less than

unity. A statistically significant comparison has a p-value threshold of 0.05 (5%).

Figure 4.22 (a),(d) reveals no statistically significant difference in overall planning

time when five local map memories are employed instead of one. There is also no

statistically significant difference in overall planning time when fifteen local map

memories are employed instead of five (Figure 4.22 (b),(d)). When fifteen local map

memories are employed instead of one a statistically significant difference exists at

5% obstacle density when 64 KB local maps are employed (Figure 4.22 (c),(d)).

Figure 4.22(d) illustrates that as the local map quantity is increased, the overall

execution time ratios and corresponding p-values are lowered for 64 KB local map

sizes. This is a desirable result as it indicates that maintaining multiple smaller sized

local map memories potentially improves memory constrained planning time. The

potential improvement is due to a lower volume of map data being transmitted when

multiple local map memories are employed.

Memory Constrained Path Planning

103

64KB 128KB 256KB
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Overall Execution Time Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

64KB 128KB 256KB

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Overall Execution Time Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

 (a) (b)

64KB 128KB 256KB
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Overall Execution Time Ratio

R
at

io

Local Map Size

5%
10%
15%
20%
25%

(c)

64 KB 128 KB 256 KB 64 KB 128 KB 256 KB 64 KB 128 KB 256 KB
5% 0.30 0.32 0.33 0.13 0.28 0.30 0.04 0.15 0.45

10% 0.35 0.33 0.35 0.14 0.25 0.43 0.07 0.14 0.43
15% 0.45 0.47 0.44 0.20 0.26 0.44 0.17 0.24 0.38
20% 0.46 0.47 0.48 0.36 0.46 0.30 0.33 0.44 0.32
25% 0.45 0.44 0.43 0.42 0.50 0.37 0.38 0.44 0.43

p-values (two decimal places, < 0.05 shaded blue)

Obstacle
Density

1 & 5 Local Map Memories (a) 5 & 15 Local Map Memories (b) 1 & 15 Local Map Memories (c)

(d)

Figure 4.22: Overall execution time comparison of memory constrained planning

in 38.15 MB global worlds with 1 and 5 local map memories (a), 5 and 15 local
map memories (b), and 1 and 15 local map memories (c).

4.6.6 Sample Paths

Figure 4.23 and Figure 4.24 illustrate sample paths obtained when a 64 KB local map

is employed in memory constrained path planning. Note that these figures have

varying magnification due to differing global map sizes. Generally, the memory

constrained paths are similar for either cost method. Figure 4.24 has a closely

matching path for both cost methods when memory constrained planning is employed.

104 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

The increase in volume of map data received when cost method 2 is employed (Figure

4.15(b),(d), Figure 4.16(b),(d) and Figure 4.17(b),(d)) does not justify its use if

minimising communication delay is important.

Figure 4.23: Path comparison in a 5% obstacle density 38.15 MB global world

employing 64 KB local maps.

Non-memory constrained
Memory constrained cost method 1
Memory constrained cost method 2

Memory Constrained Path Planning

105

Figure 4.24: Path comparison in a 15% obstacle density 7.63 MB global world

employing 64 KB local maps.

4.7 Alternative Techniques

The main purpose of the work presented in this chapter has been to devise a strategy

that allows limited memory robots to plan paths in large environments. A regular grid

map representation is utilised as an example because of its simplicity and usability in

a range of environments. Additionally, it is possible to maintain a single grid map that

can be utilised by multiple heterogeneous robots. In section 4.6, the aim is to compare

memory constrained and non-memory constrained path planning based on adaptations

of the A* algorithm. Planning time and the volume of data transmitted (which can be

translated to a component of the overall planning time) are the main performance

metrics.

Non-memory constrained
Memory constrained cost method 1
Memory constrained cost method 2

106 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

In this chapter, the heuristic cost dn(x,xgoal,x’) (4.7) is represented by Manhattan

distance. Alternatively, this could be represented using Euclidean distance. Manhattan

distance is less computationally complex than Euclidean as is does not rely on square

and square root calculations. A disadvantage of using Manhattan distance is visible in

Figure 4.23, where the non-memory constrained path approaches the bottom of the

global map and then travels right to reach the goal locations. A closer path to the

diagonal of the global map can be achieved using Euclidean distance. This

disadvantage of using Manhattan distance is less visible in the memory constrained

methods due to division of the global environment. Regardless of using Manhattan or

Euclidean distance, the ratios of memory constrained planning to non-memory

constrained planning times are expected to be similar.

The use of the developed two-tiered approach is not limited to regular grid map

environments or the A* search algorithm. Other node based map representations such

as topological and quadtree maps [7] do not have fixed memory requirements (albeit

consume less memory than a grid map in equivalent environments). They may also

become large when compared with the available memory on a limited robot and can

utilise a method similar to that presented in this chapter. By using equivalent

replacements to the A* algorithm cost functions, alternative path planning algorithms

such as Dijkstra’s algorithm [8], wave propagation (such as NF1) [9], or spreading

activation [10] can be used with the grid map node based representation employed in

this chapter.

Dijkstra’s algorithm has a greater search space than A* algorithm. Hence, the

planning time of the A* algorithm will generally be less than Dijkstra’s algorithm.

However, Dijkstra’s algorithm can compute the optimal path from all grid elements to

the goal in a single run. This enables it to find the optimal path to all exit points in a

single iteration although utilising more memory than the A* algorithm for storing this

information. The ratios of memory constrained planning to non-memory constrained

planning times are expected to be similar to or better than an A* version. This is due

to the memory constrained and non-memory constrained versions of Dijkstra’s

algorithm having similar search spaces. The path lengths of A* and Dijkstra’s

algorithms are expected to be the same with the selection of appropriate (monotone)

heuristics.

Memory Constrained Path Planning

107

Similar to Dijkstra’s algorithm, wave propagation and spreading activation methods

can find the optimal path to all exit points in a single iteration. These methods

generally have a greater search space than the A* algorithm resulting in greater

planning time. It is expected that the ratios of memory constrained planning to non-

memory constrained planning for these methods will be similar to or less than the

results presented in this chapter. This is due to the memory constrained and non-

memory constrained versions of the algorithms having similar search spaces and the

computing of paths to exit points in a single iteration. Similar path lengths to the A*

algorithm are expected using the wave propagation and spreading activation methods.

The D* algorithm [11] is a variant of the A* algorithm. It computes the optimal path

from every location to the goal. Hence, the D* algorithm converts the A* algorithm

from a single-source shortest path algorithm into an all-paths algorithm. The D*

algorithm is designed for continuous replanning. However, this is computationally

expensive and time consuming. It is not practical for robots with processing and

memory limitations. It is also impractical to use the D* algorithm with the two-tiered

strategy presented in this chapter since local memories are continuously overwritten

with new data from other parts of the global world.

None of the methods reviewed in section 2.5 have addressed the problem of global

path planning utilising limited memory robots that cannot store an entire global map

locally (on the robot). These methods cannot be used to plan paths on limited memory

robots unlike the method presented in this chapter which takes advantage of

hierarchical heterogeneous multi-robot systems. The general approach taken in

robotics has been to use a more computationally powerful robot when the need arises.

However, this may not be ideal in a heterogeneous system that comprises many

limited robots.

An alternative to the decentralised path planning method proposed in this chapter is to

rely on a computationally powerful robot (manager) for centralised planning. Such a

technique will outperform the memory constrained method developed in this chapter.

However, as highlighted in section 4.1, it may not be possible for the computationally

powerful robot to perform global path planning and maintain full communication with

all limited memory robots. An additional computationally powerful robot dedicated to

108 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

path planning could be employed. However, this costs more money and this additional

robot could malfunction. In such scenarios, the memory constrained technique

developed in this chapter can be utilised to enable limited memory robots to plan

global paths.

4.8 Summary

This chapter has presented and evaluated a novel method for path planning that

utilises memory constrained robots in hierarchical heterogeneous multi-robot systems.

Rather than relying on a single computationally powerful robot, global path planning

can be decentralised by allowing memory restricted robots to utilise the memory of a

computationally powerful robot. Since the global map cannot be completely stored in

a memory constrained robot, it is divided into smaller local maps based on the

memory constrained robot’s memory capacity. The local maps are sequentially

searched using a two-tiered A* algorithm that executes entirely on the memory

constrained robot. However, if a limited memory robot is capable of storing the entire

global map locally, the path planner becomes identical to a non-memory constrained

approach. This decentralised global path planning approach relies on communication.

Thus it incurs data transmission delays and has a finite range of operation.

Utilising 802.11g wireless communication devices for managers and 802.11b devices

for workers, memory constrained path planning is capable of achieving superior or

comparable execution times to non-memory constrained planning if the local map size

is much smaller than the global map size. Employing 64 KB or 128 KB local maps in

a 38.15 MB global map produced superior or comparable execution times to non-

memory constrained planning. At a resolution of 10 cm, a 38.15 MB grid map

corresponds to an area of approximately 225 m × 225 m. This would require

additional communication relay nodes or the computationally powerful robot storing

the global map to be mobile and relocate if path replanning is needed. By utilising

802.11n devices, communication range and latency can be improved.

 Regardless of the global map size, memory constrained path planning time can be

reduced if smaller sized local maps are utilised. This can be attributed to a reduction

in search space for planning under the guidance of exit points. Employing multiple

Memory Constrained Path Planning

109

smaller sized local map memories potentially improves memory constrained planning.

This means that a memory constrained robot can segment its available memory into

smaller portions to facilitate improved planning time.

At higher obstacle densities (≥ 20%), memory constrained path planning yields

significantly lower execution times than non-memory constrained planning. This

indicates a reduced search space and can affect obstacle clearance. However, path

length is not adversely affected at these higher obstacle densities. Most real

environments generally have overall obstacle densities less than 5% depending on

obstacle arrangement. Hence, smaller regions of higher obstacle densities may be

confined to a few local maps reducing obstacle clearance issues in memory

constrained planning. If obstacles are sufficiently large or the obstacle density is

sufficiently high to block some local map boundaries, the back tracking algorithm can

find a path through alternative local maps as long as exit points exist in them.

Task Allocation and Feedback Coordination Mechanism

111

5 Task Allocation and Feedback
Coordination Mechanism

5.1 Overview

In some multi-robot applications, predefined task allocation and coordination can fail

to function adequately. This failure is attributed to the inability to completely and

accurately predict a robot’s interactions with the environment before task execution.

Robots with limited capabilities (such as restricted processing, sensing and actuation

abilities) can also fail to fulfil the requirements of a group task if they do not use their

resources effectively. In some applications the system may also want to minimise

losses by restricting the quantity of robots committed towards a group task if multiple

and/or hazardous group tasks are present.

This chapter presents a task allocation and coordination approach for limited

capability mobile robots that can address the shortfalls of predefined task allocation

and coordination. To illustrate this approach, an exploration task (fully defined in

Chapter 6) is used as a specific example. The algorithm proposed is generic and not

limited purely to exploration, but such an example serves to demonstrate how this

algorithm functions on a real task. An overview of the proposed system is presented

in Figure 5.1.

A global task is specified by a human user in terms of the resources required

(section 5.2). These resource requirements are represented using vector of task

requirements (VOTR) data. The robots available for task assignment are specified

using vector of merit (VOM) data that encodes their capabilities (section 5.3). Fuzzy

Inference Systems (FISs) are employed to simplify detailed robot capability

information for comparison with the human user’s simplified task specification. An

example of global task and robot specifications for a multi-robot exploration task is

presented in section 5.4.

A team of robots comprising managers and workers is selected during an initial task

allocation (or task devolution) process (section 5.5). The managers generally comprise

112 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

the most computationally powerful robots while the workers usually have limited

computing abilities. A hierarchy can exist within the workers depending on the

specified global task. For example, in a multi-robot exploration and mapping task

(chapter 6) the worker robots can consist of planners and explorers (Figure 6.2).

Numerical vector of task suitability (VOTS) data are employed by the task allocation

algorithm to represent a robot’s task eligibility. VOTS data are determined from a

robot’s VOM data and a task’s VOTR data.

After initial task allocation a feedback coordination mechanism executes periodically

on the manager robot(s) (section 5.6). This feedback mechanism monitors the

individual and group performance of the worker robots. If the performance of a

worker robot is unsatisfactory, a task reallocation algorithm adjusts the task-robot

combinations of the team. Three cases of unsatisfactory robot performance that can be

detected by the feedback mechanism include: complete failure, partial failure, and

poor performance.

Task Specification

• VOTR data
• manager task requirements
• worker task requirements

Task Devolution

• select managers
• select workers

Task Management

• managers
• monitor performance
• maintain global data

Task Execution

• workers
• perform assigned tasks

Task reassignment

performance
feedback

Robot Specification

• VOM data
• Fuzzy (FIS) simplified

capability data

Figure 5.1: Overview of task allocation and coordination mechanism.

Task Allocation and Feedback Coordination Mechanism

113

5.2 Task Specification

A global task is partially or fully specified by a human user via a remote base station

(computer). This global task consists of a set of n tasks that are represented by a

number of criteria specifying the resources required and conditions for that particular

task. Figure 5.2 illustrates the criteria. A task can be partially specified by a basic user

with a minimal set of criteria (marked with # in Figure 5.2). In such a case, default

values are employed for all other criteria. On the other hand, an advanced user can

specify all the task criteria of Figure 5.2 if necessary.

Two categories of tasks are specified: n1 management tasks and n2 worker tasks.

Management and worker tasks are assigned to appropriate task manager and task

worker robots respectively. Each task type can either be one-off or continuous.

Task

Sensing Resource Capability #
Communication Resource Capability #
Processing Resource Capability #
Type

ID

Name #

Acting Resource Capability #

Group Task Name *

Robot Quantity Criteria * #

Concurrent Tasks *

Initial Resource Utilisation *

Resource Utilisation Mapping *

Feedback Coordination Weights *

VOTS Summation Weights

Figure 5.2: Summary of task specification criteria.

There are four divisions of resources: processing, communication, sensing, and

actuation. For each task ti, a minimum capability requirement score tiRCStype is

specified for each resource type. To simplify user input, these scores are specified as

‘low’, ‘medium’ or ‘high’ These values are converted to unit interval data where

‘low’ corresponds to zero, ‘medium’ corresponds to 0.35 and ‘high’ corresponds to

0.65, respectively. This enables comparison with the outputs of Fuzzy Inference

114 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

Systems (FISs) [136] employed to combine robot resource capability data (section

5.3).

Worker robot tasks employ additional criteria marked with an asterisk in Figure 5.2.

The robot quantity criteria is employed to determine initial, minimum, and maximum

number of worker robots required for the task. For example, in a multi-robot map-

building task (chapter 6) the robot quantity criteria can include exploration area size

and an explorer-planner task quantity ratio. A worker robot that executes a planner

task is called a planner. Similarly, a worker robot executing an explorer task is

denoted as an explorer. An FIS (section 5.4) can be employed to map the quantity

criteria data to appropriate planner and explorer task quantities. In an object pushing

task, robot quantity criteria data can include the mass and size of an object. Using an

FIS, this can be mapped to a desired size (or type) and number of robots to move the

object.

Tasks that can be simultaneously executed with the current task are listed in the

concurrent tasks field. For example, a robot executing a planner task can also execute

an explorer task simultaneously if it has sufficient resources. Since there can be

multiple identical tasks, there are m1 management and m2 worker tasks that are

unique.

All tasks require control algorithms that are executed by the robot’s processor. Thus,

resource utilisation is represented by the control algorithm execution rate toward each

physical resource type for a particular task. There are four resource utilisation

categories representative of each resource type: planning, communication, sensing,

and actuation. Hence, a resource utilisation mapping vector (generally not specified

or modified by a normal user) is employed to encode each task-robot combination

(5.1). A default initial resource utilisation is applied for each task-robot combination

if a human user has not specified it.

The resource utilisation of each category for each task-robot combination RUijcat is

denoted as:

 1 2, , , , ,ijcat ijcat ijcat ijcats ijcatzRU ru ru ru ru =    (5.1)

Task Allocation and Feedback Coordination Mechanism

115

where:

[], , ,cat plan comm sense act∈ ,

ijcatsru is the sth task dependent resource utilisation sub-category, and

z is the number of sub-categories for resource utilisation RUijcat.

For the map-building and exploration task of chapter 6, resource utilisation can be

represented by the following control algorithms:

• Planning (Processing): global (path planning between local environments

and local environment assignment) and local (path planning within local

environment and waypoint generation).

• Communication: no sub-categories required.

• Sensing: local map update and obstacle and pose detection.

• Actuation: motion control and motor commands.

Motion control is included in actuation since its output directs the movement of a

robot’s actuators. Note that motion control includes obstacle avoidance and path

tracking but not path planning. Resource utilisation for planning and communication

tasks can be expressed as either enabled or disabled since they are generally event-

based and non-periodic. On the other hand, sensing and actuation tasks tend to be

periodic and can be represented by execution rates.

As the global task progresses, a set of feedback coordination weights (section 5.6.1) is

employed to monitor the performance of each task-robot combination. If the

performance of a task-robot combination is unsatisfactory (section 5.6.1), the resource

utilisation parameters are adjusted to enable or disable certain task-robot

combinations. A set of rules RL (section 5.6.2) is employed by the feedback

coordination mechanism to adjust resource utilisation. The feedback coordination

weights and rules RL can be modified by advanced users if needed.

In this thesis, task reallocation (i.e. enabling or disabling task-robot combinations) is

considered equivalent to adjusting a robot’s resource utilisation. However, resource

utilisation adjustment can also optimise the current task that a robot executes. This

can be achieved if the task-resource utilisation mapping vector data are gradually

adjusted by the feedback coordination mechanism.

116 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

During task devolution (section 5.5), a set of VOTS summation weights VSWi for task

i is employed to convert VOTS data to a single number (5.2).

 , , ,i iproc icomm isense iactVSW vsw vsw vsw vsw =   (5.2)

5.3 Robot Specification Description

Similar to the global task specifications, the p robots available for the global task are

specified with a number of criteria that represent the resources they possess as shown

in Figure 5.3.

Robot

Acting Resource Capability

Sensing Resource Capability

Communication Resource Capability

Processing Resource Capability

Type

ID

Name

Figure 5.3: Brief description of robot specification criteria.

Numerical VOM data represent the capabilities of robots. For each robot rj the

capability of resource type RCtype is specified as:

 1 2, , , , ,type type type typek typeqRC rc rc rc rc =    (5.3)

where:

[], , ,type proc comm sense act∈ ,

typekrc is the kth sub-resource type, and

q is the number of sub-resources for resource RCtype.

The sub-resources for each resource type are:

• Processing: processor benchmark and memory.

• Communication: bandwidth and range.

• Sensing: quantity, range and distribution for each type of sensor present on

Task Allocation and Feedback Coordination Mechanism

117

the robot.

• Actuation: operation time, base size, base performance (speed and terrain

traversability) and manipulator.

At the task specification stage, a human user provides simplified inputs representing

the minimum processing, communication, sensing and actuation resource

requirements for a task. As mentioned, the minimum requirements are specified as

‘low’, ‘medium’, or ‘high’ for each resource type. An additional input is provided by

the user for the processing resource to select robots with microcontroller based

processing (‘mc’) or desktop PC equivalent based processing (‘pc’). Similarly, a robot

size input is also supplied by the user for the actuation resource if robots of a

particular size are required (‘small’, ‘medium’ or ‘large’). If robot size is irrelevant,

the default value of ‘any’ is employed.

Unlike the simplified human user inputs, the robots are specified with detailed

information. This information has a variety of data values and measurement units for

each resource and sub-resource type. In this chapter, the robot resource data values

are based on real robots such as those in the VUW fleet and other robot types in the

literature (chapter 2). A mechanism is required to combine the variety of robot

information into a single value for each resource type for comparison with the

simplified human user input. Fuzzy systems [136] are favoured as they employ fuzzy

sets and rules to permit graded (such as ‘low’, ‘medium’ and ‘high’) outputs. This

provides a convenient way to map the detailed robot specification to a simplified

form. Hence, FISs are employed to produce a simplified unit interval value for each

resource type.

MATLAB® 2007a Fuzzy Logic Toolbox has been used to develop the FISs. All FISs

described in this section are Mamdani type [136] (MATLAB’s default FIS type). Two

basic types of membership functions are used for simplicity. These are triangular

membership functions and trapezoidal membership functions. Other membership

function types such as Gaussian or sigma can be utilised. During initial experiments,

the triangular and trapezoidal functions were able to produce results similar to

Gaussian or sigma types.

118 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

A maximum of three membership functions are employed for all inputs and outputs to

reduce the complexity of the fuzzy systems. All membership function ranges, fuzzy

rules and their corresponding weights have been empirically tuned to select “good”

parameter values. The outputs of the various input combinations (produced using

membership functions, fuzzy rules and weights) have been viewed with MATLAB’s

surface viewer during empirical tuning. With three membership functions a

reasonably smooth transitioning surface has been generated for the various input

combinations. Incorporating more than three membership functions results in more

rules and combinations to consider. The surface generated with a five membership

function system was found to be similar to that of a three membership function system

during initial testing.

Triangular membership functions are specified with three parameters [tri1 tri2 tri3].

tri1 is the minimum data value at which the degree of membership is zero, tri2 is the

data value at which the degree of membership is unity and tri3 is the maximum data

value at which the degree of membership is zero. For example, in Figure 5.4 the

‘medium’ membership function (in green) is specified as [0.3 0.5 0.7]. The ‘low’

membership function is a half triangle in Figure 5.4. This is achieved by setting tri1 to

a value less than the global minimum data value (i.e. less than zero in Figure 5.4).

Similarly, a half triangle is obtained for the ‘high’ membership function by setting tri3

to a value greater than the global maximum data value (i.e. greater than one in Figure

5.4)

Trapezoidal membership functions are specified with four parameters [trap1 trap2

trap3 trap4]. trap1 and trap4 are similar to tri1 and tri3. They represent the minimum

and maximum data values at which the degree of membership is zero. trap2 is the

minimum data value at which the degree of membership is unity, while trap3 is the

maximum data value at which the degree of membership is unity. An example of

trapezoidal membership functions is illustrated in Figure 5.5. The ‘medium’

membership function (in green) is specified as [0.2 0.4 0.6 0.8]. A partial trapezoid is

obtained for the ‘low’ membership function by placing parameters trap1 and trap2

below the global minimum data value. Similarly, by setting trap3 and trap4 above the

global maximum data value, a partial trapezoid is obtained for the ‘high’ membership

function.

Task Allocation and Feedback Coordination Mechanism

119

The empirically selected three output membership functions employed by each FIS

are illustrated in Figure 5.4. The ranges for ‘low’, ‘medium’ and ‘high’ are [0 0.4],

[0.3 0.7] and [0.6 1], respectively. Consequently, the numerical threshold values for

‘low’, ‘medium’ and ‘high’ in the task specification are intuitively selected as 0, 0.35

and 0.65, respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

output1

D
eg

re
e

of
 m

em
be

rs
hi

p

low medium high

Figure 5.4: FIS output membership functions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

output2

D
eg

re
e

of
 m

em
be

rs
hi

p

low medium high

Figure 5.5: Trapezoidal membership functions.

Table 5.1 shows the parameter settings for the fuzzy inference functions of all

implemented FISs. MATLAB default settings are employed for the ‘And’, ‘Or’,

‘Implication’ and ‘Defuzzification’ functions. The ‘sum’ method has been selected as

the ‘Aggregation’ function to produce a gradual change in output as the inputs are

varied.

Table 5.1: Fuzzy inference function settings.

Function Method

And min
Or max

Implication min
Aggregation sum

Defuzzification centroid

The input details for each resource type’s FIS span a variety of robots and values are

consistent with other robot types in the literature.

120 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

5.3.1 Processing Fuzzy Inference System

Two FISs are employed to combine the processing resources. One is used to combine

the processing resources of a robot with microcontroller based processing. The other

is employed for combining desktop PC based equivalent processing resources.

Figure 5.6(a) illustrates the microcontroller (MC) processing FIS. It has two inputs:

MC processor benchmark and MC memory (Table 5.2). The Embedded

Microprocessor Benchmark Consortium (EMBC) (http://eembc.org) produces

performance benchmarks for embedded systems. It employs a CoreMark 1.0 test to

evaluate a processor’s benchmark. A selected range of microcontrollers have been

tested. It is possible to obtain additional benchmark data by testing a wider range of

microcontrollers.

Benchmark data can be scaled to the range of [0 10] where 10 corresponds to the most

powerful microcontroller. Generally, 8-bit microcontrollers fall into the ‘low’

benchmark category. The ‘medium’ and ‘high’ benchmark categories generally

comprise of 16-bit and 32-bit microcontrollers, respectively. For MC memory, the

‘low’, ‘medium’ and ‘high’ divisions have been arbitrarily selected. The upper limit

for the memory input has been determined based on powerful microcontrollers such

as the ARM7 which can typically support at least 16 MB external memory. Some of

the latest ARM7 microcontrollers (such as STR750XX) can support up to 64 MB of

flash memory.

Table 5.3 details the fuzzy rules employed to combine the MC processing benchmark

and MC memory inputs into the processing score RCSproc. So for example, if

Processor Benchmark is low then Processing Score will be low.

MC Benchmark

MC Memory

M
C

 P
ro

ce
ss

in
g

FI
S MC

Processing
Score

RCSproc

PC Benchmark

PC Memory

P
C

 P
ro

ce
ss

in
g

FI
S PC

Processing
Score

RCSproc

 (a) (b)

Figure 5.6: Diagrams of Microcontroller (MC) and PC Processing FISs.

Task Allocation and Feedback Coordination Mechanism

121

Table 5.2: Microcontroller processing FIS inputs.

Input 1 Name Processor Benchmark

Data Range [0 10]
Membership Function Details Name low medium high

Type triangular triangular triangular
Parameters [–4 0 4] [2.5 5 7.5] [6 10 14]

Input 2 Name Memory
Data Range (MB) [0 16]
Membership Function Details Name low medium high

Type triangular triangular triangular
Parameters [–6 0 6] [4 8 12] [10 16 32]

The desktop PC based equivalent processing FIS is illustrated in Figure 5.6(b). A PC

processor benchmark and memory (RAM) are input to the FIS (Table 5.4).

MATLAB’s ‘bench’ function data has been utilised to estimate a processor’s

benchmark. Several MATLAB users have posted benchmark test results of their

computers on MATLAB Central (http://www.mathworks.com/matlabcentral/).

Table 5.3: Rule table for MC and PC processing FISs.

Rule No. Processor

Benchmark
Memory Inputs

Connection
Processing
Score

Rule Weight

1 low – – low 1
2 medium – – medium 1
3 high – – high 1
4 – low – low 1
5 – medium – medium 1
6 – high – high 1

Table 5.4: Desktop PC based equivalent processing FIS inputs.

Input 1 Name Processor Benchmark

Data Range [0 5]
Membership Function Details Name low medium high

Type triangular triangular triangular
Parameters [–2 0 2] [1.25 2.5 3.75] [3 5 7]

Input 2 Name Memory
Data Range (GB) [0 2]
Membership Function Details Name low medium high

Type triangular triangular trapezoidal
Parameters [–0.6 0 0.6] [0.2 0.75 1.3] [0.9 1.75 2.08 2.72]

Based on these data, it is estimated that the processor benchmark of a computer

employed for mobile robot applications can vary from zero to five. ‘Low’ benchmark

processors generally include Pentium III, Atom, Celeron and Pentium M. Pentium M,

Pentium IV, Core Solo and Core Duo processors are likely to have a ‘medium’

benchmark. ‘High’ benchmark processors generally include Pentium D and Core 2

http://www.mathworks.com/matlabcentral/

122 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

Duo. For memory (RAM) the ‘low’ category generally includes 128 MB and 256 MB

RAM. The ‘medium’ classification can include 512 MB and 1 GB RAM. A computer

with at least 1.5 GB memory has a ‘high’ memory rating.

Similar to the MC processing FIS, Table 5.3 details the fuzzy rules used to determine

the processing score RCSproc for PC processing.

5.3.2 Communication Fuzzy Inference System

Figure 5.7 illustrates the communication FIS. It has two inputs: bandwidth and range

(Table 5.5). ‘High’ bandwidth communication is typically 802.11a or 802.11g

wireless communication (54 MBits/sec). ‘Medium’ bandwidth communication

corresponds to 802.11b wireless communication (11 MBits/sec) or enhanced versions

of the 802.11b capable of 22 MBits/sec data rates. ‘Low’ bandwidth communication

includes Bluetooth communication (1–3 MBits/sec) and infrared (IrDA)

communication (2.4 Kbits/sec to 4 MBits/sec).

Bandwidth

Range

C
om

m
un

ic
at

io
n

FI
S

Communication
Score

RCScomm

Figure 5.7: Diagram of Communication FIS.

Table 5.5: Communication FIS inputs.

Input 1 Name Bandwidth

Data Range (MBits/sec) [0 54]
Membership Function Details Name low medium high

Type triangular triangular triangular
Parameters [–8.5 0 8.5] [3.5 11 36] [16.5 54 75.6]

Input 2 Name Range
Data Range (m) [0 100]
Membership Function Details Name low medium high

Type triangular triangular triangular
Parameters [–40 0 40] [25 50 75] [60 100 140]

The communication range input corresponds to the typical maximum range at which

maximum bandwidth is possible. High range (~100 m) communication is possible

with 802.11b and 802.11g devices. Medium range communication of approximately

Task Allocation and Feedback Coordination Mechanism

123

30 m is possible with 802.11a. Bluetooth and infrared are low range communication

devices with typical ranges of 10 m and 1–2 m, respectively. Table 5.6 details the

fuzzy rules to combine communication bandwidth and range into a communication

score RCScomm.

Table 5.6: Communication FIS fuzzy rules.

Rule No. Bandwidth Range Inputs

Connection
Communication
Score

Rule Weight

1 low – – low 1
2 medium – – medium 1
3 high – – high 1
4 – low – low 1
5 – medium – medium 1
6 – high – high 1

5.3.3 Sensing Fuzzy Inference System

A general overview of an FIS that can be employed to combine the capabilities of

multiple sensors is illustrated in Figure 5.8. The inputs to the multi-sensor FIS are the

overall scores for each type of sensor present on the robot RCSsensek. Overall scores for

each sensor type are computed from individual FISs. Depending on the type of task,

the fuzzy rules and corresponding weights of the multi-sensor FIS can be empirically

selected. The output of the FIS is an overall multi-sensing score RCSsense representing

the combined sensing ability of the robot.

M
ul

ti-
se

ns
or

 F
IS

Overall Sensor
Score

RCSsense1

RCSsenses

RCSsense(s-1)

RCSsensek

RCSsense2
Overall Multi-
sensor Score

RCSsense

Figure 5.8: Diagram of Multi-sensor FIS.

This section only describes the FIS implementation for IR sensors as they are the

primary sensors employed by the map-building and exploration task presented in this

thesis. Thus, the multi-sensor FIS only gives weighting to the IR sensors. By altering

124 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

the data ranges and fuzzy rules, similar FISs can be produced for other types of

sensors such as ultrasonic and laser. Sensor distribution and range inputs can be

substituted with field of vision (FOV) and depth data for cameras.

A block diagram of the IR sensing FIS is shown in Figure 5.9. It consists of four FISs

that determine a sensor score, an obstacle avoidance score, a mapping/exploration

score and an overall sensor score, respectively. The inputs to the IR sensing FIS are

the IR sensing sub-capabilities of sensor distribution, sensor quantity and sensing

range. A sensor score FIS takes the sensor quantity and sensing range as input to

determine a sensor score for the IR sensors. Next, the sensor score and sensor

distribution data are input to two FISs that determine obstacle avoidance and

mapping/exploration scores. Finally, the obstacle avoidance and mapping/exploration

scores are combined in an overall sensor score FIS to calculate an overall score for the

IR sensors.

Table 5.7 and Table 5.8 detail the sensor score FIS inputs and fuzzy rules,

respectively. Sensor quantity data range and divisions have been selected based on

experience with robots in the VUW fleet. Commercially available IR sensors from

manufacturers such as Sharp presently have a maximum sensing (‘high’) range of

approximately three metres. Sharp also manufactures ‘medium’ range (1.5 m) and

‘low’ range (0.3–0.8 m) sensors.

IR Sensor FIS

Overall
Sensor
Score

RCSsensek
Range

M
ap

pi
ng

/
E

xp
lo

ra
tio

n
FI

S

S
en

so
r S

co
re

FI

S

O
bs

ta
cl

e
A

vo
id

an
ce

FI

S

Sensor
Score

O
ve

ra
ll

S
en

so
r S

co
re

FI

S

Obstacle
Avoidance

Score

Mapping/
Exploration

Score

Sensor
Distribution

Quantity

Figure 5.9: Block Diagram of IR Sensing FIS.

Task Allocation and Feedback Coordination Mechanism

125

Table 5.7: Sensor score FIS inputs.

Input 1 Name Sensor Quantity

Data Range [0 15]
Membership Function Details Name low medium high

Type Triangular triangular triangular
Parameters [–7.5 0 7.5] [0 7.5 15] [7.5 15 21]

Input 2 Name Range
Data Range (m) [0 3]
Membership Function Details Name low medium high

Type Triangular triangular triangular
Parameters [–1.5 0 1.5] [0 1.5 3] [1.5 3 4.5]

Table 5.8: Sensor score FIS fuzzy rules.

Rule No. Sensor Quantity Range Inputs

Connection
Sensor Score Rule Weight

1 low – – low 1
2 medium – – medium 1
3 high – – high 1
4 – low – low 1
5 – medium – medium 1
6 – high – high 1

The obstacle avoidance FIS sensor distribution and sensor score inputs are detailed in

Table 5.9. Sensor distribution is classified into three categories: ‘low’, ‘medium’ and

‘high’. The range of each category has been selected based on experience with robots

in the VUW fleet.

Table 5.9: Obstacle avoidance FIS inputs.

Input 1 Name Sensor Distribution

Data Range (degrees) [0 360]
Membership Function Details Name low medium high

Type triangular triangular triangular
Parameters [–90 0 90] [45 135 280] [180 360 540]

Input 2 Name Sensor Score
Data Range [0 1]
Membership Function Details Name low medium high

Type triangular triangular triangular
Parameters [–0.5 0 0.5] [0 0.5 1] [0.5 1 1.5]

Sensors covering less than a quarter of a robot’s circumference (< 45°) have ‘low’

distribution and will generally be poor (‘low’) at obstacle avoidance. If approximately

half (usually front half) of the robot’s circumference is covered (~180° distribution),

obstacle avoidance is usually good (‘high’). Full coverage of a robot’s perimeter

(~360° distribution) generally yields average (‘medium’) obstacle avoidance for IR

sensing. An average grading is given to full coverage since there is likely to be a less

126 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

dense sensor distribution than half coverage for an identical number of sensors. The

sensor score input incorporates sensor quantity information from the sensor score FIS.

Table 5.10 details the six fuzzy rules employed to calculate the obstacle avoidance

score.

Table 5.10: Obstacle avoidance FIS rules.

Rule No. Sensor

Distribution
Sensor Score Inputs

Connection
Obstacle
Avoidance Score

Rule Weight

1 low – – low 1
2 medium – – high 1
3 high – – medium 1
4 – low – low 1
5 – medium – medium 1
6 – high – high 1

Table 5.11 details the inputs to the mapping/exploration FIS. For simplicity, only two

classifications (‘low’ and ‘high’) are made for sensor distribution. Based on

experience with the VUW robot fleet, a robot should have at least one quarter of its

perimeter covered with sensors to qualify for membership into the ‘high’ category.

Table 5.12 lists the seven fuzzy rules employed by the mapping/exploration FIS. The

sensor distribution input biases the sensor score input data in the mapping/exploration

score calculation. A robot that does not have a ‘high’ sensor distribution will have a

reduced mapping/exploration score.

Table 5.11: Mapping/exploration FIS inputs.

Input 1 Name Sensor Distribution

Data Range (degrees) [0 360]
Membership Function Details Name low high

Type triangular triangular
Parameters [–270 0 270] [90 360 540]

Input 2 Name Sensor Score
Data Range [0 1]
Membership Function Details Name low medium high

Type triangular triangular triangular
Parameters [–0.5 0 0.5] [0 0.5 1] [0.5 1 1.5]

Table 5.12: Mapping/exploration FIS fuzzy rules.

Rule No. Sensor

Distribution
Sensor Score Inputs

Connection
Mapping/Exploration
Score

Rule
Weight

1 – low – low 1
2 high medium and medium 1
3 high high and high 1
4 not high – – low 1
5 not high medium and low 0.6
6 not high high and medium 0.25
7 high low and medium 0.1

Task Allocation and Feedback Coordination Mechanism

127

The obstacle avoidance and mapping/exploration scores are combined by the overall

sensor score FIS. Since the obstacle avoidance and mapping/exploration scores are

both outputs of other FISs, their membership functions are as illustrated in Figure 5.4

(p.119). Table 5.13 lists the seven fuzzy rules utilised to determine the overall sensor

score RCSsense1 for the IR sensors. Rule 1 has full weighting (unity) since poor (‘low’)

obstacle avoidance can adversely affect a robot’s movement. Rules 2–4 have low

weights (0.1) because the global task example in this thesis is multi-robot exploration

and map building. The overall multi-sensor score RCSsense is represented by the

individual sensor score RCSsense1 since the robots in this thesis employ only IR

sensors.

Table 5.13: Overall sensor score FIS fuzzy rules.

Rule No. Obstacle

Avoidance
Score

Mapping/
Exploration
Score

Inputs
Connection

Overall Sensor
Score

Rule Weight

1 low – – low 1
2 medium – – low 0.1
3 medium – – medium 0.1
4 high – – high 0.1
5 – low low 1
6 – medium – medium 1
7 – high – high 1

5.3.4 Actuation Fuzzy Inference System

Figure 5.10 illustrates the actuation FIS. It comprises three FISs that determine a base

performance score, a base size score and an overall actuation score, respectively. The

inputs to the actuation FIS are four actuation sub-capabilities. These are operation

time, speed, difficult terrain traversability and base size. The base performance FIS

takes speed and difficult terrain traversability as inputs to calculate a base

performance score for a robot. A base size FIS maps the size of a robot into a

preference score. Next, the base performance score, base size score and robot

operation time are input to the overall actuation FIS to compute an overall actuation

score.

Base performance score FIS inputs are presented in Table 5.14. The range and

divisions for the speed input have been selected based on robots in the VUW fleet. A

safe autonomous navigation speed near or above 1 m/sec is considered to be ‘high’.

Robots with safe navigation speeds of approximately 0.5 m/sec have ‘medium’ speed.

128 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

A robot with a safe navigation speed of below 0.3 m/sec is likely to be regarded as a

slow (‘low’ speed) robot.

Overall
Actuation

Score

RCSactBase
Size

B
as

e
S

iz
e

FI
S

B
as

e
P

er
fo

rm
an

ce

FI
S

O
ve

ra
ll

A
ct

ua
tio

n
S

co
re

 F
IS

Base
Performance

Score

Base Size
Score

Speed

Difficult
Terrain

Traversability

Operation
Time

Figure 5.10: Block Diagram of Actuation FIS.

The difficult terrain traversability input is unit interval. At the very basic level terrain

traversability can be represented with binary data. A value of zero can represent poor

(‘low’) traversability while a value of one represents good (‘high’) traversability. It is

possible to represent difficult terrain traversability with better precision by evaluating

the movement of a robot in difficult terrain, such as uneven or boggy surfaces. The

latter representation is employed for robots in this thesis but reasonable terrain

traversability approximations are made for each robot drive type. Movement is not

evaluated for real robots.

Table 5.14: Base performance FIS inputs.

Input 1 Name Speed

Data Range (m/sec) [0 1]
Membership Function Details Name low medium high

Type triangular triangular triangular
Parameters [–0.5 0 0.5] [0.3 0.5 0.65] [0.5 1 1.5]

Input 2 Name Difficult Terrain Traversability
Data Range [0 1]
Membership Function Details Name low high

Type triangular triangular
Parameters [–0.4 0 1] [0 1 1.4]

Table 5.15 lists the fuzzy rules employed to compute the base performance score.

Lower weightings are given to the difficult terrain traversability input rules since

terrain acts as a modifier to the speed input.

Task Allocation and Feedback Coordination Mechanism

129

Table 5.15: Base performance FIS fuzzy rules.

Rule No. Speed Difficult

Terrain
Traversability

Inputs
Connection

Base
Performance
Score

Rule Weight

1 low – – low 1
2 medium – – medium 1
3 high – – high 1
4 – low – low 0.1
5 – high – high 0.3

Base size score FIS inputs and outputs are listed in Table 5.16. The base size input

represents the robot’s radius (when a circle is prescribed from the robot’s centre to

encompass the robot). ‘Small’, ‘medium’ and ‘large’ divisions have been arbitrarily

selected assuming a maximum robot radius of one metre. The base size score output is

unit interval and is employed by the overall actuation score FIS as a modifier. Table

5.17 lists three rules that can be employed to give high preference to a robot of any

size. These rules can be altered if a particular sized robot is desired.

Table 5.16: Base size FIS input and output.

Input 1 Name Size

Data Range (m) [0 1]
Membership Function Details Name small medium large

Type triangular triangular triangular
Parameters [–0.5 0 0.5] [0 0.5 1] [0.5 1 1.5]

Output 1 Name Size Score
Data Range [0 1]
Membership Function Details Name low high

Type trapezoidal trapezoidal
Parameters [–0.36 -0.04 0.35 0.55] [0.45 0.65 1.04 1.36]

Table 5.17: Base size FIS fuzzy rules.

Rule No. Size Base Size Score Rule Weight
1 not low high 1
2 not medium high 1
3 not high high 1

Table 5.18 lists the three inputs to the overall actuation FIS. Operation time input

details are based on the variety of robot types found in the literature (chapter 2) and

reasonable estimates for different types of tasks. A robot with less than one hour of

operation has ‘low’ operation time. Robots with one to two hours of operation time

are considered to be ‘medium’. A robot that can operate for longer than two hours has

a ‘high’ operation time. The base performance score input is a standard FIS output

130 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

(Figure 5.4, p.119). Similar to the base size FIS output, the base size score input uses

two trapezoidal rules.

Table 5.18: Overall actuation score FIS inputs.

Input 1 Name Operation Time

Data Range (hours) [0 3]
Membership Function Details Name low medium high

Type triangular triangular triangular
Parameters [–1.2 0 1.2] [0.9 1.5 2.1] [1.8 3 4.2]

Input 2 Name Base Performance Score
Data Range [0 1]
Membership Function Details Name low medium high

Type triangular triangular triangular
Parameters [–0.4 0 0.4] [0.3 0.5 0.7] [0.6 1 1.4]

Input 3 Name Base Size Score
Data Range [0 1]
Membership Function Details Name low high

Type trapezoidal trapezoidal
Parameters [–0.36 -0.04 0.35 0.55] [0.45 0.65 1.04 1.36]

The set of fuzzy rules employed by the overall actuation score FIS to compute the

overall actuation score RCSsense is listed in Table 5.19. These rules were empirically

formulated. Rule 3 is employed to give low overall actuation scores to robots that do

not meet the base size requirement. If the base size score is good (‘high’), rules 4 to 7

permit medium and high overall actuation scores.

Table 5.19: Overall actuation score FIS fuzzy rules.

Rule No. Operation

Time
Base
Performance
Score

Base Size
Score

Inputs
Connection

Overall
Actuation
Score

Rule
Weight

1 low – – – low 1
2 – low – – low 1
3 – – low – low 1
4 medium – high and medium 1
5 – medium high and medium 1
6 high – high and high 1
7 – high high and high 1

5.4 Task and Robot Specifications for a Multi-Robot
Map Building and Exploration Task

As an example, the manager and worker task requirements for a multi-robot map

building and exploration task are shown in Table 5.20 and Table 5.21 respectively.

Similarly, the capabilities of eight candidate robots for the multi-robot map building

task are shown in Table 5.22. The capability data of the robots are based on mobile

Task Allocation and Feedback Coordination Mechanism

131

robots in the VUW fleet (Figure 5.11, p.136). Some of the robots in the fleet have

obsolete processing hardware and are in the process of being upgraded.

Table 5.20: Manager task specifications.

Task ID Criteria Value

M1

Name maintain global info
Type continuous

Processing Capabilities tM1RCSproc [pc,low]
Communication Capabilities tM1RCScomm. [medium]

Sensing Capabilities tM1RCSsense [low]
Actuation Capabilities tM1RCSact [medium,any]

VOTS Summation Weights [0.5,0.5,0,0] [proc,comm,sense,act] VSWM1

M2

Name secondary task devolution
& feedback system

Type Continuous
Processing Capabilities tM2RCSproc [pc,medium]

Communication Capabilities tM2RCScomm. [high]
Sensing Capabilities tM2RCSsense [low]
Actuation Capabilities tM2RCSact [medium,any]

VOTS Summation Weights [0.5,0.5,0,0] [proc,comm,sense,act] VSWM2

Processing capability data represents the processor benchmark and the available

memory. A manager robot executing task M1 (Table 5.20) needs to have at least ‘low’

PC based processing . In Table 5.22, Robot1 has PC based processing with an overall

score of 0.48 (‘medium’).

Communication capability data comprises bandwidth and range. For example, in

Table 5.21 worker task W1 requires an overall communication capability of

‘medium’. A communication bandwidth of 11 MBit/sec and range of 100 m is

available on Robot2 (Table 5.22). Thus, Robot 2 has an overall communication score

of 0.62 (‘medium’).

The sensing capability data represents infrared sensing ability as infrared sensors are

primarily employed for the map-building and exploration task presented in this thesis.

Worker task W2 (Table 5.21) requires a robot with at least ‘medium’ sensing

capabilities. Robot5 (Table 5.22) has ten 1.5 m range infrared sensors that are evenly

distributed (360°) around the robot. The overall sensing score for Robot5 is 0.49

(‘medium’).

132 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

Table 5.21: Worker task specifications.

Task ID Criteria Value

W1

Name planner
Type continuous

Processing Capabilities tW1RCproc [mc,medium]
Communication Capabilities tW1RCcomm. [medium]

Sensing Capabilities tW1RCsense [low]
Actuation Capabilities tW1RCact [low,any]

Group Task Name multi-robot map-building
VOTS Summation Weights [0.4,0.4,0.1,0.1] [proc,comm,sense,act] VSWW1

Robot Quantity Criteria [1600,medium] → [1,1,4]
Concurrent Tasks [W2]

Initial Resource Utilisation [on]
Resource Utilisation Mapping

[on]
Planning [-1,0]

Communication [-1]
Sensing [0,0]

Actuation [0,0]
[off]

Planning [0,0]
Communication [-1]

Sensing [0,0]
Actuation [0,0]

W2

Name explorer
Type continuous

Processing Capabilities tW2RCproc [mc,low]
Communication Capabilities tW2RCcomm [low]

Sensing Capabilities tW2RCsense [medium]
Actuation Capabilities tW2RCact [medium,any]

Group Task Name multi-robot map-building
VOTS Summation Weights [0.05,0.05,0.45,0.45] [proc,comm,sense,act] VSWW2

Robot Quantity Criteria [1600,medium] → [4,1,4]
Concurrent Tasks [W1]

Initial Resource Utilisation [on]
Resource Utilisation Mapping

[on]
Planning [0,-1]

Communication [-1]
Sensing [10,10]

Actuation [10,10]
[off]

Planning [0,0]
Communication [-1]

Sensing [0,0]
Actuation [0,0]

Task Allocation and Feedback Coordination Mechanism

133

Table 5.22: Capability data of eight heterogeneous robots.

Robot ID Criteria Value Score (rjRCStype)

1

Name Robot1 –
Type tricycle-pentagon –

Processing Capabilities RCproc [3.2,0.5,pc] [pc,0.48]
Communication Capabilities RCcomm. [54,100] [0.87]

Sensing Capabilities RCsense [11,1.5,360] [0.51]
Actuation Capabilities RCact [2.04,0.50,0.50,0.30] [0.60]

2

Name Robot2 –
Type tricycle-pentagon –

Processing Capabilities RCproc [6,10,mc] [mc,0.52]
Communication Capabilities RCcomm.. [11,100] [0.62]

Sensing Capabilities RCsense [11,1.5,360] [0.51]
Actuation Capabilities RCact [2.14,0.50,0.50,0.30] [0.65]

3

Name Robot3 –
Type differential-circular –

Processing Capabilities RCproc [2.1,0.25,pc] [pc,0.45]
Communication Capabilities RCcomm. [54,100] [0.87]

Sensing Capabilities RCsense [10,1.5,360] [0.49]
Actuation Capabilities RCact [2.15,0.40,0.50,0.1] [0.66]

4

Name Robot4 –

Type
differential-
rectangular

–

Processing Capabilities RCproc [10,16,mc] [mc,0.87]
Communication Capabilities RCcomm. [11,100] [0.62]

Sensing Capabilities RCsense [14,1.5,360] [0.55]
Actuation Capabilities RCact [2.53,0.60,0.40,1] [0.67]

5

Name Robot5 –
Type differential-circular –

Processing Capabilities RCproc [6,4,mc] [mc,0.37]
Communication Capabilities [11,100] [0.62]
Sensing Capabilities RCsense [10,1.5,360] [0.49]
Actuation Capabilities RCact [1.25,0.40,0.50,0.1] [0.5]

6

Name Robot6 –
Type differential-circular –

Processing Capabilities RCproc [6,2,mc] [mc,0.33]
Communication Capabilities RCcomm. [11,100] [0.62]

Sensing Capabilities RCsense [10,1.5,360] [0.49]
Actuation Capabilities RCact [1.40,0.40,0.50,0.1] [0.5]

7

Name Robot7 –
Type differential-circular –

Processing Capabilities RCproc [6,4,mc] [mc,0.37]
Communication Capabilities RCcomm. [11,100] [0.62]

Sensing Capabilities RCsense [10,1.5,360] [0.49]
Actuation Capabilities RCact [1.19,0.40,0.50,0.1] [0.48]

8

Name Robot8 –

Type
differential-
rectangular

–

Processing Capabilities RCproc [6,2,mc] [mc,0.33]
Communication Capabilities RCcomm. [11,100] [0.62]

Sensing Capabilities RCsense [14,1.5,360] [0.55]
Actuation Capabilities RCact [0.95,0.60,0.40,1] [0.30]

134 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

Actuation capabilities include operation time, base size, and base performance.

Worker task W1 (Table 5.21) requires a robot of any size with at least ‘low’ actuation

ability. Additionally, worker task W2 (Table 5.21) is an explorer task requiring a

robot of any size with at least ‘medium’ actuation capabilities. Table 5.22 details the

actuation capabilities of three potential robots with different drive types (Robot2,

Robot7 and Robot8). These robots have overall actuation scores of 0.65 (‘high’), 0.48

(‘medium’) and 0.30 (‘low’), respectively.

In each task, a set of weights with a sum of unity is specified for each resource type.

The processing and communication weights of tasks M1 and M2 add up to unity in

Table 5.20. Similarly, the sensing and actuation weights of tasks W1 and W2 add up to

unity in Table 5.21. A higher weight for a sub-resource gives it greater preference in the

selection process. On the other hand, a lower weight gives reduced preference.

Table 5.23 and Table 5.24 provide details of the robot quantity criteria FIS employed

by the multi-robot map-building and exploration task. Exploration area size can be

precise or specified as ‘small’, ‘medium’, or ‘large’ to simplify user input. Similarly,

explorer-planner task quantity ratio can be specified as ‘low’, ‘medium’ or ‘high’ if

precise data cannot be given. The two outputs from the FIS are the quantities of

explorers and planners for the global task.

Table 5.23 details the input and output settings of the robot quantity criteria FIS. The

data ranges and membership function ranges have been empirically selected. They can

be customised if required. If a human user is unable to provide precise data, the area

size reference points for ‘small’, ‘medium’ and ‘large’, are arbitrarily selected as 500

m2 (10%), 2500 m2 (50%) and 4500 m2 (90%), respectively. Similarly, the explorer-

planner ratio reference points for ‘low’, ‘medium’, and ‘high’, are arbitrarily selected

as 1 (0%), 5.5 (50%) and 10 (100%), respectively. A data range of [0 12] and a

trapezoidal type ‘high’ membership function is employed for the outputs to achieve

output values of ten from the FIS. Table 5.24 lists the twelve fuzzy rules that are

employed by the robot quantity criteria FIS. The rules and their weights have been

empirically selected.

Task Allocation and Feedback Coordination Mechanism

135

Table 5.23: Input/output details of robot quantity criteria FIS for a multi-

robot map-building task.

Input 1 Name Area Size

Data Range (m2) [0 5000]
Membership Function Details Name small Medium Large

Type triangular Triangular triangular
Parameters [–2000 0 2000] [500 2500 4500] [3000 5000 7000]

Input 2 Name Explorer-Planner Ratio
Data Range [1 10]
Membership Function Details Name low medium High

Type triangular triangular triangular
Parameters [–3 1 5] [2 5.5 9] [6 10 14]

Output 1 Name Explorer Quantity
Data Range [0 12]
Membership Function Details Name low medium High

Type triangular triangular trapezoidal
Parameters [–4 0 4] [1 5 9] [6 10 12 16]

Output 2 Name Planner Quantity
Data Range [0 12]
Membership Function Details Name low medium High

Type triangular triangular trapezoidal
Parameters [–4 0 4] [1 5 9] [6 10 12 16]

Table 5.24: Robot quantity criteria FIS fuzzy rules for a multi-robot map-

building task.

Rule
No.

Area Size Explorer-
Planner
Ratio

Inputs
Connection

Explorer
Quantity

Planner
Quantity

Rule
Weight

1 small low and low low 1
2 small medium and low low 0.9
3 small medium and medium low 0.1
4 small high and low low 0.75
5 small high and medium low 0.25
6 medium low and medium medium 1
7 medium medium and medium low 1
8 medium high and medium low 0.5
9 medium high and high low 0.5
10 large low and high high 1
11 large medium and high medium 1
12 large high and high low 1

The robot quantity criteria in the worker task specification (Figure 5.2, p.113)

specifies an area of approximately 1600 m2 with a ‘medium’ setting for the explorer-

planner task ratio ([1600,medium]). A second three element data set (e.g. [1,1,4] for

task W1 in Table 5.21) is derived from the robot quantity criteria FIS output. It

represents the initial, minimum and maximum quantities of robots for the task. Four

explorers and one planner are initially required based on the robot quantity criteria

136 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

FIS output. The minimum planner and explorer quantities are set to unity by default.

For the maximum quantity, the largest initial allocation of both tasks is selected. In

the map-building and exploration experiments (chapter 7), the initial, minimum and

maximum values are arbitrarily selected to investigate the effect of varying the

quantity of robots deployed.

The default initial resource utilisation for each worker task is set to “on”. This

represents the task as being fully enabled. A minimum ([off]) and maximum ([on])

range of resource utilisation values for each task is specified by the resource

utilisation mapping data. Negative one (–1) values of resource utilisation indicate that

a non-periodic or event driven task is enabled. A task is disabled if its resource

utilisation data is set to zero. Feedback coordination mechanism weights are omitted

from Table 5.21. These weights are presented in Table 5.29 (p. 150).

 (a) (b) (c)

Figure 5.11: Three mobile robots in the VUW fleet.

Pentagon shaped tricycle robots (Robot1 and Robot2) are similar to the tricycle robot

Scratchy (Figure 5.11(a)) [15]. Scratchy’s capabilities are the same as Robot1. It has

an AMD Athlon 64 3000+ processor with 512 MB RAM. The estimated benchmark

of the processor obtained from MATLAB’s ‘bench’ function is 3.2. Scratchy has

eleven 1.5 m range infrared sensors that are evenly spaced (360° distribution) around

the robot. A 54 MBit/sec 802.11g (~ 100 m) wireless communication module is also

present on Scratchy. For actuation, Scratchy has just over two hours of operation time

and is 0.5 m in radius (when a circle is prescribed from the robot’s centre). It has a

maximum speed of 0.5 m/sec on normal flat terrain with a 30% rating (0.3) for

Task Allocation and Feedback Coordination Mechanism

137

difficult terrain traversability. Robot2 is microcontroller based with a benchmark of

six and 10 MB memory. It has similar sensing and actuation capabilities as Robot1.

The circular shaped differential drive robots (Robot3, Robot5, Robot6 and Robot7)

are based on the humanoid differential drive robot MARVIN (Figure 5.11(b)) [51].

MARVIN’s base (lower half of Figure 5.11(b)) contains the processing,

communication, sensing and actuation capabilities of the robots described in Table

5.22.

Robot3 has identical processing, communication and sensing capabilities to

MARVIN’s base. It has an AMD Athlon XP 2000+ processor with 256 MB RAM.

Based on data from MATLAB’s ‘bench’ function, the processor benchmark is

approximately 2.1. MARVIN has ten evenly spaced (360° distribution) 1.5 m range

infrared sensors and a 54 MBit/sec 802.11g (~ 100 m range) wireless module. The

actuation capabilities of Robot3 include an operation time of over two hours with a

base size radius of 0.4 m (similar to MARVIN). It has maximum speed of 0.5 m/sec

on normal flat terrain with a low rating of 10% (0.1) for difficult terrain traversability.

Unlike MARVIN (Robot3), Robot5, Robot6 and Robot7 are microcontroller based

with 2–4 MB memory. These robots possess 11 MBit/sec 802.11b wireless

communication with approximately 100 m range. Additionally, these robots have

twelve 1.5 m range infrared sensors that are evenly distributed around the robot.

Rectangular shaped differential track robots (Robot4 and robot 8) are similar to the

tank robot (Figure 5.11(c)) [137]. The tank robot has fourteen evenly spaced (360°

distribution) 1.5 m range infrared sensors and a 54 MBit/sec 802.11g (~ 100 m range)

wireless module .

In Table 5.22, Robot4 has fourteen 1.5 m range infrared sensors that are evenly

distributed around the robot. Robot8 has sixteen infrared sensors. Unlike the tank

robot, Robot4 and Robot8 have 11 MBit/sec 802.11b (~ 100 m range) wireless

communication. While the tank robot possesses an AMD Athlon XP based computer

for processing, Robot4 is microcontroller based with a benchmark of ten and 16 MB

memory. Robot8 is also microcontroller based with a benchmark of six and 2 MB

memory. For actuation, Robot4 has an operation time of over 2.5 hours and a base

size radius of 0.6 m (when a circle is prescribed from the robot’s centre). On normal

138 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

flat terrain Robot4 can achieve a maximum speed of 0.4 m/sec. It has a high rating for

difficult terrain traversability (100% or 1). Robot8 has similar actuation capabilities to

Robot4.

5.5 Task Devolution

5.5.1 Task Devolution Description

Task devolution performs two main functions. Firstly, it transfers the control of the

global task from the base station to the (manager) robots. Secondly, an initial

allocation of tasks to the robots is performed.

A key element of the task devolution process is the Vector of Task Suitability

(VOTS). VOTSij is the VOTS for a task-robot pair and represents the jth robot’s

suitability for the ith task. The VOTS data for each resource type VOTStypeij is a

function of the resource capability score of the robot rjRCStype and the minimum

resource capability score required for the task tiRCStype (5.4). Robot rj is considered

capable of performing task ti if rjRCStype ≥ tiRCStype for all resource types.

 typeij j type i typeVOTS r RCS t RCS= − (5.4)

There are two stages in the task devolution process. At the first stage, the base station

performs primary task devolution to identify the task manager robots and assign tasks

to them. The task specification and robot capability details are then transferred to the

task manager robots. In the second stage, the task manager robots execute a secondary

task devolution process, identifying and assigning tasks to the worker robots. The

primary and secondary task devolution stages are both greedy assignment processes.

Since rjRCStype and tiRCStype are unit interval data, the VOTSij data of all capable

robots are also unit interval. Two additional parameters, a VOTS weighted sum

(VOTSWSij) and value (Vij), are computed from the VOTSij data during task

devolution. An FIS (similar to section 5.3) is utilised to compute these two values.

The fuzzy inference function settings are identical to those specified in Table 5.1.

Table 5.25 details the settings for all the inputs and outputs of the FIS.

Task Allocation and Feedback Coordination Mechanism

139

Four inputs to the FIS include the VOTS data for each resource type (VOTSprocij,

VOTScommij, VOTSsenseij and VOTSactij). These four inputs are combined with fuzzy

rules and VOTS summation weights VSWi to compute VOTSWSij. A fifth input, task

diversity capability TDij, is also applied to compute a robot task execution value Vij in

the secondary task devolution process. TDij and Vij are explained in steps 3 and 4 of

the secondary task devolution, respectively. The set of fuzzy rules and corresponding

weights employed to determine VOTSWSij and Vij from the five inputs is shown in

Table 5.26. A unity weight value is employed for rule 15 to favour robots with high

TDij values. On the other hand, lower weight values are employed for rules 13 and 14

to only slightly alter Vij.

Table 5.25: VOTSWSij and Vij FIS input/output settings.

Inputs 1–5 &
Outputs 1–2

Name VOTSprocij, VOTScommij, VOTSsenseij, VOTSactij, TDij,
VOTSWSij and Vij

Data Range (m) [0 1]
Membership Function
Details

Name small medium large
Type triangular triangular triangular
Parameters [–0.5 0 0.5] [0 0.5 1] [0.5 1 1.5]

Table 5.26: Set of fuzzy rules to determine VOTSWSij and Vij.

Rule
No.

VOTSprocij VOTScommij VOTSsenseij VOTSactij TDij Conn–
ection

VOTSWSij Vij Rule
Weight

1 low – – – – – low low vswiproc
2 medium – – – – – medium medium vswiproc
3 high – – – – – high high vswiproc
4 – low – – – – low low vswicomm
5 – medium – – – – medium medium vswicomm
6 – high – – – – high high vswicomm
7 – – low – – – low low vswisense
8 – – medium – – – medium medium vswisense
9 – – high – – – high high vswisense
10 – – – low – – low low vswiact
11 – – – medium – – medium medium vswiact
12 – – – high – – high high vswiact
13 – – – – low – – low 0.1
14 – – – – medium – – medium 0.2
15 – – – – high – – high 1

The main steps of the primary task devolution are as follows:

1. Identify a subset of all the robots that are capable of performing at least one

management task.

2. Rank the capable robots in descending order based on VOTSWSij for all tasks

140 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

that they are capable of performing.

3. Consider the highest ranked robot. Determine the capability of this robot to

perform combinations of management tasks that have not been assigned. A

combined management task is obtained by adding the resources required for

the individual management tasks. VOTS data are calculated for the combined

management task to determine the robot’s ability to execute the tasks.

4. Assign a combined management task to the highest ranked robot. The goal is

to maximise the robot’s resource utilisation such that the weighted sum of the

VOTS data for the combined task approaches zero. This permits the selection

of a minimal number of manager robots for the global task.

5. Remove the highest ranked robot from the selection process.

6. If all management tasks have not been assigned and all ranked robots have not

been considered then go to 3.

When steps 3 to 6 are executed, all management tasks may not be assigned. The

greedy nature of the algorithm tends to favour combinations of smaller tasks over

individual larger tasks. To account for this imbalance, an additional iterative step has

been included. The weighted sum of VOTS data for each multiple task combination is

overrated by a factor CO. Weight wCO is incremented in steps of 0.1 from 0 to 1 when

all management tasks are not assigned successfully. The number of tasks in the

combination is n1c and the maximum number of tasks possible in a combination is

n1cp. Alternative task allocation strategies that employ other optimisation strategies are

reviewed in chapter 2.

 1

1

1 c
CO

cp

nCO w
n

= + × (5.5)

Stage 2 of the task devolution process, secondary task devolution is outlined below:

1. Identify a subset of robots that are able to execute each worker robot task.

2. Determine the weighted sum VOTSWSij, of the VOTStypeij data for each capable

task-robot combination. This weighted sum represents a robot’s load handling

capacity for that task.

Task Allocation and Feedback Coordination Mechanism

141

3. Count the number of other tasks that each capable robot can execute. Divide

this value by the number distinct of worker robot task types. The resulting

value represents the robot’s task diversity capability TDij.

4. Determine each robot’s value Vij of performing each task using the VOTSWSij

and TDij values from steps 2 and 3 respectively.

5. For each task, sort the capable robots in descending order of value Vij data.

6. Based on the number of capable robots for each task, sort the tasks in

ascending order. This enables tasks with fewer capable robots to be given

higher priority for allocation.

7. Store the sorted capable robots and tasks in a robot-task capability matrix for

task reallocation use.

8. Using the worker task requirements, select and assign the quantity of robots

needed for each type of task. The selection process checks the capability of a

robot to execute the current task together with any other tasks that have

already been assigned to it.

9. For each robot that is allocated a task, initialise the corresponding resource

utilisation values.

10. Initialise task score values TSij for the assigned task-robot combinations (5.6).

VOTSWSimax is the maximum VOTSWS value amongst all robots that have

been assigned task i. The task score values are updated by the feedback

coordination mechanism (section 5.6).

max

ij
ij

i

VOTSWS
TS

VOTSWS
= (5.6)

5.5.2 Multi-Robot Map Building and Exploration Task Devolution

A team of robots can be selected from Table 5.22 for the multi-robot map building

task described in Table 5.20 and Table 5.21. Following the execution of the primary

and secondary task devolution algorithms presented in this section, the resulting initial

team and initial task allocations are shown in Table 5.27. After primary task

devolution, only two of the eight robots (Robot1 and Robot3) are isolated as capable

of executing at least one manager task. Robot3 is capable of executing M1, while

142 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

Robot1 can execute M2. Hence, Robot3 and Robot1 are assigned tasks M1 and M2

respectively.

Table 5.27: Resulting initial team and initial task allocations for the task and

robot specifications presented in Table 5.20-Table 5.22.

Task ID Robot ID TSW1 TSW2

M1 3 – –
M2 1 – –
W1 4 1.0000 –
W2 4 – 1.0000
W2 2 – 0.8692
W2 5 – 0.5949
W2 7 – 0.5768

Table 5.28 details the sorted capable robots in the robot-task capability matrix.

Robot8 is omitted since it does not meet the minimum resource requirements for

executing any worker task. Based on the robot value data rankings, task W1 is

enabled on Robot4, while Robot4, Robot2, Robot5 and Robot7 have task W2 enabled.

Tasks W1 and W2 are enabled on Robot4 since it is the highest ranked robot and

capable of executing both tasks. W1 and W2 are executed in parallel on Robot4.

Preference is given to the planner task (W1). Each worker robot has the default initial

resource utilisation of its assigned task(s) enabled after task allocation. The initial task

score for each selected worker task-robot combination is given in the third and fourth

columns of Table 5.27.

Table 5.28: Robot-task capability matrix for worker robots.

Task

W1 W2
Robot ID V VOTSWS Robot ID V VOTSWS

4 0.6618 0.5859 4 0.4835 0.2901
2 0.5646 0.4495 2 0.4587 0.2548
5 0.5344 0.4178 5 0.4171 0.2126
7 0.5336 0.4164 7 0.4155 0.2166
 6 0.2433 0.2077

5.6 Feedback Coordination Mechanism

Feedback coordination is performed by the manager robots and executes periodically

with time interval Tm after initial task allocation. If the feedback mechanism detects

that the performance of a worker robot is not satisfactory, a task reallocation process

Task Allocation and Feedback Coordination Mechanism

143

adapted from the worker task devolution is called. The task reallocation algorithm

applies a set of group task specific rules that adjusts a robot’s suitability for a

particular task.

TR
 M

od
ul

e

RU

RA
RA’

RLS
values

TES
values

R
LS

 M
od

ul
e

TE
S

 M
od

ul
e

FD
 M

od
ul

e

RU’

fault

TS

ECT Module% complete
local environment
allocation trigger

ECT

Figure 5.12: Feedback coordination mechanism block diagram.

A block diagram of the feedback coordination mechanism is shown in Figure 5.12.

The current resource achievement RA and corresponding current resource utilisation

RU (or task allocation) for each worker robot are input to the feedback mechanism.

Each robot’s RA data are compared with expected (best-case scenario) resource

achievement RA’ data to compute the robot’s task execution success TES value.

The best-case scenario resource achievement can be determined from simulation data

or a simple real life experiment. This would need to be carried out by an expert user

initially as a form of “calibrating” the robot. A normal user is not expected to alter or

provide this data. For an exploration task, the best case scenario is the exploration of

an environment comprising normal terrain traversable by any robot and no obstacles.

It is relatively easy for an expert user to implement a 2D simulator using MATLAB or

a 3D simulator using software such as Microsoft Robotics Studio.

A robot’s planning, communication, sensing and actuation achievement can be logged

to data files for analysis after the global task is complete. However, robot models may

144 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

not always be accurate in simulations, and similarly simulation results do not always

reflect real-world results. Thus a robot or team of robots would ideally have an initial

test sequence in a simple real environment to determine ideal achievement data. This

process is essential in the currently developed feedback system. If the ideal

achievement data is incorrectly determined, it will affect failure detection. A good

estimate is required. A future improvement to the system could be to dynamically

adjust the failure detection thresholds (for poor performance, partial failures, and

complete failures) in a tuning process (chapter 9).

The RU data of each robot are compared with expected resource utilisation RU’ data

to compute the robot’s load success RLS value. A failure detection FD module then

takes the RLS and TES values as input. If a failure is detected, the task reallocation TR

module is triggered and the resource utilisation and achievement targets of the worker

robots are updated.

It is assumed that the selected robots have sufficient processing resources for their

task allocations. However, if a robot does not have sufficient processing resources,

RLS data can be employed to gradually adjust resource utilisation data for improving

task execution. This scenario is not investigated in this thesis. In the multi-robot

exploration application (chapter 6) the feedback mechanism is also triggered to

replace or remove explorer worker robots that become idle when no suitable

unexplored areas remain.

5.6.1 Performance Monitoring

The performance monitoring components of the feedback coordination mechanism

include the TES, RLS and FD modules. All performance monitoring variables are

normalized to unit interval values. The resource utilisation achievement of each

resource category for each task-robot combination RAijcat is specified as:

 1 2 ' ', ,..., ,...,ijcat ijcat ijcat ijcats ijcatzRA ra ra ra ra =   (5.7)

where:

[], , ,cat plan comm sense act∈ ,

Task Allocation and Feedback Coordination Mechanism

145

'ijcatsra is the s’th task dependent resource utilisation achievement sub-category,

and

z’ is the number of sub-categories for resource utilisation achievement RAijcat.

Achievement data are a record of robot activity. As mentioned previously, resource

achievement data (RA) are compared with expected resource achievement data (RA’)

to determine success. Planning achievement is usually represented by the number of

local and/or global plans made. Communication achievement can be represented by

the volume of messages transmitted and received successfully. The accuracy of

covered or explored area can represent sensing achievement. Actuation achievement

may include criteria such as average speed, distance travelled or objects moved.

By integrating the instantaneous values of current and expected target achievements

over N task monitoring time intervals, overall values of achievement ORAijcat and

expected achievement ORA’ijcat can be determined (5.8)–(5.9).

N

ijcat ijcatORA RA= ∑ (5.8)

 ' '
N

ijcat ijcatORA RA= ∑ (5.9)

A set of achievement weights KAicat, comprising achievement sub-category weights

kaicats’, is also specified for each task (5.10). These weights are used in conjunction

with RAijcat and RA’ijcat to bias sub-category achievements raijcats’ and ra’ijcats’ when

determining success.

 []1 2 ' ', ,..., ,...,icat icat icat icats icatzKA ka ka ka ka= (5.10)

To combine the success values of each resource category into a single TES value, a

second set of achievement success bias weights WSi is used (5.11). The individual

robot TES value TESijind is determined using only the individual robot’s instantaneous

achievement data (5.12). On the other hand, a robot’s team TES value TESijtm is

determined as a combination of the instantaneous achievements of all n robots in the

team executing a task (5.13).

146 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

 , , ,i iplan icomm isense iactWS ws ws ws ws =   (5.11)

 '
'

''
ijcats

ijind icat icats
ijcats

ra
TES ws ka

ra
 

=   
 

∑ ∑ (5.12)

 '
'

'
1

'

ijcats
ijtm icat icats n

ijcats
j

ra
TES ws ka

ra
=

 
 
 =
 
 
 

∑ ∑
∑

 (5.13)

Replacing RAijcat and RA’ijcat with ORAijcat and ORA’ijcat respectively in (5.12), yields

an overall individual robot success value OTESijind (5.14). Making the same

replacements in (5.13) produces a robot’s overall team success value OTESijtm (5.15).

 '
'

''
ijcats

ijind icat icats
ijcats

ora
OTES ws ka

ora
 

=   
 

∑ ∑ (5.14)

 '
'

'
1

'

ijcats
ijtm icat icats n

ijcats
j

ora
OTES ws ka

ora
=

 
 
 =
 
 
 

∑ ∑
∑

 (5.15)

Individual robot RLSij values are determined in a similar manner to OTESijind values.

The major difference is that RAijcat and RA’ijcat data are replaced with RUijcat and

RU’ijcat data respectively (5.16). A set of resource utilisation weights KUicat that

combines resource utilisation data of the sub-resources for each task replaces KAicat

(5.17). The RLS data of each resource type is combined into a single number using a

set of load success bias weights WLi. Generally, the weights in WLi and WSi can have

similar values since they are employed by the same task. RLS values verify that a

robot has the capacity to process resource data in a timely manner.

1
'

ijcats
ij icat icats n

ijcats
j

ru
RLS wl ku

ru
=

 
 
 =
 
 
 

∑ ∑
∑

 (5.16)

Task Allocation and Feedback Coordination Mechanism

147

 []1 2 ' ', ,..., ,...,icat icat icat icats icatzKU ku ku ku ku= (5.17)

 , , ,i iplan icomm isense iactWL wl wl wl wl =   (5.18)

Calculating the RLS data for planning and communication resources can be

troublesome since planning and communication control algorithms are usually non-

periodic. However, the TES of planning and communication resources may be used to

approximate the RLS values. Hence, planning achievement can be employed as an

approximation of the corresponding control algorithm’s execution rate. Similarly,

communication achievement may be used as an indication of the communication

control algorithm’s execution rate.

The FD module detects three types of robot faults when success values are below

threshold. A complete failure CFij is detected when no achievement data are received

from a robot and it has no pulse signal. The pulse signal is a message sent by each

robot to the manager at regular intervals to indicate activity. Partial failures PFij occur

when a robot fails at its current task due to faulty hardware but is not dead (i.e.

achievement data are received from the robot). Faulty hardware can include sensor or

actuator (motor) failures. Partial failures can be detected when a robot’s instantaneous

task execution success value TESijind is below a threshold value close to zero TEST.

When a robot’s overall task execution success value OTESijind is below a second non-

zero threshold value OTEST, it is identified as a poor performance robot PPij.

1 ; if
0 ; otherwise

ijind T
ij

TES TES
PF

<
= 


 (5.19)

1 ; if
0 ; otherwise

ijind T
ij

OTES OTES
PP

<
= 


 (5.20)

The multi-robot mapping and exploration task (chapter 6) employs task scores TSij

when assigning local environments to explorers and jobs to planners. Explorer task

scores TSej are employed to adjust the utility values of neighbouring local

environments around an explorer’s current local environment. This facilitates an

increment or reduction in utility values based on the performance of an explorer robot.

An explorer’s task score TSej is determined from the overall team success value

148 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

OTESejtm, where e corresponds to the index of the explorer task (5.21). Planner robot

task scores TSpj (5.22) are also calculated in a similar manner. The index of the

planner task is represented by p in (5.22). OTESetmmax and OTESptmmax correspond to

the maximum OTES values amongst all worker robots for the explorer and planner

tasks respectively.

max

 ejtm
ej

etm

OTES
TS

OTES
= (5.21)

max

 pjtm
pj

ptm

OTES
TS

OTES
= (5.22)

Exploration ECT data (5.23) are computed using exploration time tek, unexplored area

in the current local environment ckA , unexplored area in the new local environment

'n kA , total area explored Ao and predicted exploration rate Eo. Explored area and

exploration rate data are obtained from sensing achievements. ECT data are employed

by the multi-robot mapping and exploration task (chapter 6) for local environment

assignment. The ECT data can be computed since it is assumed that the local

environments and thus global area to be explored has specified boundaries.

'

'

() ; if

() ; otherwise

ck n kek o ek m
k

ck n k o

t A A A t T
ECT

A A E

 + >= 
+

 (5.23)

5.6.2 Task Reallocation

During the task reallocation process a robot’s VOTS derived value in the robot-task

capability matrix is updated with overall task execution success OTESijind data. The

robots are then re-ranked in descending order using this updated value. After re-

ranking, a set of rules RL is applied to further adjust robot rankings and remove faulty

robots. These rules are outlined below and listed in order of priority:

1. Remove completely failed robots in CF from all tasks in the robot-task

capability matrix.

2. Delete the currently assigned task i from the robot-task capability matrix for

partially failed robots in PF.

Task Allocation and Feedback Coordination Mechanism

149

3. Shift partially failed robots in PF to the bottom row of the robot-task

capability matrix for all other tasks.

4. Move poor performance robots in PP to the bottom row of the robot-task

capability matrix for the currently assigned task i.

5. Promote robots with any task specific capability requirements to the top of

the robot-task capability matrix. An example is exploring an environment

with varied terrain types. In some situations a very specific actuation type

may be needed to explore some local environments.

6. Adjust the quantity of tasks to be assigned based on the progress of the

group task. For example, robots can gradually be removed from the team as

the exploration task nears completion.

Hysteresis loops to avoid false detections due to noise are not required for complete

failures (step 1) and partial failures (step 2) since reallocations are essential. In these

two situations, a robot is unable to execute its allocated task and cannot be assigned

the same task again. Hysteresis loops can be employed for poor performance (step 3).

However, this has not been incorporated since poor performance is appropriately

identified and corrected without hysteresis (section 8.5.1).

To complete the task reallocation process, steps 6 to 9 of the worker task devolution

procedure (section 5.5.1) are executed to adjust the resource utilisation of the worker

robots.

Partially failed and poor performance robots are given lower rankings to place them

below non-faulty task capable robots. Depending on their new ranking and group task

requirements, partially failed and poor performance robots may be assigned an

alternative task, keep their current task (poor performance robots only) or be removed

from the team.

5.6.3 Multi-Robot Map Building and Exploration Task Feedback
Example

Table 5.29 – Table 5.34 detail the application of the feedback coordination

mechanism in a multi-robot map building and exploration task. The worker robot

tasks and robots available for the multi-robot map building and exploration task are

150 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

specified in Table 5.21 and Table 5.22 respectively. The feedback time interval Tm is

set to 60 seconds.

The feedback coordination weights for worker tasks are specified in Table 5.29. Task

IDs W1 and W2 represent the planner and explorer tasks respectively. In the resource

achievement weights, no weights, (denoted by ‘–‘), are required to combine the sub-

categories of planning, communication and actuation achievements. While

communication and actuation have only one achievement sub-category each, planning

has two achievement sub-categories. The maximum value of the two planning sub-

categories is selected to represent planning achievement. This can be permitted in the

map building and exploration task since the two planning sub-categories are related.

Table 5.29: Feedback weights for worker tasks.

Task ID Criteria Value

W1

Resource Achievement Weights
Planning

Communication
Sensing

Actuation

–
–

[0.5,0.5]
–

Achievement Success Bias Weights [0.5,0.5,0,0]
TES Threshold -1

OTES Threshold -1
Resource Utilisation Weights

Planning
Communication

Sensing
Actuation

–
–

[0.5,0.5]
[0.5,0.5]

Load Success Bias Weights [0.5,0.5,0,0]

W2

Resource Achievement Weights
Planning

Communication
Sensing

Actuation

–
–

[0.5,0.5]
–

Achievement Success Bias Weights [0.1,0.05,0.45,0.4]
TES Threshold 0.12

OTES Threshold 0.65
Resource Utilisation Weights

Planning
Communication

Sensing
Actuation

–
–

[0.5,0.5]
[0.5,0.5]

Load Success Bias Weights [0,0,0.5,0.5]

Complete failure of a planner robot can be detected when no achievement data are

received from the robot. Negative one (–1) threshold values in Table 5.29 indicate

that poor performance and partial failures are not detected for the planning task. A

partial failure of the planner task does not arise since a processing or communication

failure generally renders the robot useless for other tasks in multi-robot applications.

Task Allocation and Feedback Coordination Mechanism

151

In the explorer task, TES threshold TEST is set to a value close to zero (0.12) such that

sensing and actuation failures (or partial failure) can be detected. Poor performance in

the explorer task can be detected when the overall performance is below 65% of the

best-case scenario.

When combining resource utilisation data to determine robot load success values,

planning and communication utilisation data correspond to planning and

communication resource achievement data. Hence, no sub-category weights are

required for planning and communication resource utilisation data as well. The load

success bias weights favour planning and communication for the planner task. On the

other hand, sensing and actuation are favoured for the explorer task’s load success

calculation.

Table 5.30: Instantaneous achievement data for two worker robots.

Robot ID
Achievement Category Task ID

Resource
 W1 W2

Sub-Category N = 1 N = 2 N = 3 N = 1 N = 2 N = 3

4

Planning Global
(n Plans) Local Environment Assignment 3 0 0 0 0 0

 Path Plan 3 0 0 0 0 0
 Local
 Waypoint Generation 0 0 0 0 1 0
 Path Plan 0 0 0 0 3 2

Communication (bytes) 59999 0 0 8283 4576 3192
Sensing Area Explored 0 0 0 705 339 158
(n Cells) Area Explored Accurately 0 0 0 645 319 146
Actuation Distance Travelled (m) 0 0 0 14.58 14.17 13.42

2

Planning Global 0 0 0
(n Plans) Local Environment Assignment 0 0 0 0 0 0

 Path Plan 0 0 0 0 0 0
 Local
 Waypoint Generation 0 0 0 1 0 0
 Path Plan 0 0 0 3 2 3

Communication (bytes) 0 0 0 8555 8192 0
Sensing Area Explored 0 0 0 252 317 289
(n Cells) Area Explored Accurately 0 0 0 233 308 272
Actuation Distance Travelled (m) 0 0 0 15.18 14.6 16.6

Table 5.30, Table 5.32 and Table 5.33 illustrate the performance of two worker robots

over three monitoring intervals (N) while exploring local environments in a large

environment (chapter 6). The instantaneous achievements (actual achievement during

exploration) of Robot4 and Robot2 are presented in Table 5.30. Robot4 is a planner

(task ID W1) and performed global planning over the first monitor interval. Since

152 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

Robot2 is not a planner, it has zero achievement for W1. Robot4 and Robot2 are both

explorers and their achievement data are listed under task W2 in Table 5.30. The best-

case scenario achievement data over a single monitor period for tasks W1 and W2 are

listed in Table 5.31. These data are obtained from prior simulations in a similar sized

environment with normal terrain and no obstacles. By integrating the achievement

data of Table 5.31 over several monitor intervals, overall expected achievement can

be calculated.

Table 5.31: Instantaneous expected achievement data for two worker robots.

Robot ID
Achievement Category Task ID

Resource
 W1 W2

Sub-Category Tm Tm

4

Planning Global
(n Plans) Local Environment Assignment 0.4420 0

 Path Plan 0.4420 0
 Local
 Waypoint Generation 0 0.1473
 Path Plan 0 2.8000

Communication (bytes) 10380 5270
Sensing Area Explored 0 349
(n Cells) Area Explored Accurately 0 349
Actuation Distance Travelled (m) 0 15.26

2

Planning Global
(n Plans) Local Environment Assignment 0 0

 Path Plan 0 0
 Local
 Waypoint Generation 0 0.1584
 Path Plan 0 3.0100

Communication (bytes) 8580
Sensing Area Explored 0 382
(n Cells) Area Explored Accurately 0 381
Actuation Distance Travelled (m) 0 18.27

Table 5.32: Instantaneous resource utilisation of two worker robots.

Robot ID
Resource Utilisation Task ID

Resource
 W1 W2

Sub-Category N = 1 N = 2 N = 3 N = 1 N = 2 N = 3

4

Sensing Obstacle & Pose Detection 0 0 0 8.86 9.93 9.96
(Freq. [Hz]) Local Map Update 0 0 0 8.86 9.93 9.96
Actuation Motion Control 0 0 0 8.86 9.93 9.96

(Freq. [Hz]) Motor Commands 0 0 0 8.86 9.93 9.96

2

Sensing Obstacle & Pose Detection 0 0 0 9.7 9.96 9.78
(Freq. [Hz]) Local Map Update 0 0 0 9.7 9.96 9.78
Actuation Motion Control 0 0 0 9.7 9.96 9.78

(Freq. [Hz]) Motor Commands 0 0 0 9.7 9.96 9.78

Task Allocation and Feedback Coordination Mechanism

153

Table 5.32 details the sensing and actuation resource utilisation for tasks W1 and W2.

Since no sensing and actuation is necessary for the planner task (W1), it has zero

resource utilisation for these resources. The target (expected) utilisation for sensing

and actuation resources in the explorer task (W2) is 10 Hz (Table 5.21). During task

execution, the actual resource utilisation for task W2 is slightly reduced due to path

planning computation overheads.

Task execution success and robot load success data for Robot4 and Robot2 are given

in Table 5.33. Since Robot2 is not a planner, it has zero success for task W1.

However, Robot4 is a planner and has OTES and RLS values of unity over all three

monitor periods for task W1. It is unsuitable to detect partial failure in the planning

task using TESind. While Robot4 has zero TESind data over the second and third

monitor interval, it has not failed. Instead, as suggested by the OTES data, Robot4 has

performed extra plans over the first monitor interval. Robot4 and Robot2 are both

explorers (task W2) and their success data do not indicate any partial failure or poor

performance.

Table 5.33: TES and RLS data over three monitor intervals for two worker

robots.

Robot ID Parameter
Task ID

W1 W2
N = 1 N = 2 N = 3 N = 1 N = 2 N = 3

4

TESind 1.0000 0 0 0.9000 0.9556 0.6887
TEStm 1.0000 0 0 0.3665 0.2689 0.1678

OTESind 1.0000 1.0000 1.0000 0.9000 0.9535 0.9236
OTEStm 1.0000 1.0000 1.0000 0.3665 0.3215 0.2729

RLS 1.0000 1.0000 1.0000 0.8866 0.9400 0.9589

2

TESind 0 0 0 0.7675 0.8019 0.7936
TEStm 0 0 0 0.2066 0.2119 0.1931

OTESind 0 0 0 0.7675 0.7847 0.7877
OTEStm 0 0 0 0.2066 0.2092 0.2039

RLS 0 0 0 0.9700 0.9833 0.9816

The task score values of all worker robots over three monitor intervals are shown in

Table 5.34. TSW2 data indicate that initial task assignment based on robot capabilities

may not always rank robots in order of descending superiority. The initial team and

task allocations (Table 5.27) shows that Robot2 is superior to Robot5 and Robot7 in

the explorer task. Over the three monitor intervals during task execution, Robot2 is

inferior to Robot7 and Robot5 in the explorer task. Task reallocation is not necessary

since all robots are performing satisfactorily. The OTESind values for all explorers

154 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

(task W2) is above the poor performance threshold of 0.65. Also, the TESind values for

all explorers (task W2) is above the partial failure threshold of 0.12. Hence, all robots

continue executing their assigned tasks.

Table 5.34: Task score data over three monitor intervals for all worker robots.

Robot ID
Task Score

TSW1 TSW2
Initial N = 1 N = 2 N = 3 Initial N = 1 N = 2 N = 3

4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0 0 0 0 0.8692 0.5637 0.6507 0.7471
6 0 0 0 0 0.5949 0.7071 0.7371 0.7804
5 0 0 0 0 0.5768 0.6754 0.7501 0.8153

5.7 Scalability of Task Allocation and Feedback
Coordination

Task allocation consists of two stages. These are primary task devolution and

secondary task devolution. Both processes are centralised and execute sequentially.

After the selection of a manager robot from the primary stage, all information

regarding the available robots is forwarded to it from the base station. Using the robot

capability data presented in Table 5.22 with numerical values for robot IDs and drive

types, each robot’s description is approximately 112 bytes in double precision.

Latency is expected to be small (≤ 0.5 sec) when information for up to thirty robots is

transmitted using 802.11g wireless communication.

Secondary task allocation utilises a centralised greedy algorithm. This is expected to

function appropriately if the number of robots is increased. More complex meta

heuristic algorithms, such as genetic algorithms, Tabu search, branch and bound, or

pattern search [138] could be utilised to search the space of robot fleet permutations.

However, these methods are likely to have greater search times and still do not

guarantee an optimal selection. Moreover, these methods would not produce adequate

solutions if tasks are incorrectly specified by a non-expert human user. This research

favours the use of a feedback system to detect and correct suboptimal situations

during task execution.

Feedback coordination is periodic and requires worker robots to send achievement

data to managers. Chapter 8 evaluates feedback coordination at monitor time intervals

Task Allocation and Feedback Coordination Mechanism

155

of 60 sec, 180 sec and 300 sec. Using the achievement data presented in Table 5.30,

the feedback data sent by each robot will be approximately 64 bytes in double

precision. Assuming the worker robots employ 802.11b wireless devices, a maximum

bandwidth of 1408 KB/sec is available. Hence, the volume of feedback data is small

relative to the bandwidth of communication. Up to 22528 robots can be monitored.

However, in reality worker robots will be executing tasks and sharing other data as

well. Chapter 6 evaluates the scalability for a multi-robot mapping and exploration

task.

5.8 Summary

This chapter has presented a task allocation and feedback coordination mechanism for

a hierarchical heterogeneous multi-robot system that consists of limited capability

mobile robots. By employing fuzzy inference systems (FISs), the system can accept

simplified human user data (graded inputs) for task specification. This enables non-

expert human users to specify tasks to a team of robots. However, such an approach

requires additional effort from an expert in designing the system. The use of graded

inputs is subjective and a non-expert human user may need to be educated via user

manuals. Task allocation matches the resources required for a task with resources

available on prospective robots.

By employing feedback coordination, the system has the potential to address sub-

optimal task allocations and robot failures. Feedback coordination can also be used to

rectify errors in tasks specified by non-expert users. Ideal (best-case scenario)

achievement data is required to benchmark the performance of robots during task

execution. Hence, an expert user is required to “calibrate” a robot’s performance prior

to task execution. It is envisioned that this calibration will only be required to be done

when the task type is altered.

Data presented in this chapter demonstrates the application of the task allocation and

feedback coordination mechanism to a multi-robot map building and exploration task.

Results of extensive experiments with the task allocation and feedback coordination

applied to a multi-robot map building and exploration task (chapter 6) are presented in

chapter 7 and chapter 8.

Multi-Robot Map Building and Exploration Task

157

6 Multi-Robot Map Building and
Exploration Task

6.1 Overview

In multi-robot systems comprising robots with limited processing and sensing

capabilities, mapping a large environment may be performed efficiently with good

task allocation and coordination strategies [132]. Chapter 5 presented a task allocation

and feedback coordination mechanism that can be employed for limited capability

robots. This chapter focuses on a hierarchical multi-robot map building and

exploration strategy that utilises the task allocation and feedback mechanism of

chapter 5. The strategy enables limited capability (in terms of processing capability or

memory capacity) robots to map a large environment that may contain numerous

scattered obstacles. Since this is a customised map building and exploration strategy

that is not similar to other approaches, it is difficult to compare it with the techniques

reviewed in section 2.9.

A global environment is divided into local environments (similar to chapter 4) for the

limited capability robots (worker robots as described in section 5.3) to explore (Figure

6.1). This approach is an example of territorial division [139, 140] where separate

areas are assigned to each robot for performing tasks. The division is based on the

sensing and processing capabilities of the robots in addition to their physical size. By

storing only a local map, robots with limited processing and sensing abilities can

update map data while surveying the local environment. Territorial division also has

the potential advantage of decreasing robot interference during task execution [140].

Two types of tasks are performed by the limited capability robots. Firstly, a planner

task enables robots to navigate between the local environments. Secondly, to navigate

and explore within a local environment, an explorer task is required. Ideally a robot

would be able to perform both of these tasks. However, due to (say) processing or

memory limitations it may only be able to execute one in real time. Hence, the multi-

robot map building and exploration task is expressed as multi-task robots performing

single-robot tasks. The planning and exploring tasks of the limited robots can be

158 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

coordinated with the assistance of a computationally powerful manager robot (Figure

6.2).

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

40

x (m)

y
(m

)

Figure 6.1: A team of limited capability robots exploring a large environment.

Manager

Job queue/Result
collection

Planner

Explorer

PlannerPlanner

Explorer Explorer

Explorer

Explorer

Figure 6.2: Multi-robot map building and exploration task overview.

Multi-Robot Map Building and Exploration Task

159

A major role played by the manager robot is the maintenance of the map-building

task’s global information. It maintains a queue of explorer requests for new local

environments and updates the status of the local environments as the global task

progresses. Planners rely on the manager for path planning data and new local

environment allocation requests. The planners can communicate amongst themselves

to address concurrency issues. Asynchronous two-way communication is assumed to

exist between the manager, planners and explorers. Messages are received via

callback functions.

Figure 6.1 shows an example of a global environment divided into local environments

in a MATLAB simulation of the multi-robot map building and exploration task. There

are sixteen local environments and their boundaries are represented by grey dotted

lines. Three limited capability robots (light blue, blue and yellow in Figure 6.1) are

employed to explore the environment. Scattered obstacles present in the environment

are represented by black squares. Also present in the environment are regions of

boggy terrain whose boundaries are denoted by the black dashed-dotted lines. Only

robots with a particular drive type, such as caterpillar-like treads, can navigate

through boggy terrain. For clarity of explanation, the environment is characterised as

either being flat and easily accessible (normal) or difficult to traverse (for example

bogs, rubble, steep slopes). Throughout this chapter, such difficult terrain will just be

labelled as boggy.

A complementary pair of global maps stored on the manager robot represents obstacle

and terrain information. The obstacle map consists of occupancy probability data and

is stored at the required resolution (section 3.2). Data in the obstacle map represent

obstacles independent of terrain.

Unlike obstacle data, terrain data represents terrain traversable by any robot and

difficult terrain. In this thesis, terrain traversable by any robot is represented as non-

boggy terrain while boggy terrain represents difficult terrain. A value of zero

represents non-boggy terrain whereas boggy terrain is represented by value of unity.

This thesis arbitrarily assumes that the area of a bog is not insignificant in comparison

to the area of a local environment. Under this assumption terrain data are generalised

160 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

for a local map. Hence, when part of a local map consists of a bog, the entire local

map is marked as boggy. This assumption is a function of available robot memory and

the division of the global environment into local environments. Marking the entire

local environment as boggy will save memory as it can be problematic to maintain

multiple global maps at the required resolution (obstacle occupancy grid map

resolution) for limited robots. If the sizes of bogs are small in comparison to the local

environment, the terrain map can be maintained at full resolution (similar to the

obstacle map). This permits superior paths to be planned at the expense of additional

memory.

Initially, it is assumed that all local environments consist of non-boggy terrain.

However, as boggy terrain is encountered by explorers during exploration, the terrain

data are updated to a value of unity. Explorers communicate the discovery of bogs to

managers and this information is shared with the planner robots.

A multi-robot map building and exploration task has been simulated using MATLAB.

Results of performing this multi-robot task with and without the feedback

coordination system (section 5.4) are presented in chapter 8.

6.2 Explorer Task

As previously mentioned, there are two major functions (or sub-tasks) carried out by

the explorers. One function is navigation to an assigned local environment. The other

function is to explore and map the assigned local environment. Figure 6.3 illustrates

the explorer control sequence and the relationship between the two major sub-tasks.

Initially, the explorer requests for a new exploration area and/or path. It then receives

new instructions from a planner about where to go and explore. Following this, the

two major sub-tasks are sequentially executed to achieve the objectives of the

explorer task.

Navigation to an assigned local environment involves travelling along a planned path

provided by a planner robot (Figure 6.3 and Figure 6.6) from the current location to

the centre of the assigned local environment. An explorer may travel through partially

explored regions of the global environment to reach an unexplored local environment.

Therefore, it cannot be assumed that any edge or corner of the local environment is

Multi-Robot Map Building and Exploration Task

161

better than others. Planning to the centre of the assigned local environment permits

equal entry opportunities from all edges or corners. Navigation to an assigned local

environment is complete once the explorer is inside its assigned local environment.

The navigation strategy employed is described in chapter 3.

Yes

No

Receive new local environment and
path from a planner

Send request for new local
environment & path to manager

Navigate to assigned local
environment

Explore and map local
environment

Send updated local environment
map data to manager

Reached local
environment?

Send updated local environment
map data to manager and request a

new path

Receive a new path from a planner

Request a priori local environment
map data from manager

Receive a priori local environment
map data from manager

Figure 6.3: Explorer control flowchart.

While navigating to its assigned local environment, the explorer will pass through

other local environments. Some of these local environments may be unexplored or

partially explored. Hence, explorers maintain a small quantity of local map memories

and send updated map information to the managers as navigation to the assigned local

162 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

environment progresses. Exploration and mapping of the assigned local environment

is discussed in the following sections.

6.2.1 Exploring the Assigned Local Environment

The robots employed for exploration have limited range sensors mounted at fixed

positions and orientations. For initial simulation purposes, straight beam sensors such

as infrared sensors are assumed for obstacle detection since they are in common use,

being inexpensive and reasonably accurate depending on the grid map resolution.

Cone-shaped beams such as ultrasonics could equally be modelled, and are briefly

discussed at the end of section 6.2.2.

However, employing infrared sensors requires a robot to traverse most of the

environment to update map data. To aid traversal (hence exploration) of the assigned

local environment, a set of waypoints is generated (Figure 6.4). The waypoint

generation technique is inspired by the trapezoidal decomposition coverage method

[141]. Waypoint generation accounts for a robot’s sensing characteristics (range and

noise) and the size of the local environment. Sensor noise is assumed to be linearly

proportional to range.

The first two blocks of Figure 6.4 get the dimensions of the local environment and

identify the corner from which the waypoint list begins. The next step for generating

waypoints involves determining a threshold sensor noise NSt from an expected

occupancy probability threshold value Ps and map resolution parameters (Xres,Yres)

(6.1). This threshold sensor noise is converted to a threshold sensing range SRt by

employing the minimum sensor noise NSmin, maximum sensor noise NSmax, minimum

sensing range SRmin and maximum sensing range SRmax characteristics (6.2).

 0.5 (1)
2 ()

res res s
t

s res res

X Y PNS
P X Y

−
=

+
 (6.1)

 min
min max min

max min

() t
t

NS NSSR SR SR SR
NS NS

−
= + −

−
 (6.2)

Using the information of the first three blocks (Figure 6.4), a minimum number of

evenly spaced lines required to scan the environment is determined. The start and end

Multi-Robot Map Building and Exploration Task

163

points of these evenly spaced lines are ordered into a set of waypoints. A graphical

layout of an ordered set of eight waypoints for a local environment is presented in

Figure 6.5. Generally, the sensing radius threshold SRt calculation is only necessary

for the first local environment explored and its value is retained by the robot for

subsequent local environment exploration. If the expected occupancy probability

threshold Ps is set to a different value then the sensing range threshold is recalculated.

Determine local environment map
corner closest to robot

Get minimum and maximum
coordinates of local environment

Use the specified expected
occupancy probability value Ps to

determine the sensing range
threshold SRt

Calculate the sensing radius
threshold with respect to the centre

of the robot Rst

Use Rst , local environment
dimensions and closest corner

information to determine a minimum
number of evenly spaced

exploration lines

Create a list of waypoints for line
scanning using the start and end
points of the evenly spaced lines

Output waypoints list

Figure 6.4: Waypoint generation flowchart.

After the waypoints have been generated and ordered into a list, they must be

sequentially visited. The navigation strategy described in chapter 3 is utilised to

achieve waypoint navigation. Path planning favours unexplored space while the local

environment map data are updated at regular intervals. As each waypoint is

successfully visited, the target is updated to the next waypoint on the list. If the

progress towards a waypoint is unsatisfactory, path replanning occurs initially.

164 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

However, persistent unsatisfactory progress such as poor relative progress since the

last replan or circling the goal location, results in the waypoint being considered

inaccessible. This may occur if the waypoint is located inside a previously unmapped

obstacle or within a narrow passage that was previously unknown. In such situations,

the target is updated to the next waypoint on the list. When the last waypoint on the

list has been visited or is deemed inaccessible, the exploration is complete and map

data are forwarded to the manager for evaluation (section 6.4.2).

2

34

5
6

78

1
Rst

Rsmax (maximum sensing radius)

Figure 6.5: Graphical layout of waypoints.

Assuming the global environment has reasonably flat terrain, the robots employed for

exploration are capable of detecting boggy terrain by monitoring the PWM control

effort applied to their drive motors. If the PWM control effort is abnormally high at

low velocities, then it is highly likely that a non-bog capable robot is in boggy terrain.

In this situation, the explorer informs the manager to update the local environment as

boggy. To attempt to get out of the bog, a non-bog capable robot reverses to the first

node of its current path (i.e. the path the robot followed to enter the bog). Once

successfully out of the bog, the non-bog capable explorer can request for an

alternative non-boggy local environment to explore. If the robot is unsuccessful in

getting out of the bog, the feedback mechanism (section 5.4) will detect robot failure.

If a robot is capable of traversing boggy terrain, it is assumed that a reduction in robot

travel speed occurs in the absence of other obstacles when passing through a bog. An

increase in the drive motor PWM control effort at this reduced speed is also expected.

Multi-Robot Map Building and Exploration Task

165

In this situation, the bog capable explorer informs the manager to update the local

environment as boggy and continues to explore the local environment.

6.2.2 Mapping the Assigned Local Environment

Each node in the local environment’s occupancy grid map is assigned an occupancy

probability value in the range [0.05,0.95] (section 3.2.1). Initially, each node within a

previously unassigned local environment has an occupancy value of 0.5 to represent

unexplored space.

Uncertainty in the robot’s position is not modelled. For the purpose of this discussion

it is assumed that the robots are able to localise themselves. However, imprecise robot

localisation due to sensor uncertainty would cause cells of the occupancy grid map to

be updated incorrectly resulting in an inaccurate map. This in turn presents difficulties

for navigating to unexplored regions using the map data. Simultaneous localisation

and mapping (SLAM) can be utilised to correct this problem [67]. However, this may

present difficulties due to limited sensing, computing or memory on the robots.

Instead, navigation aids such as beacons or GPS (DGPS) can be employed to correct

imprecise localisation [67].

Since the infrared sensor beams are directional, they are simulated as a straight line

originating from the sensor up to the maximum sensing range. As an example, the

Sharp GP2Y0A02YK infrared sensors have a beam angle of approximately 5 degrees.

The beam width is approximately 13 cm at the maximum range of 1.5 m. This is small

in comparison to the occupancy grid resolution of 30 cm (section 3.2.1). Nodes that

the sensor beams pass through need to have their probabilities updated as free space.

Nodes that the robot itself occupies are also updated as free space. If an obstacle is

detected by the sensor beam then the corresponding nodes are updated as occupied

space.

Occupancy probabilities are updated in real time using Bayes’ rule [130]. This rule

produces an updated (or posterior) occupancy probability Pu using an initial (or prior)

occupancy probability Pi and recently acquired sensor information (6.5). The new

sensor information is translated into an expected probability that a sensed occupied

166 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

cell is occupied P(occs|occ) or a sensed unoccupied cell is unoccupied P(uoccs|uocc).

As it is only possible for a cell to be sensed as either occupied or unoccupied, only

one of the two probabilities is employed in the occupancy probability update.

P(occs|occ) data are approximated by employing the grid map resolution parameters

(Xres,Yres) and sensor noise NSsen to compute a ratio of areas (6.3). The numerator of

(6.3) corresponds to the area of a single occupancy grid while the denominator is an

enlarged area accounting for sensor uncertainty. P(uoccs|uocc) is approximated by a

linear probability function that varies between 0.2 (at the minimum sensing range

SRmin) and 0.5 (at the maximum sensing range SRmax) (6.4). The lower probability

limit of 0.2 has been arbitrarily selected to control the free space probability saturation

rate. On the other hand, the upper limit of 0.5 results in the prior and posterior

probabilities being the same. Equation (6.4) thus permits cells closer to the robot to

saturate faster towards the minimum occupancy probability value of 0.05 representing

free space (section 3.2).

 (|)
2 ()

res res
s

res res sen res res

X YP occ occ
X Y NS X Y

=
+ +

 (6.3)

 min

max min

(0.5 0.2)()(|) 0.2s
SR SRP uocc uocc

SR SR
− −

= +
−

 (6.4)

(|) if (|) 0.5
(|) (1)(1 (|))

(|) if (|) 0.5
(|) (1)(1 (|))

otherwise

i s
s

i s i s

i s
u s

i s i s

i

PP occ occ P occ occ
PP occ occ P P occ occ

PP uocc uoccP P uocc uocc
PP uocc uocc P P uocc uocc
P

 > + − −


= < + − −




 (6.5)

If boggy terrain is detected during mapping and the explorer is non-bog capable, all

cells that the explorer’s sensors sweep through while inside the bog are reset to

unexplored. This is done to prohibit global path planning through the bog when the

non-bog capable explorer has successfully exited the bog and is assigned an

alternative (non-boggy) local environment. It is necessary since the explorer is already

within a local environment marked as boggy and needs to exit it successfully to reach

Multi-Robot Map Building and Exploration Task

167

non-bogy terrain. The cells can be updated later when a bog capable robot is assigned

to explore the local environment.

The node occupancy probability update method can be extended to sensors with cone-

like beams such as ultrasonic sensors. The sensor beam simulation representation can

be changed from a straight line to a triangular shaped approximation for a 2D

simulation. Additionally, the sensor noise function and its relationship to the expected

probabilities (P(occs|occ) and P(uoccs|uocc)) within the triangular sensing region may

be different.

6.3 Planner Task

Similar to the explorers, the planners execute two major functions (or sub-tasks). One

of these functions is to assign local environments to explorers (section 6.3.1). The

other major function is to perform global path planning for explorers. Figure 6.6

shows the relationship of the two major sub-tasks in the planner control sequence.

Once the manager has a job such as an explorer’s request for a new local environment

assignment and/or path in the queue (section 6.4), it delegates the job to an available

planner. With the assistance of the manager, planners maintain the status of each local

environment (section 6.4.2). These status values are employed by the local

environment assignment and global path planning sub-tasks. Hence, before executing

the two sub-tasks, the planner checks its received messages for status updates from

other planners. If communication fails, the planners act independently and it is

possible for a local environment to be allocated to multiple robots simultaneously.

However, a feedback coordination mechanism (section 5.6) can identify and remove

or replace faulty (duplicate) planners.

If a job does not require a new local environment assignment for an explorer, a path is

planned to its currently assigned local environment. However, if an explorer requires

a new local environment assignment, a new local environment assignment is proposed

by a planner (section 6.3.1). Before addressing any concurrency issues, the planner

requests an estimated completion time (ECT) acceptability notification from the

168 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

manager (section 6.4.3). ECT is only computed when less available local

environments remain than explorers.

Yes

No

Update status of local environments
assigned by other planners

Receive new job from manager

Negotiate with other planners to
address assignment conflicts

Send confirmed assignment to other
planners & manager

ECT acceptable?

Plan path to assigned local
environment

Send new local environment
assignment and/or path to explorer

New local environment
assignment?

Propose new local environment
assignment

Update status of confirmed local
environment

Notify manager of job completion

Request & receive ECT acceptability
from manager

Yes

No

Figure 6.6: Planner control flowchart.

A planner needs to negotiate with other planners before confirming its proposed local

environment assignment. This involves addressing concurrency issues such as

assigning the same local environment to multiple explorers. To address concurrency

issues, the planner requests other planners to provide their proposed assignments. A

distributed mutual exclusion strategy [142] is applied to proposed assignments with

identical local environments. Initially, proposed assignment(s) with the minimum

Multi-Robot Map Building and Exploration Task

169

utility-cost tradeoff are isolated. Then, if there are more than one minimum tradeoff

proposed assignments, the one with the lowest job ID is selected. This ensures that

only one explorer is assigned to the conflicting local environment. After resolving any

conflicts, a confirmed new local environment assignment is sent to other planners and

the managers. Prior to global path planning, the status of the confirmed local

environment is updated as assigned.

If the job does not require a new local environment assignment for the explorer, or if a

confirmed assignment has been made for the explorer, a global path is planned to the

assigned local environment. Global path planning involves planning a path from the

explorer’s current position to the centre of its newly assigned local environment.

Planners employ the memory constrained path planning technique presented in

chapter 4 to facilitate global path planning for explorers. If a particular local

environment’s status indicates that it has been assigned to another explorer, the path

planner avoids planning through that local environment to minimise interference

between robots. Additionally, the path planner employs terrain information to avoid

planning paths through boggy local environments for non-bog capable explorers.

6.3.1 Local Environment Assignment

Planner robots employ a greedy algorithm inspired by [11] to propose a new local

environment assignment for an explorer (Figure 6.7). The proposed new local

environment assignment is checked for ECT acceptability and other planner conflicts

(Figure 6.6) prior to confirmation. Initially, the planner obtains an update on the

current local environment assignment of each explorer from the manager. Next, if the

explorer requiring a new local environment is capable of exploring boggy terrain

(determined from a robot’s actuation capability data (chapter 5)), a set of all available

boggy local environments is determined. This set of available local environments

consists of all unexplored or partially explored boggy local environments.

Utility and cost values are computed for each local environment in the set of available

environments for each explorer. The utility of a local environment is a dimensionless

value that represents the gain from exploring the local environment. In this

application it represents the unexplored space within a local environment. The cost of

170 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

a local environment is expressed in terms of travel distance and proximity to the other

explorer robots. Utility and cost values are explained in some detail below.

Yes

No

Get current local environments of all
explorer robots

Tradeoff utility and cost for all
available boggy local environments

Select local environment with
maximum tradeoff

Output selected local environment

Empty set

Bog capable explorer?

Determine set of all available boggy
local environments

Determine set of all available non-
boggy local environments

Tradeoff utility and cost for all
available non-boggy local

environments

Yes

No

Calculate explorer utility values for
all non-boggy local environments

Calculate explorer utility values for
all boggy local environments

Calculate explorer cost values for all
non-boggy local environments

Calculate explorer cost values for all
boggy local environments

Figure 6.7: Flowchart to propose a new local environment assignment for an
explorer.

Utility values are computed for each available boggy local environment if the set of

available boggy local environments is non-empty. Each explorer – local environment

Multi-Robot Map Building and Exploration Task

171

combination (ej–lm) has a utility value Uej–lm. All initial utility values (Uej–lm-init) are

set to unity since all local environments are assumed to be unexplored (6.6).

 1ej lm initU − − = (6.6)

A utility factor UFej-lm influences the utility values of local environments adjacent to

the current local environment assignments of the explorers (6.7). This parameter

enables weaker explorers (slow robots) to favour local environments adjacent or close

to their current location. Non-zero unit interval explorer task scores TSej

(section 5.6.1) determine UFej-lm (6.8). The limit function (6.7) maintains utility values

in the range [0,2]. This facilitates adequate tradeoff between utility and unit interval

cost values (6.10). If the utility of an adjacent local environment becomes zero due to

utility factor reduction or being completely explored then it is less favoured (Table

6.1). However, if the utility of an adjacent local environment is two, it is highly

favoured for exploration (Table 6.1).

 (.)ej lm ej lm ej lm initU limit UF U− − − −= (6.7)

'

'
'

1 ; for explorer 's neighour local environments

; for other explorers () neighbour local
 environments if

1 ; otherwise

ej

ej lm ej
ej ej

j
TS

j
UF TS

TS TS−




=  ≥




 (6.8)

After computing utility values for the local environments, corresponding cost values

need to be determined. Each explorer – local environment combination (ej–lm) has a

unit interval cost value Cej–lm (6.9). The cost function weighs the distance of the

explorer to an available local environment distej-lm and the mean distance of the

available local environment to other explorers distej’-lm . Distance distej-lm is

minimised while distej’-lm is maximised. Unit interval cost values are obtained by

employing the maximum distance values (max(distej-lm) and max(distej’-lm)) together

with weights (wej-lm-1 and wej-lm-2) in the computation (6.9).

172 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

 ' '
1 2

'

max()
. .
max() max()

ej lm ej lm ej lm
ej lm ej lm ej lm

ej lm ej lm

dist dist dist
C w w

dist dist
− − −

− − − − −
− −

−
= + (6.9)

Weight wej-lm-1 favours minimising the distance of the available local environment

from the explorer robot. On the other hand, weight wej-lm-2 favours maximising the

mean distance of the available local environment from other explorer robots. A value

of 0.9 and 0.1 has been empirically determined for wej-lm-1 and wej-lm-2 respectively.

These values provide adequate balance between the two cost components distej-lm and

distej’-lm . If wej-lm-1 is reduced and wej-lm-2 is increased then the cost calculation can

favour the maximisation of distance between explorers. However, minimising the

distance of travel to an available local environment is preferred in the exploration

task. This avoids excessive travel through unexplored terrain to reach a new local

environment.

Once the utility and cost values have been determined, a tradeoff value for each

available local environment can be computed. Each explorer – local environment

combination (ej–lm) has a tradeoff value Tej–lm (6.10). An available local environment

with maximum tradeoff is selected as the proposed local environment for each

explorer. Table 6.1 details the range of tradeoff values as utility and cost are varied.

 ej lm ej lm ej lmT U C− − −= − (6.10)

Table 6.1: Utility and cost combination tradeoff data range.

 Uej–lm Value Cej–lm Value Tej–lm Range
2 (0,1] [1,2)

(1,2) (0,1] (0,2)
1 (0,1] [0,1)

(0,1) (0,1] [-1,1)
0 (0,1] [-1,0)

If the set of available boggy environments is empty, a set of all available non-boggy

local environments is determined. Similarly, if the explorer is not capable of exploring

boggy terrain, the set of all available non-boggy local environments is also

determined. All unexplored or partially explored non-boggy local environments are

contained in the set of available local environments. At this stage of planning, the set

of non-boggy local environments is not empty since the manager always checks this

Multi-Robot Map Building and Exploration Task

173

condition before sending a job to a planner. The utility and cost values of the available

non-boggy local environments are calculated in a similar manner to the procedure

described above ((6.6)–(6.9)). Each non-boggy local environment’s tradeoff value is

also computed as described previously (6.10), and the local environment with

maximum tradeoff is selected as the proposed assignment.

6.4 Manager Responsibilities

The primary purpose of the manager robot is to coordinate the planning and exploring

activities of the limited capability robots. It initially assigns planner and explorer tasks

to the limited robots, and then monitors their performance while the map-building and

exploration task executes (chapter 5). During task execution, the manager also

maintains global information related to the map-building and exploration task.

While the manager robot is computationally more powerful than the explorers, it may

not be able to execute all the functions required for successful coordination. Hence,

there may be multiple managers sharing the workload. However, in this chapter it is

assumed (to simplify the system explanation) that the maintenance of the map-

building task’s global information can be handled by a single manager robot. If a

single manager is unable to execute the global information maintenance task, it can be

subdivided and executed on multiple robots that communicate with one another.

There are three major components of global information maintenance for the multi-

robot map-building and exploration task: job queue maintenance, global map data and

local environment status updates, and estimated completion time (ECT) computation.

Each of these components is presented in some detail below.

6.4.1 Job Queue Maintenance

A single queue is maintained by the manager to receive job requests from explorers

and forward these requests to planners for processing. Maintaining a single queue

avoids job duplication. The manager responds to messages and data received from

explorers and planners. Initially, an unassigned job list UJL is empty (Figure 6.8(b))

and the manager waits for a job to arrive from an explorer (Figure 6.8(a)).

174 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

Place job in unassigned jobs list

Receive job from explorer

Notify explorer and remove explorer
from team

Any suitable local
environments?

Requesting new local
environment?

Yes

Yes

No

No

Yes

No

Send highest ranked job to planner

Place job in assigned jobs list and
remove from unassigned jobs list

Unassigned jobs list
empty?

Sort unassigned jobs list

Identify a planner for the highest
ranked job in the unassigned jobs

list

 (a) (b)

Remove job from assigned jobs list
and place in completed jobs list

Receive job completion notification
from planner

(c)

Figure 6.8: Job queue maintenance flowcharts.

The job received from an explorer JBej consists of the explorer’s ID j and task type

TTj (6.11). Task type TTj is a request for either a new path to an assigned local

environment or a new local environment assignment and path. If explorer j is

requesting a new local environment assignment and there are suitable local

environments remaining, a unique task ID TI is merged with JBej to produce manager

task MTI (6.12). MTI is then appended to UJL (6.13). However, if there are no suitable

local environments remaining to explore, explorer j is notified and removed from the

team by the feedback mechanism (section 5.6). If explorer j is requesting a new path

then its job is appended to UJL.

 { , }ej jJB j TT= (6.11)

Multi-Robot Map Building and Exploration Task

175

 { , }TI ejM TI JB= (6.12)

 { ; }TIUJL UJL M= (6.13)

It is possible for several explorers to send a job to the manager simultaneously.

Hence, there can be several jobs in UJL before a job is forwarded to a planner for

processing. Instead of forwarding jobs to planners in a first in first out (FIFO) manner,

UJL is sorted to enable the most suitable explorers to have their jobs processed first.

Initially, the jobs in UJL are already ranked in ascending order of task ID. Next, the

jobs in UJL are sorted into new local environment assignment jobs and path plan jobs.

Priority is given to jobs requiring a new local environment assignment to reduce the

number of idle robots during exploration. Following this, the new local environment

assignment jobs are sorted in ascending order based on explorer task scores TSej

(section 5.6.1). If there are more local environments available for exploration than

new local environment assignment jobs, no further processing is necessary. However,

if there are more new local environment assignment jobs than local environments

available for exploration, the weakest explorer(s) assignment jobs are purged from

UJL. The weakest explorer(s) are notified that their exploration task is complete and

they are removed from the team by the feedback coordination mechanism

(section 5.6).

After sorting and truncating UJL, the highest ranked job in UJL, M*TT, needs to be

delegated to a planner for processing. All available planners (i.e. planners not

processing any jobs) are ranked in descending order based on planner scores TSpj. The

highest ranked planner is then delegated M*TT. An initially empty assigned jobs list

AJL has M*TT appended to it (6.14). Following this, M*TT is purged from UJL.

 { ; * }TTAJL AJL M= (6.14)

After completing its delegated job, the planner sends a job completion notification to

the manager. When the notification is received by the manager, M*TT is removed from

AJL and placed in the completed jobs list CJL (Figure 6.8(c)).

During exploration, explorers can suffer failures in sensing, actuation, processing and

communication. These failures can be detected by the feedback coordination

176 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

mechanism (section 5.6) and the exploration task can be updated accordingly (Figure

6.9(a)). Similarly, planner failures (mainly due to processing and communication

faults) can also be detected and acted upon (Figure 6.9(b)).

When an explorer fault notification is received, the message is relayed to all planners

and all pending jobs from the failed explorer are purged. Next, the manager attempts

to recover any updated local environment map data from the failed explorer and

integrate it with the global map. Following this, the status of the local environment

assigned to the failed explorer is updated based on exploration quality (section 6.4.2).

If a planner fails, the notification is forwarded to all other planners by the manager.

All jobs delegated to the failed planner are transferred back from AJL to UJL. Planner

failures are generally caused by processor related faults on a robot. Without a

functional processor it is difficult to assign any other role or task to a failed planner.

Hence, such a robot is usually removed from the team and replaced with another robot

(section 6.4).

Receive failed explorer notification

Attempt recovery of any updated
local environment map data from the

failed explorer

Merge retrieved map data with the
global map

Forward notification to all planners

Remove all jobs received from the
failed explorer from the unassigned

and assigned job lists

Update status of local environment
assigned to failed explorer

Receive failed planner notification

Forward notification to all other
planners

Remove all jobs delegated to the
failed planner from the assigned
jobs list and place them in the

unassigned job lists
 (a) (b)

Figure 6.9: Updating the job queue when explorers and planners fail.

Multi-Robot Map Building and Exploration Task

177

6.4.2 Global Map Data and Local Environment Status Updates

Explorers send local environment map data updates to the manager as exploration of

the global world proceeds (Figure 6.10(a)). Updates may be sent while navigating to

an assigned local environment to free up explorer local map memories for new data.

Additionally, updates are sent when exploration of an assigned local environment is

complete. Newly acquired local environment map data must be integrated with the

existing map data on the manager. Similar to Yamauchi [8], Bayes’ rule [130]

integrates the new Pnew and existing Pold occupancy probabilities of map nodes to

produce a combined occupancy probability Pcom.

 .
. (1).(1)

old new
com

old new old new

P PP
P P P P

=
+ − −

 (6.15)

Each local environment is assigned one of the following status values: unexplored

UE, partially explored PE, explored E or being explored BE. Initially, the status of all

local environments is set to UE. When a local environment is assigned to an explorer

its status is updated to BE. The status of a local environment changes again after local

environment map data received from an explorer is integrated with existing map data.

Depending on the overall explored area in the combined map data (6.17), the status is

changed to either E or PE (6.18), (6.19).

Receive local environment map data

from explorer

Merge local environment map data
with the global map

Update status of local environment
assigned to explorer

Receive boggy local environment
notification

Update local environment as boggy
in terrain map

 (a) (b)

Figure 6.10: Global map data update flowcharts.

A flood-filled map is produced by applying a modified flooding algorithm [143] to

the combined map data. The modified flooding algorithm has the ability to flood

obstacles with discontinuous boundary nodes. An element-wise (or node-wise) logical

178 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

comparison is made between the combined map data CMD and flood-filled map data

FMD to generate logical map data LMD (6.16).

 (0.5).()LMD CMD FMD= − (6.16)

The sum of non-zero entries in LMD gives the unexplored nodes Nodesunex in the local

environment. A per unit explored area value EA can be determined from Nodesunex

and the nodes in the combined map data of the local environment NodesCMD. A

threshold EA value EAT can be employed to distinguish between PE and E status

((6.18) (6.19)).

 1 unex

CMD

NodesEA
Nodes

= − (6.17)

 TE EA EA= ≥ (6.18)

 TPE EA EA= < (6.19)

If the status of a local environment assigned to an explorer is changed to PE after

receiving and integrating map data, the explorer should not be reassigned the same

local environment. The manager maintains a record of each explorer’s previously

assigned PE local environments to avoid this scenario.

Explorers also send local environment terrain updates to the manager during

exploration. Initially, all local environments are assumed to be non-boggy. When bogs

are discovered, the explorer sends a notification to the manager to update the local

environment’s terrain data as boggy (Figure 6.10(b)).

6.4.3 Estimated Completion Time (ECT) Computation

The goal of ECT computation is to ensure that the best explorers are selected when

there are less unexplored local environments than explorer robots. This computation

assumes that the local environments and thus global area to be explored has specified

boundaries. A planner requests for an ECT acceptability notification after proposing a

new local environment assignment for explorer j (section 6.3). This request is

received by the manager and processed as described in Figure 6.11.

Multi-Robot Map Building and Exploration Task

179

Compute ECT acceptability

Receive ECT request from planner

ECT acceptable, notify planner

ECT computation
needed?

Yes

No

ECT acceptable? ECT unacceptable, notify planner

Yes

No

Remove planner’s delegated job
from assigned jobs list

Notify explorer and remove explorer
from team

Figure 6.11: ECT flowchart.

ECT computation is required for all explorers if there are less local environments

available for exploration than explorers. The feedback coordination performance data

(section 5.4.1) are employed to estimate the completion time ECTk of the kth explorer

if the proposed local environment is assigned to it. After computation, the ECT data

of all explorers are ranked in ascending order. If explorer j’s rank is not below the

quantity of local environments available for exploration then its ECT is acceptable.

Otherwise, explorer j’s ECT is unacceptable. The outcome of ECT acceptability is

relayed to the planner that requested the computation. If the explorer’s ECT is

unacceptable, the manager removes the planner’s job from the assigned jobs list. The

explorer is also notified and removed from the team by the feedback mechanism

(section 5.4).

ECT computation is not required when there are at least as many local environments

available as explorers. Each explorer’s ECT is assumed to be acceptable and the

180 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

manager notifies the planner to continue with the local environment assignment

process.

6.5 Scalability

Scalability of the map-building and exploration task is largely dependent on the

volume of data that represents a local map. Local map data is frequently utilised by

planners for memory constrained global path planning. Explorers receive local map

data from managers and return updates to managers. Section 5.7 highlights that

worker robots communicate 64 bytes of data to managers for feedback coordination.

This is small in comparison to the local map sizes discussed in chapter 4. A key

finding from chapter 4 is that local map sizes should be kept small to reduce memory

constrained path planning time. Another potential advantage of using smaller local

map sizes is that explorers (some of which may be poor) are confined to smaller areas

of the global environment.

Assuming the worker robots employ 802.11b wireless devices, a maximum bandwidth

of 1408 KB/sec is available. If a local map size of 64 KB is used for exploration with

feedback coordination, a maximum of 21 robots can be controlled. This number can

be further increased to 96 if 802.11g devices are employed by the workers.

6.6 Summary

This chapter has presented a map-building and exploration strategy that takes

advantage of the benefits of hierarchical heterogeneous multi-robot systems. The

presented strategy is well suited for three-tiered multi-robot systems such as [16]

comprising robots with limited sensing and processing abilities. At the highest level

of the hierarchy, manager robots coordinate lower tiered robots and maintain global

information regarding the mapping and exploration task. Robots employed for planner

and explorer tasks at the second and third tiers of the hierarchical system have limited

processing capability or memory capacity. Hence, they utilise the map data stored on

a manager robot for global path planning and map-building.

Multi-Robot Map Building and Exploration Task

181

The presented technique also provides different levels of abstraction. Manager robots

have a global view of the task. On the other hand, explorer robots are only aware of

the section of the environment that they are required to explore. Planners are made

aware of what plans they need to make and for which robots.

Moreover, the mapping and exploration task is designed to be employed by the task

allocation and feedback mechanism presented in chapter 5. Chapter 8 details the

results of performing the multi-robot mapping and exploration task with and without

feedback coordination (section 5.4).

Task Allocation (Devolution) Experiments

183

7 Task Allocation (Devolution)
Experiments

7.1 Overview

This chapter presents experiments on the task allocation strategy described in

chapter 5. The multi-robot map-building and exploration task presented in chapter 6 is

employed as a model global task for the experiments. Section 7.2 presents the task

allocation experiment configurations. It details the tasks, vector of task suitability

(VOTS) summation weight sets, and robot sets that have been employed in the

experiments. Section 7.3 and section 7.4 present the results of the primary and

secondary task devolution processes, respectively. A summary of the experiments

detailed in this chapter is given in section 7.6.

7.2 Task Allocation (Devolution) Experiment
Configurations

The goal of the task allocation (devolution) process is to select the most suitable

robots for the global task. Each robot possesses certain resources while each task

requires a particular set of resources. Four categories of resources are employed to

encode tasks and robots (section 5.2 and section 5.3). These categories include

processing, communication, sensing and actuation. Each resource category can also

have a number of sub-resource categories. As explained in chapter 5, resources

present on a robot are expressed as numerical vectors of merit (VOM). Similarly, the

resources required for a task are expressed as vectors of task requirements (VOTR).

The task devolution process compares the VOTR data for a task with the VOM data

of the available robots to produce a VOTS for each task-robot combination (section

5.5). All valid robot-task combination VOTS data are stored in a robot-task capability

matrix (RTCM). The robots in the RTCM need to be ranked in descending order of

task suitability (based on VOTS data) to permit the selection of the most suitable

184 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

robots. This process can be simplified if the VOTS data can be combined into a single

number.

A set of VOTS summation weights VSWi (section 5.2) is employed to combine the

resource VOTS scores into a single number (5.2). The VOTS summation weights can

be varied depending on the nature of the task. For instance, if a task requires a lot of

planning, a greater weighting can be given to processing when ranking the robots. On

the other hand, sensing and actuation can be given higher weighting if the task

requires a robot to explore an environment. Note that variation of the VOTS

summation weights can affect the ranking of a capable robot in the RTCM. In this

manner, certain robot(s) amongst those capable can be given higher preference for

selection.

In the multi-robot map-building and exploration task presented in chapter 5, there are

two manager tasks (MT1 and MT2 in Table 5.20, section 5.4) and two worker tasks

(WT1 and WT2 in Table 5.21, section 5.4) that need to be allocated. Table 7.1 details

the VOTS summation weight sets evaluated for the manager tasks. A similar set of

weights is applied to test the planner (worker) task. Intuitively, the manager and

planner (worker) tasks are processing and communication resource intensive. Hence,

except for W1, the weights of Table 7.1 give these two resources greater preference

than sensing and actuation. Table 7.2 shows the VOTS summation weights tested for

the explorer (worker) task. Generally, the explorer task is sensing and actuation

resource intensive. Thus, Table 7.2 gives these resources greater preference than

processing and communication (except for W1).

Table 7.1: Manager and planner (worker) task VOTS summation weights.

Weight Set vswproc vswcomm vswsense vswact

W1 0.25 0.25 0.25 0.25
W2 0.30 0.30 0.20 0.20
W3 0.40 0.40 0.10 0.10
W4 0.45 0.45 0.05 0.05
W5 0.50 0.50 0.00 0.00
W6 0.75 0.25 0.00 0.00
W7 1.00 0.00 0.00 0.00
W8 0.25 0.75 0.00 0.00
W9 0.00 1.00 0.00 0.00

Task Allocation (Devolution) Experiments

185

Table 7.2: Explorer (worker) task VOTS summation weights.

Weight Set vswproc vswcomm vswsense vswact

W1 0.25 0.25 0.25 0.25
W2 0.20 0.20 0.30 0.30
W3 0.10 0.10 0.40 0.40
W4 0.05 0.05 0.45 0.45
W5 0.00 0.00 0.50 0.50
W6 0.00 0.00 0.25 0.75
W7 0.00 0.00 0.00 1.00
W8 0.00 0.00 0.75 0.25
W9 0.00 0.00 1.00 0.00

Table 7.3: VOM data of five sets of eight heterogeneous mobile robots.

Robot

ID Resource
Value

Set (a) Set (b) Set (c) Set (d) Set (e)

R1

Proc. Cap. [3.1,1,pc] [2.1,1,pc] [2.1,0.5,pc] [2.1,0.5,pc] [3.1,1,pc]
Comm. Cap. [54,100] [54,100] [54,100] [54,100] [54,100]
Sens. Cap. [12,1.5,360] [13,1.5,360] [13,1.5,360] [11,1.5,360] [14,1.5,360]

Act. Cap. [2.00,0.60,0.5,0.3] [2.00,0.60,0.5,0.3] [2.00,0.60,0.5,0.1] [2.00,0.60,0.5,0.3] [2.00,0.60,0.4,1]

R2

Proc. Cap. [2.1,1,pc] [3.1,0.5,pc] [3.1,1,pc] [3.1,1,pc] [2.1,1,pc]
Comm. Cap. [54,100] [54,100] [54,100] [54,100] [54,100]

Sens. Cap. [13,1.5,360] [13,1.5,360] [13,1.5,360] [13,1.5,360] [12,1.5,360]

Act. Cap. [2.00,0.60,0.5,0.1] [2.00,0.60,0.5,0.1] [2.00,0.60,0.5,0.1] [2.00,0.60,0.4,1] [2.00,0.60,0.4,1]

R3

Proc. Cap. [6,4,mc] [10,16,mc] [10,16,mc] [10,16,mc] [10,16,mc]

Comm. Cap. [11,100] [11,100] [11,100] [11,100] [11,100]
Sens. Cap. [12,1.5,360] [12,1.5,360] [12,1.5,360] [13,1.5,360] [13,1.5,360]

Act. Cap. [1.06,0.25,0.4,1] [1.50,0.40,0.5,0.1] [1.19,0.25,0.5,0.3] [1.19,0.25,0.5,0.3] [1.19,0.25,0.5,0.3]

R4

Proc. Cap. [10,16,mc] [6,4,mc] [6,4,mc] [10,16,mc] [6,2,mc]
Comm. Cap. [11,100] [11,100] [11,100] [11,100] [11,100]
Sens. Cap. [14,1.5,360] [13,1.5,360] [12,1.5,360] [12,1.5,360] [13,1.5,360]

Act. Cap. [1.50,0.40,0.5,0.1] [0.95,0.15,0.5,0.3] [0.95,0.15,0.5,0.3] [1.19,0.25,0.5,0.3] [0.85,0.15,0.4,1]

R5

Proc. Cap. [10,16,mc] [10,16,mc] [10,16,mc] [10,16,mc] [10,16,mc]
Comm. Cap. [11,100] [11,100] [11,100] [11,100] [11,100]

Sens. Cap. [13,1.5,360] [13,1.5,360] [12,1.5,360] [11,1.5,360] [14,1.5,360]

Act. Cap. [1.50,0.40,0.5,0.1] [1.43,0.40,0.5,0.3] [1.25,0.25,0.5,0.1] [1.25,0.25,0.5,0.1] [1.50,0.40,0.5,0.1]

R6

Proc. Cap. [6,4,mc] [10,16,mc] [10,16,mc] [6,2,mc] [6,4,mc]

Comm. Cap. [11,100] [11,100] [11,100] [11,100] [11,100]
Sens. Cap. [12,1.5,360] [11,1.5,360] [14,1.5,360] [11,1.5,360] [13,1.5,360]

Act. Cap. [1.06,0.25,0.4,1] [1.43,0.40,0.5,0.3] [1.19,0.25,0.5,0.3] [1.19,0.25,0.5,0.3] [1.19,0.25,0.5,0.3]

R7

Proc. Cap. [6,2,mc] [6,2,mc] [6,4,mc] [6,4,mc] [10,16,mc]
Comm. Cap. [11,100] [11,100] [11,100] [11,100] [11,100]
Sens. Cap. [13,1.5,360] [11,1.5,360] [12,1.5,360] [13,1.5,360] [11,1.5,360]

Act. Cap. [1.43,0.40,0.5,0.3] [1.43,0.40,0.5,0.3] [1.06,0.25,0.4,1] [1.25,0.25,0.5,0.1] [1.25,0.25,0.5,0.1]

R8

Proc. Cap. [6,4,mc] [6,4,mc] [10,16,mc] [6,4,mc] [10,16,mc]
Comm. Cap. [11,100] [11,100] [11,100] [11,100] [11,100]

Sens. Cap. [13,1.5,360] [12,1.5,360] [10,1.5,360] [11,1.5,360] [10,1.5,360]

Act. Cap. [1.25,0.25,0.5,0.1] [1.19,0.25,0.5,0.3] [1.19,0.25,0.5,0.3] [0.95,0.15,0.5,0.3] [1.06,0.25,0.4,1]

186 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

Table 7.3 details randomly generated VOM data for five sets of eight robots. Each

robot set is independent and represents a situation where eight candidate robots are

available for task allocation. The numerical values for each resource type have been

randomly selected from a set of practical values. Section 5.3 explains the numerical

data values presented in Table 7.3 and section 5.4 provides sample data from real

robots.

Table 7.4: VOM data of Table 7.3 simplified with FISs.

Robot
ID Resource

Value

Set (a) Set (b) Set (c) Set (d) Set (e)

R1

Proc. Cap. [2,0.54] [2,0.53] [2,0.46] [2,0.46] [2,0.54]
Comm. Cap. [0.87] [0.87] [0.87] [0.87] [0.87]
Sens. Cap. [0.52] [0.54] [0.54] [0.51] [0.55]

Act. Cap. [0.58] [0.58] [0.58] [0.58] [0.58]

R2

Proc. Cap. [2,0.53] [0.47] [2,0.54] [2,0.54] [2,0.53]
Comm. Cap. [0.87] [0.87] [0.87] [0.87] [0.87]

Sens. Cap. [0.54] [0.54] [0.54] [0.54] [0.52]

Act. Cap. [0.58] [0.58] [0.58] [0.58] [0.58]

R3

Proc. Cap. [1,0.38] [1,0.86] [1,0.86] [1,0.86] [1,0.86]

Comm. Cap. [0.63] [0.63] [0.63] [0.63] [0.63]
Sens. Cap. [0.52] [0.52] [0.52] [0.54] [0.54]

Act. Cap. [0.39] [0.50] [0.49] [0.49] [0.49]

R4

Proc. Cap. [1,0.86] [1,0.38] [1,0.38] [1,0.86] [1,0.33]
Comm. Cap. [0.63] [0.63] [0.63] [0.63] [0.63]
Sens. Cap. [0.55] [0.54] [0.52] [0.52] [0.54]

Act. Cap. [0.50] [0.30] [0.30] [0.49] [0.26]

R5

Proc. Cap. [1,0.86] [1,0.86] [1,0.86] [1,0.86] [1,0.86]
Comm. Cap. [0.63] [0.63] [0.63] [0.63] [0.63]

Sens. Cap. [0.54] [0.54] [0.52] [0.51] [0.55]

Act. Cap. [0.50] [0.50] [0.50] [0.50] [0.50]

R6

Proc. Cap. [1,0.38] [1,0.86] [1,0.86] [1,0.33] [1,0.38]

Comm. Cap. [0.63] [0.63] [0.63] [0.63] [0.63]
Sens. Cap. [0.52] [0.51] [0.55] [0.51] [0.54]

Act. Cap. [0.39] [0.50] [0.49] [0.49] [0.49]

R7

Proc. Cap. [1,0.33] [1,0.33] [1,0.38] [1,0.38] [1,0.86]
Comm. Cap. [0.63] [0.63] [0.63] [0.63] [0.63]
Sens. Cap. [0.54] [0.51] [0.52] [0.54] [0.51]

Act. Cap. [0.50] [0.50] [0.39] [0.50] [0.50]

R8

Proc. Cap. [1,0.38] [1,0.38] [1,0.86] [1,0.38] [1,0.86]
Comm. Cap. [0.63] [0.63] [0.63] [0.63] [0.63]

Sens. Cap. [0.54] [0.52] [0.50] [0.51] [0.50]

Act. Cap. [0.50] [0.49] [0.49] [0.30] [0.39]

Task Allocation (Devolution) Experiments

187

The detailed robot capability data presented in Table 7.3 is combined with fuzzy

inference systems (section 5.3) to produce an overall score for each resource type

(Table 7.4). Table 7.4 and the task descriptions presented in chapter 5 (Table 5.20 and

Table 5.21) are utilised for task devolution experiments in this chapter.

The effect of applying the VOTS summation weights of Table 7.1 and Table 7.2 on

the five sets of robots has been investigated. Results of applying the VOTS

summation weights of Table 7.1 and Table 7.2 are presented in Figure 7.1 – Figure

7.15. The five graphs ((a)–(e)) in each figure illustrate results for each robot set (Table

7.3). All robots identified in the results figures are capable of task execution. If a

robot is not listed in the graphs then it is incapable of task execution.

VOTS weighted sum (VOTSWS) data (Figure 7.1 and Figure 7.4) and Value data

(Figure 7.7 and Figure 7.11) illustrate intermediate results of the task allocation

process. The data presented in these figures is employed to rank the capable robots

and select the most suitable robot(s). While VOTSWS data are computed using VOTS

data and summation weights only, Value data calculation also includes a task

diversity capability (TD) input (Table 5.26, section 5.5.1). VOTSWS data ranks

candidate manager robots and Value data ranks candidate worker robots.

In Figure 7.1 and Figure 7.4, it is important to note that higher VOTSWS data values

does not necessarily mean that the corresponding weight set is better. Instead, it is the

relative VOTSWS data values within a weight set that is important. This is also valid

for the Value data presented in Figure 7.7 and Figure 7.11. The sole purpose of

varying the VOTS summation weights is to investigate change in robot rankings

based on the calculated VOTSWS and Value data. Section 5.5.2 presents an example

of VOTSWS and Value data calculation for the task and robot descriptions detailed in

Table 5.20 – Table 5.22.

Figure 7.3, Figure 7.6, Figure 7.10, Figure 7.14 and Figure 7.15 display the robots that

are assigned tasks. In these figures, an ‘x’ indicates that a robot has been selected for

the respective task.

Since each robot set is independent and robot capabilities are randomly selected,

comparisons between robots with the same IDs are invalid.

188 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

7.3 Primary Task Devolution Results

Figure 7.1 illustrates the variation in VOTS weighted sum (VOTSWS) data as the

VOTS summation weights are varied according to Table 7.1 for manager task MT1.

In all five robot sets, only robots R1 and R2 are capable of executing task MT1. The

VOTSWS data varies in all five robot sets, but does not indicate a change in robot

rankings (Figure 7.1 (a)–(e)).

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
VOTSWS Data

V
al

ue

R1
R2

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
VOTSWS Data

V
al

ue

R1
R2

 (a) (b)

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
VOTSWS Data

V
al

ue

R1
R2

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
VOTSWS Data

V
al

ue

R1
R2

 (c) (d)

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
VOTSWS Data

V
al

ue

R1
R2

(e)

Figure 7.1: VOTSWS data for manager task MT1.

Task Allocation (Devolution) Experiments

189

Applying non-zero weightings for sensing and actuation (W1–W4 in Table 7.1) can

alter the difference between VOTSWS data of the candidate robots. Weight set W7

gives weighting only to processing for all robot sets. When the processing resources

of robots R1 and R2 are compared to the low processing requirement of task MT1,

large VOTS data is obtained for the processing resource. This results in higher

VOTSWS values when weight set W7 is employed.

W1 W2 W3 W4 W5 W6 W7 W8 W9

1

2
Robot Rankings

R
an

k

R1
R2

W1 W2 W3 W4 W5 W6 W7 W8 W9

1

2
Robot Rankings

R
an

k

R1
R2

 (a) (b)

W1 W2 W3 W4 W5 W6 W7 W8 W9

1

2
Robot Rankings

R
an

k

R1
R2

W1 W2 W3 W4 W5 W6 W7 W8 W9

1

2
Robot Rankings

R
an

k

R1
R2

 (c) (d)

W1 W2 W3 W4 W5 W6 W7 W8 W9

1

2
Robot Rankings

R
an

k

R1
R2

(e)

Figure 7.2: Robot rankings for manager task MT1.

For weight set W9, weighting is only given to communication. Since all capable

robots possess the same communication resources they have equal VOTSWS data at

190 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

weight W9. Figure 7.2 (a)–(e) shows that the rankings of robots R1 and R2 remain the

same for weight sets W1–W8. Thus, Figure 7.3 (a)–(e) shows that the same robot is

assigned manager task MT1 within each robot set, for all the tested weight sets.

Weight Set Robot

ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2 x x x x x x x x x

R3

R4

R5

R6

R7

R8

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2 x x x x x x x x x

R3

R4

R5

R6

R7

R8

 (a) (b)

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1 x x x x x x x x x

R2

R3

R4

R5

R6

R7

R8

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1 x x x x x x x x x

R2

R3

R4

R5

R6

R7

R8

 (c) (d)

Weight Set Robot

ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2 x x x x x x x x x

R3

R4

R5

R6

R7

R8

(e)

Figure 7.3: Robot(s) assigned to manager task MT1.

Intuitively, weight set W5 has been selected to give equal weighting to processing and

communication capability data.

Figure 7.4, Figure 7.5 and Figure 7.6 show the VOTSWS data, robot rankings and

selected robots, respectively, for manager task MT2. Similar to manager task MT1,

Task Allocation (Devolution) Experiments

191

the VOTSWS data varies in all robot sets (Figure 7.4 (a)–(e)). Minimum VOTSWS

data is obtained when weighting is given to processing only (weight set W7 in Table

7.1). A higher processing requirement for task MT2 results in lower VOTSWS values

when weight set W7 is employed.

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
VOTSWS data

V
al

ue

R1
R2

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
VOTSWS data

V
al

ue

R1
R2

 (a) (b)

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
VOTSWS data

V
al

ue

R1
R2

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
VOTSWS data

V
al

ue

R1
R2

 (c) (d)

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
VOTSWS data

V
al

ue

R1
R2

(e)

Figure 7.4: VOTSWS data for manager task MT2.

All capable robots have identical VOTSWS data for weight set W9 since they possess

identical communication resources. Similar to task MT1, applying non-zero

weightings to sensing and actuation resources (W1–W4 in Table 7.1) alters VOTSWS

data. Weight sets W1–W8 do not alter the rankings of capable robots within each

192 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

robot set (Figure 7.5 (a)–(e)). Hence, in each robot set, all tested weight combinations

assign the same robot to task MT2 (Figure 7.6 (a)–(e)).

W1 W2 W3 W4 W5 W6 W7 W8 W9

1

2
Robot Rankings

R
an

k

R1
R2

W1 W2 W3 W4 W5 W6 W7 W8 W9

1

2
Robot Rankings

R
an

k

R1
R2

 (a) (b)

W1 W2 W3 W4 W5 W6 W7 W8 W9

1

2
Robot Rankings

R
an

k

R1
R2

W1 W2 W3 W4 W5 W6 W7 W8 W9

1

2
Robot Rankings

R
an

k

R1
R2

 (c) (d)

W1 W2 W3 W4 W5 W6 W7 W8 W9

1

2
Robot Rankings

R
an

k

R1
R2

(e)

Figure 7.5: Robot rankings for manager task MT2.

It is important to point out that the second best robot is always selected for task MT1

(Figure 7.2 and Figure 7.3) while the best robot is selected for task MT2 (Figure 7.5

and Figure 7.6). Task MT2 is more difficult than task MT1 due to its higher

processing and communication requirements. This gives task MT2 priority for

assignment during task allocation. Figure 7.1 (task MT1) shows VOTSWS values

Task Allocation (Devolution) Experiments

193

greater than 0.4 for all tested configurations. On the other hand, VOTSWS values are

less than 0.3 for all tested configurations in Figure 7.4 (task MT2). Since the

VOTSWS values for task MT1 are greater than task MT2, this verifies that task MT2

is more difficult than task MT1.

Weight Set Robot

ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1 x x x x x x x x x

R2

R3

R4

R5

R6

R7

R8

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1 x x x x x x x x x

R2

R3

R4

R5

R6

R7

R8

 (a) (b)

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2 x x x x x x x x x

R3

R4

R5

R6

R7

R8

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2 x x x x x x x x x

R3

R4

R5

R6

R7

R8

 (c) (d)

Weight Set Robot

ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1 x x x x x x x x x

R2

R3

R4

R5

R6

R7

R8

(e)

Figure 7.6: Robots assigned to manager task MT2.

194 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

7.4 Secondary Task Devolution Results
7.4.1 Worker Task WT1 (Planner)

Figure 7.7 – Figure 7.10 details the results of VOTS summation weight variation

(Table 7.1) for worker task WT1 (planner). Weight sets W1–W4 give weighting to all

four resource types. No weighting is given to sensing and actuation resources in

weight sets W5–W9. In weight set W7, weighting is only given to processing.

Communication is solely preferred in weight set W9.

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Value Data

V
al

ue

R3
R4
R5
R6
R8

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Value Data

V
al

ue

R3
R4
R5
R6
R8

 (a) (b)

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Value Data

V
al

ue

R3
R4
R5
R6
R7
R8

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Value Data

V
al

ue

R3
R4
R5
R7
R8

 (c) (d)

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Value Data

V
al

ue

R3
R5
R6
R7
R8

(e)

Figure 7.7: Value data for worker task WT1 (planner).

Task Allocation (Devolution) Experiments

195

Figure 7.7 shows the variation in Value data as the weights are varied according to

Table 7.1. The robots plotted in each robot set are capable of executing worker task

WT1. In all five robot sets, robots R1 and R2 are not identified as candidate worker

robots since they have already been categorised as manager robots in section 7.3.

Robots with ‘good’ processing capabilities tend to show a gradual increase in Value

data as the weight sets are varied from W1–W9. For example, R4 and R5 in robot set

(a) (Figure 7.7 (a)) have processing capability scores of 0.86 (as illustrated in Table

7.4). A similar trend is visible in the other robot sets.

Value data is highest for all robots at weight set W9. This indicates that all robots

have communication capabilities that are much greater than the task’s minimum

requirement when compared to other resource types (processing, sensing, or

actuation). All candidate worker robots possess identical communication devices in

the tested configurations. However, Value data can vary depending on the number of

different tasks that a robot is capable of performing. For example, R4 in robot set (b)

(Figure 7.7 (b)) has a lower Value than other robots at W9 since it is incapable of

executing task WT2 (explorer).

Robots with processing capabilities close to the minimum requirement generally

exhibit little variation in Value data as the weight sets are varied from W1–W5 (e.g.

R8 in sets (a) and (d) (Figure 7.7 (a),(d)) or R4 in sets (b) and (c) (Figure 7.7 (b),(c))).

However, there can be a slight increase until W5 (e.g. R3 in set (a) (Figure 7.7 (a)), or

R8 in set (b) (Figure 7.7 (b)) or R7 in set (c) (Figure 7.7 (c)) attributed to the good

communication capabilities of the robots. For weights sets W6 and W7, Value data is

decreased due to the high weighting of processing capability. Weight sets W8 and W9

exhibit an increase in Value compared to W7 in all robot sets. This is due to the

weighting for communication being greater than processing.

Based on the Value data of Figure 7.7, Figure 7.8 illustrates the robot rankings for the

planner worker task. A robot with a rank of unity has the highest rank.

Figure 7.8 shows that four robot sets (Figure 7.8 (a),(b),(c),(e)) out of five produce

identical rankings within their respective sets when weight sets W1–W4 are applied.

Robot set (d) (Figure 7.8 (d)) shows a change in ranking for R4 and R5 when weight

196 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

sets W3 and W4 are employed. In weight sets W1 and W2, R4 and R5 are ranked

third and second, respectively. But, in weight sets W3 and W4, R4 and R5 are ranked

second and third, respectively. This change can be attributed to the fuzzy combination

of VOTS data. It should also be noted that the Value data of R4 and R5 are almost

identical for weight sets W2, W3, and W4 (Figure 7.7 (d)). A key point to note is that

each robot has a unique rank when weight sets W1–W4 are applied to the tested robot

sets.

W1 W2 W3 W4 W5 W6 W7 W8 W9

1

2

3

4
Robot Rankings

R
an

k

R3
R4
R5
R6
R8

W1 W2 W3 W4 W5 W6 W7 W8 W9

1

2

3

4

5
Robot Rankings

R
an

k

R3
R4
R5
R6
R8

 (a) (b)

W1 W2 W3 W4 W5 W6 W7 W8 W9

1

2

3

4

5

6
Robot Rankings

R
an

k

R3
R4
R5
R6
R7
R8

W1 W2 W3 W4 W5 W6 W7 W8 W9

1

2

3

4

5
Robot Rankings

R
an

k

R3
R4
R5
R7
R8

 (c) (d)

W1 W2 W3 W4 W5 W6 W7 W8 W9

1

2

3

4

5
Robot Rankings

R
an

k

R3
R5
R6
R7
R8

(e)

Figure 7.8: Robot rankings for worker task WT1 (planner).

Task Allocation (Devolution) Experiments

197

Weight sets W5–W8 produce identical robot rankings within each robot set for all

tested robot sets. Additionally, multiple robots have identical ranks for an individual

weight set when these weight sets are employed. Similar to weight sets W5–W8,

weight set W9 produces identical ranks for multiple robots in all robot sets.

Hence, Figure 7.8 illustrates that applying weightings to sensing and actuation in

addition to processing and communication allows each robot to have a unique rank. A

planner task is generally more processing and communication intensive than sensing

and actuation. This means that the weightings of processing and communication

should be greater than sensing and actuation. Weight set W3 has been selected since it

has low weightings for sensing and actuation. It should be noted that weight sets W2

or W4 could be used as well. Applying small weightings to sensing and actuation also

permits the task allocation process to give a higher ranking (closer to 1) to robots with

better sensing and actuation resources. This is beneficial since a planner may also

need to be mobile during execution of the multi-robot exploration task.

Worker task WT1 task score data (Figure 7.9) is utilised by the mapping and

exploration task (chapter 6) for allocating planning requests made by explorers to the

planners. Figure 7.9 illustrates that the task score data for robots with good processing

resources approaches unity as the weight sets are altered from W1–W7. One example

is R5 and R6 in robot set (b). Another example is R3, R5, and R8 in robot set (c). On

the other hand, task score data for robots with weaker processing resources

approaches zero as the weights are varied from W1–W7. An example of this is R4 and

R8 in robot set (b). Another example is R7 and R8 in robot set (d). Task score data are

high in weight sets W8 and W9 due to the high weighting of the good communication

resources present on all robots.

198 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Task Score Data

V
al

ue

R3
R4
R5
R6
R8

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Task Score Data

V
al

ue

R3
R4
R5
R6
R8

 (a) (b)

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Task Score Data

V
al

ue

R3
R4
R5
R6
R7
R8

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Task Score Data

V
al

ue

R3
R4
R5
R7
R8

 (c) (d)

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Task Score Data

V
al

ue

R3
R5
R6
R7
R8

(e)

Figure 7.9: Task score data for worker task WT1 (planner).

Figure 7.10 details the robots assigned to the planner worker task for the tested weight

and robot sets. In all five robot sets, the same robot is selected within each respective

set for weight sets W1–W4. Similarly, the same robot within each respective robot set

is chosen when weight sets W5–W8 are applied. Weight set W9 only gives weighting

to the identical communication resources present on all robots. Thus, the robot with

the lowest identification number (R3) is selected for all robot sets when weight set

W9 is applied. In three robot sets (Figure 7.10 (b),(c),(e)), applying small weightings

to sensing and actuation (W1–W4) selects a robot that is different from the selection

Task Allocation (Devolution) Experiments

199

when no weighting is given to these two resource types (W5–W9). However, the

selected robots have identical processing resources for all three robot sets.

Weight Set Robot

ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2

R3 x

R4 x x x x x x x x

R5

R6

R7

R8

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2

R3 x x x x x

R4

R5 x x x x

R6

R7

R8

 (a) (b)

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2

R3 x x x x x

R4

R5

R6 x x x x

R7

R8

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2

R3 x x x x x x x x x

R4

R5

R6

R7

R8

 (c) (d)

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2

R3 x x x x x

R4

R5 x x x x

R6

R7

R8

(e)

Figure 7.10: Robots assigned to worker task WT1 (planner).

7.4.2 Worker Task WT2 (Explorer)

Results of VOTS summation weight variation (Table 7.2) for worker task WT2

(explorer) are illustrated in Figure 7.11 – Figure 7.15. Weightings are given to all four

resource types in weight sets W1–W4. Weight sets W5–W9 do not give any

weighting to processing and communication resources. Actuation is the only resource

given weighting in weight set W7. Weight set W9 only gives weighting to sensing.

200 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

Figure 7.11 details the variation in Value data as the weights are changed according to

Table 7.2. In all robot sets, the low processing and communication requirements for

the explorer task produces higher Value data in weight sets W1–W4 when compared

to weight set W5. As the weight sets are altered from W1 to W4, the weightings for

processing and communication are reduced thus lowering the Value data.

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Value Data

V
al

ue

R3
R4
R5
R6
R7
R8

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Value Data

V
al

ue

R3
R5
R6
R7
R8

 (a) (b)

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Value Data

V
al

ue

R3
R5
R6
R7
R8

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Value Data

V
al

ue

R3
R4
R5
R6
R7

 (c) (d)

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Value Data

V
al

ue

R3
R5
R6
R7
R8

(e)

Figure 7.11: Value data for worker task WT2 (explorer).

Equal weighting is given to sensing and actuation in weight set W5. Weight sets W7

and W9 give weighting to only sensing and actuation, respectively. Comparing the

Task Allocation (Devolution) Experiments

201

Value data for these three weight sets shows that W5 has the lowest Value data. This

trend is present in all robot sets. Employing FISs to calculate Value data produces

these reduced values. However, the value data within a particular weight set is critical

for ranking robots. When compared to 100% actuation (W7) and 100% sensing (W9),

the Value data for all robots is reduced proportionally in W5.

Similar to weight set W5, weight sets W6 and W8 also exhibit a slight reduction in

Value data when compared with 100% actuation (W7) and 100% sensing (W9). This

reduction in Value is also due to the FISs employed for Value data calculation. At

W6, the FISs give 75% weighting to actuation and 25% weighting to sensing but

reduce the Value data for all robots in similar proportion. A similar trend is noticed at

W8 where 25% weighting is given to actuation and 75% weighting to sensing.

In Figure 7.11 (a),(b),(d), one robot (R7, R7, and R6, respectively) has a much lower

value compared to the other robots within the respective robot set. This is due to that

particular robot not having sufficient processing resources to execute planner task

WT1.

Figure 7.12 illustrates the robot rankings obtained from the Value data of Figure 7.11

for the explorer task. Similar to the planner task WT1, a robot with a rank of unity has

the highest rank. All five robot sets produce identical rankings within their respective

sets for weight sets W1–W4. One robot set (Figure 7.12 (a)) produces an identical

rank (4th) for two robots (R3 and R6) for all weightings. Table 7.4 shows that these

two robots have identical resource capabilities. In all other robot sets, each robot has a

unique rank when weight sets W1–W4 are applied.

Applying weight sets W5–W9 ranks the candidate robots based on sensing and

actuation resources only. It is possible for robots to have identical rankings for some

weight sets due to identical sensing and actuation resources. This is valid for all

robots sets (Figure 7.12 (a)–(e)) at weight sets W7 and W9 where weighting is only

given to actuation and sensing resources, respectively. Figure 7.12 (a)–(e) show that

robot rankings can be altered when weight sets W5–W9 are employed. At most, the

ranking of a robot changes by one position if both sensing and actuation are weighted

(weight sets W5, W6, and W8). A maximum rank change of three positions is shown

in Figure 7.12 (e) at weight set W7 for R7. Similarly, R7 in Figure 7.12 (c) exhibits a

202 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

rank change of three positions at weight set W9. In these two situations, the change is

due to a robot being strong in one resource type but weaker in all other resource types.

W1 W2 W3 W4 W5 W6 W7 W8 W9

1

2

3

4

5

6
Robot Rankings

R
an

k

R3
R4
R5
R6
R7
R8

W1 W2 W3 W4 W5 W6 W7 W8 W9

1

2

3

4

5
Robot Rankings

R
an

k

R3
R5
R6
R7
R8

 (a) (b)

W1 W2 W3 W4 W5 W6 W7 W8 W9

1

2

3

4

5
Robot Rankings

R
an

k

R3
R5
R6
R7
R8

W1 W2 W3 W4 W5 W6 W7 W8 W9

1

2

3

4

5
Robot Rankings

R
an

k

R3
R4
R5
R6
R7

 (c) (d)

W1 W2 W3 W4 W5 W6 W7 W8 W9

1

2

3

4

5
Robot Rankings

R
an

k

R3
R5
R6
R7
R8

(e)

Figure 7.12: Robot rankings for worker task WT2 (explorer).

Thus, it is possible to achieve a unique rank for non-identical robots by applying

weightings to planning and communication in addition to sensing and actuation. The

explorer task is generally more sensing and actuation intensive than processing and

communication. Hence, the weightings of sensing and actuation are expected to be

greater that sensing and actuation. Weight set W4 has been selected as it provides low

weightings for processing and communication in addition to sensing and actuation.

Task Allocation (Devolution) Experiments

203

Weight sets W2 and W3 could also be employed since they produce the same

rankings as W4. A better ranking (closer to unity) is achieved for robots with better

processing and communication resources when small weightings are provided for

these two resources. This can be beneficial since the selected robot(s) may be able to

execute the planner task when a planner robot fails during task execution.

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Task Score Data

V
al

ue

R3
R4
R5
R6
R7
R8

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Task Score Data

V
al

ue

R3
R5
R6
R7
R8

 (a) (b)

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Task Score Data

V
al

ue

R3
R5
R6
R7
R8

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Task Score Data

V
al

ue

R3
R4
R5
R6
R7

 (c) (d)

W1 W2 W3 W4 W5 W6 W7 W8 W9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Task Score Data

V
al

ue

R3
R5
R6
R7
R8

(e)

Figure 7.13: Task score data for worker task WT2 (explorer).

Figure 7.13 illustrates the initial task score data for worker task WT2. This data is

utilised to bias the allocation of exploration areas to explorer robots in the mapping

and exploration task (chapter 6). Section 5.5.1 details the computation of task score

204 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

data. Task score data is close to unity (> 0.9) for all robots within each robot set when

weighting is given to only sensing and actuation resources (weight sets W5–W9).

Giving weighting to planning and communication in addition to sensing and actuation

(weight sets W1–W4), produces lower task score data for some robots in each robot

set. The robots with lower task scores have weaker processing capabilities than the

robots with higher task scores in these weight sets (W1–W4). For example, at W1 in

set (a) R3 has a processing capability of 0.38 (from Table 7.4) and a task score of

0.72. But, R4 with a processing capability of 0.86 (also from Table 7.4) produces a

task score of 1 at W1 in set (a).Weight set W4 has the least task score reduction

amongst weight sets W1–W4 for all five robot sets.

Weight Set Robot

ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2

R3 x x x x x x x x x

R4 x x x x x x x x x

R5 x x x x x x x x x

R6 x x x x x x x x x

R7

R8 x x x x x x x x x

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2

R3 x x x x x x x x x

R4

R5 x x x x x x x x x

R6 x x x x x x x x x

R7 x x x x x x x x x

R8 x x x x x x x x x

 (a) (b)

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2

R3 x x x x x x x x x

R4

R5 x x x x x x x x x

R6 x x x x x x x x x

R7 x x x x x x x x x

R8 x x x x x x x x x

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2

R3 x x x x x x x x x

R4 x x x x x x x x x

R5 x x x x x x x x x

R6 x x x x x x x x x

R7 x x x x x x x x x

R8

 (c) (d)

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2

R3 x x x x x x x x x

R4

R5 x x x x x x x x x

R6 x x x x x x x x x

R7 x x x x x x x x x

R8 x x x x x x x x x

(e)

Task Allocation (Devolution) Experiments

205

Figure 7.14: Robots assigned to worker task WT2 (explorer) when five explorers
are required.

The multi-robot mapping and exploration task (chapter 6) and feedback coordination

mechanism (section 5.6) have been tested on teams comprising five, three, and one

explorer(s). Hence, the selection of these quantities of explorer robots is examined.

For a team of five explorers, Figure 7.14 reveals that the same five explorers are

selected for all weight sets within each robot set.

Weight Set Robot

ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2

R3

R4 x x x x x x x x x

R5 x x x x x x x x x

R6

R7

R8 x x x x x x x x x

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2

R3 x x x x x x x x x

R4

R5 x x x x x x x x x

R6 x x x x x x

R7

R8 x x x

 (a) (b)

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2

R3 x x x x x x x x x

R4

R5 x x x x x x x x x

R6 x x x x x x x x x

R7

R8

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2

R3 x x x x x x x x x

R4 x x x x x x x

R5 x x x x x x

R6

R7 x x x x x

R8

 (c) (d)

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2

R3 x x x x x x x x x

R4

R5 x x x x x x x x x

R6 x x x x

R7 x x x x x

R8

(e)

Figure 7.15: Robots assigned to worker task WT2 (explorer) when three
explorers are required.

Figure 7.15 details the robots selected when three explorers are required. Weight set

W4 selects at least two robots that are also chosen in all other weight sets for each of

the five robot sets. Figure 7.15 (a) and Figure 7.15 (c) select the same three robots for

206 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

all weight sets. Six out of eight weight sets (including W4) choose the same robots in

Figure 7.15 (b). Figure 7.15 (d) and Figure 7.15 (e) select identical robots for four out

of eight and five out of eight weight sets (including W4), respectively.

Weight Set Robot

ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2

R3

R4 x x x x x x x x x

R5

R6

R7

R8

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2

R3 x

R4

R5 x x x x x x x x

R6

R7

R8

 (a) (b)

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2

R3

R4

R5 x

R6 x x x x x x x x

R7

R8

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2

R3 x x x x x

R4

R5 x

R6

R7 x x x

R8

 (c) (d)

Weight Set Robot
ID W1 W2 W3 W4 W5 W6 W7 W8 W9

R1

R2

R3

R4

R5 x x x x x x x x x

R6

R7

R8

(e)
Figure 7.16: Robots assigned to worker task WT2 (explorer) when one explorer

is required.

If a single explorer is to be chosen, the robot with a rank of one in each weight set –

robot set combination is the best candidate. Figure 7.16 illustrates this result. The

same robot would be selected for all weight sets in robot sets (a) and (e). Robot sets

(b) and (c) select the same robot for all weight sets except W7. Three robots (R3, R5,

and R6) in set (b) (Figure 7.12 (b)) have an equal highest ranking at W7 due to

identical actuation resource scores. Thus the robot with the lowest ID (R3) is selected.

Task Allocation (Devolution) Experiments

207

In robot set (c), R5 is selected at weight set W7 since it has the best actuation

capabilities.

Robot set (d) (Figure 7.16 (d)) produces mixed results. The better processing

capabilities of R3 give it the highest ranking in weight sets W1–W4. When weighting

is given to sensing and actuation using weight sets W5–W8, R7 is the best robot since

it has the best sensing and actuation resources. Weight set W9 selects R3 as the best

robot since it has identical sensing resources to R7 and has a lower identification

number.

7.5 Alternative Techniques

Several methods for multi-robot task allocation have been reviewed in section 2.7. A

key difference between these methods and the work presented in this chapter is the

ability of the developed task allocation strategy to select robots using reduced human

user input. Unlike the methods of section 2.7, tasks are specified with graded inputs

(such as ‘low’, ‘medium’, or ‘high’) of processing, communication, sensing, and

actuation physical resource requirements.

Other methods that utilise robot capabilities and task requirements for multi-robot

task allocation are ASyMTRe [21], Vig and Adams [13], and RACHNA [115]. These

methods use more complex heuristic greedy strategies (anytime algorithms [144],

Shehory and Kraus’ algorithm [114], and market-based reverse auctions [115],

respectively) to select robots for tasks. This gives them the ability to select a better

team than the developed system for a given task specification, although still not

optimal. Tasks need to be specified in a more complex manner in these task allocation

methods. Additionally, there is no guarantee that any selected team will remain the

best during task execution.

Based on the taxonomy of multi-robot task allocation by Gerkey and Mataric [94], the

task allocation method developed in this thesis belongs to the multi-task robots,

single-robot tasks (MT-SR) classification. This type of task allocation is uncommon

as it assumes that robots can concurrently execute multiple tasks. None of the multi-

robot task allocation methods reviewed in section 2.7 are of this type. Most robot

208 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

tasks require sensing and actuation components and it is often difficult to utilise these

resources simultaneously for multiple tasks. However, as demonstrated in this thesis,

computational tasks (such as planning) can be coupled with sensing or actuation tasks

(such as exploration). The other methods that use robot capabilities and task

requirements for multi-robot task allocation [13, 21, 115] belong to the single-task

robots, multi-robot tasks (ST-MR) classification. However, MT-SR and ST-MR

problems can be solved using similar algorithms.

If there is only one type of task to be allocated, the developed task allocation method

becomes an equivalent of the iterated single-task robots, single-robot tasks (ST-SR)

classification. The assignment of tasks to robots then becomes similar to BLE [102],

ALLIANCE [12], and M+ [98] algorithms. These instances of the canonical greedy

algorithm are known to be 2-competitive for the optimal assignment problem [145].

This means that in the worst case, these algorithms produce a solution whose benefit

is half of the optimal benefit. However, anecdotal evidence suggests that the greedy

algorithm works extremely well on typical multi-robot task allocation problems [94].

Market-based multi-robot task allocation methods [9, 97, 98, 100, 101, 105] are well

suited for situations where there are more tasks than robots. They are suitable for

applications where the costs and revenues of tasks can be quantified. An auctioning

mechanism assigns tasks based on the bids placed by robots. This process is similar to

a canonical greedy algorithm. As mentioned in section 2.7, it can be difficult to

determine the revenue and cost functions for robot physical capabilities (such as

processing, communication, sensing, and actuation) in market-based multi-robot task

allocation. The only method that uses a variant of market-based methods for task

allocation using physical robot capabilities [115] recognises this difficulty.

The specification of tasks with graded inputs for non-expert users has a limitation. If

the task requirements are incorrectly specified, the initial selection of robots is likely

to be inadequate regardless of the search algorithms utilised for the selection process.

Due to this limitation, a simple greedy algorithm is utilised instead of more complex

meta heuristic algorithms such as genetic algorithms, Tabu search, branch and bound,

or pattern search [138]. To address this limitation, a feedback system (evaluated in

Task Allocation (Devolution) Experiments

209

chapter 8) is utilised to monitor robot performance for detecting and correcting

failures.

7.6 Summary

This chapter has presented results on a task allocation strategy that can be employed

by a hierarchical heterogeneous multi-robot system comprising limited capability

mobile robots. A multi-robot mapping and exploration task (chapter 6) has been

employed as a model task for task allocation experiments on five sets of eight mobile

robots. Tasks are specified with reduced (simplified) human user inputs, unlike the

more complex specifications of the task allocation methods reviewed in section 2.7.

This reduction requires additional effort from an expert user in designing FISs

(section 5.3 and section 5.5) to match tasks and robots. The primary task devolution

process is able to successfully identify and select suitable robots for manager tasks.

Worker robots are also successfully identified and selected during the secondary task

devolution process. Small weightings for sensing and actuation in the planner worker

task (W1–W4 in Table 7.1) are able to provide unique ranks for multiple candidate

robots. This can also be beneficial since a planner robot may need to be mobile during

execution of the mapping and exploration task. Using weightings W1–W4 in Table

7.1 also selects the same robot for the planner task, indicating robustness. This means

that the weights can be intuitively selected within this range of values.

Applying small weightings for planning and communication in the explorer task

(W1–W4 in Table 7.2) also permits unique ranks to be obtained for multiple candidate

robots. Small weightings for planning and communication in the explorer task do not

affect robot rankings adversely. When five explorers are required, the same robots in

each robot set are selected for all tested weight sets. Weight sets W1–W4 select the

same robots for each robot set when three explorers are required. At least two of the

three selected robots are identical to those chosen when no weighting is given to

planning and communication (W5–W9 in Table 7.2). Similarly, W1–W4 select the

same robot for each robot set when one explorer is required. In four of the five tested

robot sets, the robot chosen by weight sets W1–W4 is also selected by at least four of

the five other weights (W5–W9 in Table 7.2). The small weightings for planning and

210 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

communication can also favour the selection of an explorer robot that may be able to

execute the planner task when a planner robot fails during task execution. Using

weightings W1–W4 in Table 7.2 also selects the same robot(s) for the explorer task,

indicating robustness. This means that the weights can be intuitively selected within

this range of values.

The robots selected for the global task are the best based on the FISs employed for

robot capability data simplification (section 5.3) and the task devolution algorithms

(section 5.5). However, this initial selection of robots may not necessarily be optimal

or remain the best during task execution. Additionally, tasks can be inaccurately

specified by non-expert users resulting in incorrect robot selection. Hence, a feedback

coordination mechanism (section 5.6) is employed to monitor the robots after initial

task allocation. Chapter 8 presents results of employing the feedback coordination

mechanism to monitor robots during task execution.

Feedback Coordination Experiments

211

8 Feedback Coordination Experiments

8.1 Overview

This chapter presents experiments on the feedback coordination technique presented

in chapter 5. The multi-robot map-building and exploration task described in

chapter 6 is employed as a model global task for the experiments. Section 8.2 presents

the feedback coordination experiment configurations. It details the global

environments, team configurations, and feedback configurations employed for the

experiments presented in this chapter. Section 8.3 details the results of mapping and

exploration employing initial task allocations (section 5.5) to robots without any

feedback. Results obtained with task score feedback (but without task reallocation)

are discussed in section 8.4. Section 8.5 presents the results of employing full

feedback (task reallocation) to rectify poor performance, partial failures and complete

failures. A summary of the results discussed in this chapter is presented in section 7.6.

8.2 Feedback Coordination Experiment
Configurations

Based on a grid map resolution of 0.3 m with 16 square-sized local maps for

exploration, a global exploration area size of 38.4 m × 38.4 m has been employed for

the feedback experiments. The local map size (8 KB or 8192 Bytes) has been selected

based on the execution speed of the MATLAB simulator and the sensing and

processing capabilities of worker robots. Selecting larger local map and global map

sizes results in lengthy simulation times using MATLAB.

Ten global worlds with randomly positioned obstacles at three obstacle densities (5%,

10%, and 15%) have been generated. An additional ten global worlds with boggy

terrain that covers approximately 5% of the global area has been generated for each of

these obstacle densities. Figure 8.1 illustrates five worker robots (one planner and five

explorers) exploring local environments in a 10% obstacle density world with 5%

boggy terrain.

212 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

x (m)

y
(m

)

Figure 8.1: Five worker robots exploring a 10% obstacle density world with 5%

boggy terrain.

In addition to the various obstacle and bog densities, three robot team configurations

have been evaluated. These are single planner – single explorer ([1 1]), single planner

– three explorers ([1 3]), and single planner – five explorers ([1 5]). The task and

robot descriptions presented in Table 5.20 – Table 5.22 of chapter 5 are employed for

experiments in this chapter. In the worker task descriptions, the outputs of the robot

quantity criteria FIS (section 5.4) are manually set to achieve the three robot team

configurations.

Table 5.29 in chapter 5 lists the feedback weights employed for the worker tasks.

Achievement success bias weights WS, task execution success threshold TEST, and

overall task execution success threshold OTEST are tuned for the explorer task (WT2).

These parameters are not tuned for the planner task (WT1) since a single planner is

employed in all experiments. Task score feedback has no effect on a single planner. If

the task requirements are met, a planner will function unless a complete failure

occurs.

Feedback Coordination Experiments

213

Table 8.1: Summary of feedback experiment configurations.

Te
st

Su
b-

Fe
ed

ba
ck

 T
yp

e
Pl

an
ne

rs
 a

nd
 E

xp
lo

re
rs

O
bs

ta
cl

e
Bo

g
Po

or
 P

er
fo

rm
an

ce
Pa

rti
al

 F
ai

lu
re

C
om

pl
et

e
Fa

ilu
re

PP
 O

TE
S

PF
 T

ES
M

on
ito

r T
im

e
Ac

hi
ev

em
en

t
Le

ve
l

Le
ve

l
[m

ax
_p

la
nn

er
 m

ax
_e

xp
lo

re
r]

D
en

si
ty

D
en

si
ty

PP
PF

C
F

Th
re

sh
ol

d
Th

re
sh

ol
d

Tm
 (s

ec
)

Bi
as

 W
ei

gh
ts

%
%

(U
nf

or
ce

d
Fa

ilu
re

s)
(F

or
ce

d
Fa

ilu
re

s)
(F

or
ce

d
Fa

ilu
re

s)
N

o
Fe

ed
ba

ck
[1

 1
]

5
0

1.
1

[1
 3

]
10

5
Ye

s
N

o
N

o
-

-
-

-
[1

 5
]

15
N

o
Fe

ed
ba

ck
[1

 3
]

5
0

Ye
s

1
1.

2
[1

 5
]

10
5

Ye
s

ex
pl

or
er

N
o

-
-

-
-

15
fa

ilu
re

 o
nl

y
N

o
Fe

ed
ba

ck
[1

 3
]

5
0

Ye
s

1.
3

[1
 5

]
10

5
Ye

s
N

o
ex

pl
or

er
-

-
-

-
15

&
pl

an
ne

r f
ai

lu
re

Ta
sk

 S
co

re

[1
 3

]
5

0
60

W
1

=
[0

,0
,0

.5
,0

.5
]

2
2

Fe
ed

ba
ck

[1
 5

]
10

5
Ye

s
N

o
N

o
-

-
18

0
W

2
=

[0
.1

,0
.1

,0
.4

,0
.4

]
on

ly
15

30
0

W
3

=
[0

.2
,0

.2
,0

.3
,0

.3
]

W
4

=
[0

.2
5,

0.
25

,0
.2

5,
0.

25
]

Fu
ll

Fe
ed

ba
ck

[1
 1

]
5

0
P1

 =
 0

.7
5

60
U

se
 b

es
t v

al
ue

 fr
om

3.
1

Ta
sk

 R
ea

llo
ca

tio
n

[1
 3

]
10

5
Ye

s
N

o
N

o
P2

 =
 0

.6
5

0.
15

18
0

le
ve

l 2
Po

or
 P

er
fo

rm
an

ce
[1

 5
]

15
ex

pl
or

er
P3

 =
 0

.5
5

30
0

on
ly

P4
 =

 0
.4

5
Fu

ll
Fe

ed
ba

ck
[1

 3
]

5
0

F1
 =

 0
.0

5
60

U
se

 b
es

t v
al

ue
 fr

om
3.

2
Ta

sk
 R

ea
llo

ca
tio

n
[1

 5
]

10
5

Ye
s

Ye
s

N
o

U
se

 b
es

t v
al

ue
F2

 =
 0

.1
5

18
0

le
ve

l 2
3

Pa
rti

al
 F

ai
lu

re
15

ex
pl

or
er

fro
m

 le
ve

l 3
.1

F3
 =

 0
.2

30
0

fa
ilu

re
 o

nl
y

F4
 =

 0
.2

5
Fu

ll
Fe

ed
ba

ck
[1

 3
]

5
0

Ye
s

U
se

 b
es

t v
al

ue
U

se
 b

es
t v

al
ue

60
U

se
 b

es
t v

al
ue

 fr
om

3.
3

Ta
sk

 R
ea

llo
ca

tio
n

[1
 5

]
10

5
Ye

s
N

o
ex

pl
or

er
fro

m
 le

ve
l 3

.1
fro

m
 le

ve
l 3

.2
18

0
le

ve
l 2

C
om

pl
et

e
Fa

ilu
re

15
&

pl
an

ne
r f

ai
lu

re
30

0
Fu

ll
Fe

ed
ba

ck
[1

 1
]

5
0

U
se

 b
es

t v
al

ue
U

se
 b

es
t v

al
ue

60
U

se
 b

es
t v

al
ue

 fr
om

3.
4

Ta
sk

 R
ea

llo
ca

tio
n

[1
 3

]
10

5
Ye

s
N

o
N

o
fro

m
 le

ve
l 3

.1
fro

m
 le

ve
l 3

.2
18

0
le

ve
l 2

O
ve

ra
ll

[1
 5

]
15

30
0

214 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

Table 8.1 summarises the feedback experiment configurations employed in this

chapter. There are three test levels. Level 1 executes the mapping and exploration task

without any feedback. Levels 2 and 3 evaluate performance with feedback. Feedback

is tested using three monitor time interval values: Tm = 60 sec, Tm = 180 sec, and Tm =

300 sec. The monitor time values have been selected based on communication

bandwidth constraints.

Task score feedback is assessed in level 2. The achievement bias weights (section

5.6.1) are employed to combine the achievement data of the four resource types

(processing, communication, sensing, and actuation) into a task execution success

(TES) value. Task score values are computed from TES data (section 5.6.1). An

explorer’s primary function is to traverse a local map and collect sensor data for the

global map. Thus, greater weighting should be given to sensing and actuation

achievement data. Weight sets W1–W3 in Table 8.1 give greater weighting to sensing

and actuation when compared to processing and communication. At weight set W4

equal weighting is given to all four resource types.

Full feedback to correct poor performance (PP), partial failures (PF), and complete

failures (CF) is tested in level 3. Poor performance is considered an unforced failure

in the experiments as it arises due to interaction with the global environment. Four

OTEST values (P1–P4 in Table 8.1) are heuristically tested to detect poor

performance. Higher OTEST values (closer to one) will result in faster detection of

poor performance. Poor performance detection and correction is fully explained in

section 5.6.1.

Partial and complete failures have been programmed to occur as the global task

executes. Hence, they are considered to be forced failures. These failures are present

on single robots. Partial failures permanently impair a robot’s sensing or actuation

performance but the device remains operational. In a complete failure, all contact with

the robot is permanently lost due to processing or communication failure. These two

types of failures are fully explained in section 5.6.1. Four TEST values (F1–F4 in

Table 8.1) are heuristically tested to detect partial failures. Lower TEST values (closer

to zero) result in slower detection of partial failures. However, if TEST is high, false

detections of partial failures are possible.

Feedback Coordination Experiments

215

Testing has been carried out in the following steps:

1. Execute all level 1 tests (no feedback experiments).

2. Run level 2 tests with monitor time interval Tm = 60 sec. Test the achievement

bias weights W1–W4 detailed in the last column of Table 8.1. (Tm = 60 sec is

the fastest update rate of the three tested monitor time values. Hence, it should

be the most reactive during task execution.)

3. Evaluate the results obtained from step 2 and select the best set of

achievement bias weights.

4. Execute level 2 tests with Tm = 180 sec and Tm = 300 sec. Use the best

achievement bias weight set determined from step 3.

5. Run level 3.1 tests with Tm = 60 sec. Test poor performance (unforced

failures) with the PP OTES threshold (OTEST) values P1–P4 listed in Table

8.1. Set the PF TES threshold (TEST) to a constant value (0.15) for these

experiments. The PF TEST value is to be tuned in level 3.2. (OTES data are

obtained by integrating TES values over Tm so it is appropriate to use the

smallest Tm value.)

6. Evaluate the results obtained from step 5 to determine the best PP OTES

threshold value.

7. Execute level 3.1 tests with Tm = 180 sec and Tm = 300 sec. Use the best PP

OTES threshold value determined in step 6.

8. Run level 3.2 tests with Tm = 60 sec. Test partial failures with the PF TES

threshold (TEST) values F1–F4 listed in Table 8.1. Set the PP OTES threshold

to the best value obtained in step 6. (Tm = 60 sec is the fastest update rate and

produces the most accurate TES value.)

9. Evaluate the results obtained from step 8 and select the best PF TES threshold

value.

10. Execute level 3.2 tests with Tm = 180 sec and Tm = 300 sec. Use the best PF

TES threshold value obtained in step 9.

11. Run level 3.3 complete failure tests with the best PP OTES and PF TES

threshold values.

12. Execute level 3.4 overall feedback tests. Test poor performance (unforced

failures) with the best PP TES and PF TES threshold values.

216 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

Note that the above twelve steps are not part of an auto-tuning process. Instead, they

just list the tests and experiments conducted to evaluate the response weight and

threshold variation. A similar procedure can be employed to evaluate the feedback

system for other global task types.

A maximum exploration time (MET) of 15000 sec (250 min) is permitted for the

single planner – single explorer configuration. For the single planner – three explorer

and single planner – five explorer configurations an MET of 5000 sec (83.3 min) is

allowed. These times have been determined from initial experiments to permit

completion of exploration in most situations when feedback is employed. Exploration

performance is assessed based on exploration time (ET) and percent area explored

(PAE). An exploration rate value (ER) is calculated from ET and PAE (8.1).

 PAEER
ET

= (8.1)

Each experiment is repeated ten times due to simulation time length constraints. Since

ten environments with evenly spaced obstacles are automatically generated for each

environment type, a total of one hundred experiments are conducted in each type of

environment. In the results figures, each bar represents the average value and the

corresponding error bar illustrates standard deviation. A paired sample t-test with two-

sided p-values is used to compare the feedback and non-feedback experiment data.

Comparisons are statistically significant if p-values are less than or equal to 0.05 (5%

statistical significance level). Exploration performance parameter ratios are computed

to determine superiority or inferiority by dividing the feedback experiment data by the

non-feedback experiment data.

8.3 Experiments without Feedback

Figure 8.2 illustrates the exploration time, area explored, and exploration rate score

for exploration without any feedback. Generally, exploration time reduces when more

explorers are employed (Figure 8.2 (a)). The percentage area explored improves as

more explorers are utilised (Figure 8.2 (b)). A maximum mean area of approximately

80% is explored for the [1 1] team configuration, which is less than the minimum

mean area explored when three ([1 3]) or five ([1 5]) explorers are utilised.

Feedback Coordination Experiments

217

Exploration time is very close to the MET values and percentage area explored is

generally lower at 15% obstacle density (as expected). This indicates that the robots

have not been able to complete exploration of the global environment. The exception

to this trend is when five explorers are employed in a 15% obstacle density

environment without any bogs. In this case, the additional explorers in the five

explorer team are sufficient to complete exploration before the MET.

[1 1] [1 3] [1 5]
0

2000

4000

6000

8000

10000

12000

14000

16000
Exploration Time

Robot team config.

Ti
m

e
(s

ec
)

5%obst,0%bog
5%obst,5%bog
10%obst,0%bog
10%obst,5%bog
15%obst,0%bog
15%obst,5%bog

[1 1] [1 3] [1 5]
0

20

40

60

80

100

120
Area Explored

Robot team config.

%

5%obst,0%bog
5%obst,5%bog
10%obst,0%bog
10%obst,5%bog
15%obst,0%bog
15%obst,5%bog

 (a) (b)

[1 1] [1 3] [1 5]
0

0.01

0.02

0.03

0.04

0.05

0.06
Exploration Rate

Robot team config.

va
lu

e
(%

/s
ec

)

5%obst,0%bog
5%obst,5%bog
10%obst,0%bog
10%obst,5%bog
15%obst,0%bog
15%obst,5%bog

(c)

Figure 8.2: Results of exploration without feedback for the various robot team –
environment combinations.

The trends of exploration time and area explored are combined in the overall

exploration rate data (Figure 8.2 (c)) (8.1). As expected, the highest overall scores are

obtained when five explorers are employed while the lowest values are obtained when

only one explorer is utilised. Figure 8.3 combines the data for individual

environments in Figure 8.2 into single values for each robot team configuration. This

is achieved by collating all data samples and computing overall mean and standard

deviation values. An easier comparison can made between the robot team

218 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

configurations by doing this. It also permits easier comparison with the various

feedback experiments discussed in section 8.4 and section 8.5.

0

2000

4000

6000

8000

10000

12000

14000

16000
Exploration Time

Robot team config.

Ti
m

e
(s

ec
)

[1 1]
[1 3]
[1 5]

0

20

40

60

80

100

120
Area Explored

Robot team config.

%

[1 1]
[1 3]
[1 5]

 (a) (b)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
Exploration Rate

Robot team config.

va
lu

e
(%

/s
ec

)

[1 1]
[1 3]
[1 5]

(c)

Figure 8.3: Reduction of non-feedback exploration results into single values.

Figure 8.4 compares the performance of the [1 3] and [1 5] robot teams with the [1 1]

robot team over all tested environments. Comparisons are made by dividing the [1 3]

and [1 5] robot team data by the [1 1] robot team data. Exploration time is reduced to

32.1% and 24.5% when three and five explorers are employed, respectively (Figure

8.4 (a)). Figure 8.4 (b) reveals that 58.9% and 64.8% greater area is explored when

the [1 3] and [1 5] robot teams are utilised respectively. Exploration rates are 4.80 and

7.28 times greater for the three and five explorer team configurations, respectively

(Figure 8.4 (c)). A 5% statistical significance test produced zero p-values for all

comparisons made with the [1 1] robot team.

Comparing the [1 3] and [1 5] robot teams also produces statistically significant

results at the 5% level. Results such as this will not generally be plotted in this chapter

since these are a side issue from the chapter’s primary objective, which is a

comparison of the non-feedback and feedback experiments. Exploration time is

Feedback Coordination Experiments

219

reduced to 76.3% when five explorers are employed instead of three. A small increase

in exploration area (3.6%) is achieved when five explorers are utilised. Hence, the

exploration rate is improved by 52% when five explorers are employed instead of

three. The p-values for exploration time and exploration rate are zero. A p-value of

0.0001 has been obtained for the exploration area comparison.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Exploration Time

Robot team config.

R
at

io

[1 3]
[1 5]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Area Explored

Robot team config.

R
at

io

[1 3]
[1 5]

 (a) (b)

0

1

2

3

4

5

6

7

8
Exploration Rate

Robot team config.

R
at

io

[1 3]
[1 5]

(c)

Figure 8.4: Comparison of [1 3] and [1 5] robot team configurations with the
[1 1] robot team configuration.

Figure 8.5 and Figure 8.6 illustrate the results obtained when partial failures and

complete failures are present in the non-feedback experiments, respectively. The [1 1]

robot team has been omitted from the tests since it will be impossible to complete the

global task without feedback when a partial or complete failure occurs on a robot. An

example of a partial failure is the situation where a single explorer collides with an

obstacle or otherwise stops moving. Complete failures result in the single planner

failing. In the [1 3] and [1 5] robot teams, partial and complete failures are present on

single robots. The results presented in Figure 8.5 and Figure 8.6 are statistically

compared with the full feedback experiments presented in section 8.5.

220 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

0

1000

2000

3000

4000

5000

6000
Exploration Time

Robot team config.

Ti
m

e
(s

ec
)

[1 3]
[1 5]

0

20

40

60

80

100

120
Area Explored

Robot team config.

%

[1 3]
[1 5]

 (a) (b)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Exploration Rate

Robot team config.

va
lu

e
(%

/s
ec

)

[1 3]
[1 5]

(c)

Figure 8.5: Non-feedback exploration results with partial failures.

0

1000

2000

3000

4000

5000

6000
Exploration Time

Robot team config.

Ti
m

e
(s

ec
)

[1 3]
[1 5]

0

20

40

60

80

100

120
Area Explored

Robot team config.

%

[1 3]
[1 5]

(a) (b)

0

0.005

0.01

0.015

0.02

0.025
Exploration Rate

Robot team config.

va
lu

e
(%

/s
ec

)

[1 3]
[1 5]

(c)

Figure 8.6: Non-feedback exploration results with complete failures.

Feedback Coordination Experiments

221

8.4 Experiments with Task Score Feedback

Figure 8.7 illustrates the results obtained when task score feedback is employed for

the [1 3] and [1 5] robot team configurations with a monitor time Tm = 60 sec. Table

8.1 details the numerical values of achievement weight sets W1–W4. There is little

variation in the exploration time, area explored, and overall exploration rate when the

achievement weight sets are varied from W1 to W4 (Figure 8.7 (a)–(c)). Inspecting

the exploration rate data reveals that weight sets W2 and W3 have the highest values.

This suggests that they are potentially the best weight sets to employ. Task score

feedback is not assessed for the [1 1] robot team configuration since it will not alter

task execution.

W1 W2 W3 W4
0

1000

2000

3000

4000

5000

6000
Exploration Time

Weight set

Ti
m

e
(s

ec
)

[1 3]
[1 5]

W1 W2 W3 W4
0

20

40

60

80

100

120
Area Explored

Weight set

%

[1 3]
[1 5]

 (a) (b)

W1 W2 W3 W4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
Exploration Rate

Weight set

V
al

ue
 (%

/s
ec

)

[1 3]
[1 5]

(c)

Figure 8.7: Results of exploration with task score feedback.

To verify whether W2 or W3 is the best weight set to further consider, Figure 8.7 is

statistically compared with the non-feedback experiments of Figure 8.3. Figure 8.8

details the results of the comparison. A comparison with a p-value less than or equal

to 0.05 is statistically significant. Achievement weight sets W2 and W3 have mean

222 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

exploration time ratio values less than unity for both robot team configurations

(Figure 8.8 (a)). However, all exploration time ratio comparisons are not statistically

significant (Figure 8.8 (d)).

W1 W2 W3 W4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Exploration Time Ratio

Weight set

V
al

ue

[1 3]
[1 5]

W1 W2 W3 W4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Area Explored Ratio

Weight set

V
al

ue

[1 3]
[1 5]

 (a) (b)

W1 W2 W3 W4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Exploration Rate Ratio

Weight set

V
al

ue

[1 3]
[1 5]

(c)

W1 W2 W3 W4

[1 3] 0.39 0.17 0.22 0.15
[1 5] 0.42 0.47 0.49 0.30
[1 3] 0.14 0.03 < 0.01 0.04
[1 5] 0.37 0.33 0.39 0.15
[1 3] 0.30 0.07 0.07 0.07
[1 5] 0.39 0.48 0.50 0.26

Exploration Time
(a)

Area Explored
(b)

Exploration Rate
(c)

p-values (two decimal places, < 0.05 shaded blue)
WeightRobot

Config.

(d)

Figure 8.8: Comparison of task score feedback and non-feedback results at Tm =

60 sec.

When task score feedback is used, the area explored is not less than the area explored

without feedback (Figure 8.8 (b)). However, the comparison is only statistically

significant for weight sets W2–W4 in the [1 3] robot team configuration (Figure

Feedback Coordination Experiments

223

8.8 (d)). Weight set W3 has the lowest p-value and increases the area explored by the

greatest percentage (2.6%). The exploration rate ratios for weight sets W2 and W3 are

not statistically significant (Figure 8.8 (c),(d)). Based on the comparisons, weight set

W3 has been selected as the best weight set for task score feedback since it achieves a

statistically significant improvement in area explored.

The 2.6% increase in area explored at W3 is small. Task score feedback does not

appear to be sensitive to weight variation when at least 25% weighting is given to

both sensing and actuation resources. This indicates robustness. Task score feedback

is able to send good explorer robots to distant unexplored local environments without

negatively affecting exploration performance.

W1 W2 W3 W4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Exploration Time Ratio

Weight set

V
al

ue

[1 3]
[1 5]

W1 W2 W3 W4

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Area Explored Ratio

Weight set

V
al

ue

[1 3]
[1 5]

 (a) (b)

W1 W2 W3 W4 W1 W2 W3 W4
[1 3] 0.41 0.37 0.18 0.30 0.04 0.20 0.45 0.45
[1 5] 0.32 0.41 0.37 0.29 0.24 0.38 0.40 0.13

p-values (two decimal places, < 0.05 shaded blue)

Robot
Config.

Exploration Time (a) Area Explored (b)

(c)

Figure 8.9: Comparison of task score feedback and non-feedback results for non-

boggy environments.

To evaluate if task score feedback offers any statistically significant improvement to

the [1 5] robot team, separate comparisons have been made for boggy environments

and non-boggy environments. Figure 8.9 illustrates the comparison for non-boggy

environments. There is no statistically significant variation in exploration time (Figure

8.9 (a),(c)). Except when weight set W1 is employed for the [1 3] robot team

configuration, there is also no statistically significant difference in area explored

(Figure 8.9 (b),(c)).

224 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

W1 W2 W3 W4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Exploration Time Ratio

Weight set

V
al

ue

[1 3]
[1 5]

W1 W2 W3 W4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Area Explored Ratio

Weight set

V
al

ue

[1 3]
[1 5]

 (a) (b)

W1 W2 W3 W4 W1 W2 W3 W4
[1 3] 0.28 0.16 0.41 0.20 0.02 0.01 < 0.01 0.03
[1 5] 0.19 0.34 0.36 0.40 0.19 0.17 0.38 0.43

p-values (two decimal places, < 0.05 shaded blue)

Robot
Config.

Exploration Time (a) Area Explored (b)

(c)

Figure 8.10: Comparison of task score feedback and non-feedback results for

environments with boggy terrain.

Figure 8.10 shows the comparison for global environments with boggy terrain. Task

score feedback has statistically significant benefits in environments with boggy terrain

(Figure 8.10 (b),(c)). It can increase the area explored by up to 5.2% for the [1 3]

team in the tested global environments (W3 in Figure 8.10 (b)). However, there is no

statistically significant reduction in exploration time for the [1 3] team with task score

feedback (Figure 8.10 (a),(c)). No statistically significant improvement is recorded in

the [1 5] team configuration.

As mentioned previously, the small variation in performance over different weight

sets indicates that task score feedback is robust to weight variation. In non-boggy

terrain environments, sending good explorer robots to distant unexplored local

environments does not negatively affect exploration performance. By utilising task

score feedback, a small robot team (such as the [1 3] team) can improve area explored

in environments comprising sections of boggy terrain.

It is possible that the global world is relatively small in comparison to the number of

robots deployed for exploration in the [1 5] team. Hence, the [1 5] team has been

Feedback Coordination Experiments

225

tested in two larger environments comprising 25 and 36 local maps, respectively.

Similar to the 16 local map environment results above, no statistically significant

improvement is recorded in the 25 and 36 local map environments. Figure 8.11

illustrates the comparison of task score feedback and non-feedback experiments when

weight set W3 is employed.

No Bogs Bogs
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Exploration Performance Ratio

Environment Type

V
al

ue

Exploration Time
Area Explored

No Bogs Bogs
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Exploration Performance Ratio

Environment Type

V
al

ue

Exploration Time
Area Explored

 (a) (b)

No Bogs Bogs No Bogs Bogs
Exploration Time 0.48 0.25 0.11 0.19

Area Explored 0.22 0.22 0.31 0.14

Exploration
Performance

25 Local Maps (a) 36 Local Maps (b)
p-values (two decimal places, < 0.05 shaded blue)

(c)

Figure 8.11: Comparison of task score feedback and non-feedback results for the

[1 5] team in a 25 local map world (a) and a 36 local map world (b).

Task score feedback aids the dispersion of robots in the global environment

(section 6.3.1). It sends good explorers to local environments that may be distant from

their currently allocated local environment. On the other hand, weak explorers

generally navigate to the closest adjacent local map, similar to the non-feedback

experiments. In the [1 5] team configuration, the distance traversed by good explorers

to reach new unexplored local maps negates the reservation of unexplored space

around poor explorers as indicated in Figure 8.11.

226 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

W3
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Exploration Time Ratio

Weight set

V
al

ue

[1 3]
[1 5]

W3

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Area Explored Ratio

Weight set

V
al

ue

[1 3]
[1 5]

 (a) (b)

Exploration Time (a) Area Explored (b)

[1 3]
[1 5]

p-values (two decimal places, < 0.05 shaded blue)

0.12 0.02
0.20 0.46

Robot
Config. W3 W3

(c)

Figure 8.12: Comparison of task score feedback and non-feedback results at

Tm = 180 sec.

The performance of the best weight set, W3, has been evaluated for two additional

monitor time values (Tm = 180 sec and Tm = 300 sec). Figure 8.12 shows a comparison

of exploration with task score feedback at Tm = 180 sec and exploration without any

feedback. The result is similar to W3 in Figure 8.8 (Tm = 60 sec). A statistically

significant increase in area explored (2.1%) is achieved for the [1 3] robot team

configuration (Figure 8.12 (b),(c)).

Figure 8.13 compares exploration with task score feedback at Tm = 300 sec and

exploration without any feedback. Exploration with task score feedback using Tm =

300 sec (Figure 8.13) also offers similar improvements to exploration using Tm =

60 sec (Figure 8.8) when compared to exploration without any feedback. The [1 3]

robot team configuration achieves an increase of 1.9% in area explored that is

statistically significant (Figure 8.13 (b),(c)).

This is another indication that task score feedback is robust and able to perform at

varying monitor time intervals.

Feedback Coordination Experiments

227

W3
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Exploration Time Ratio

Weight set

V
al

ue

[1 3]
[1 5]

W3
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Area Explored Ratio

Weight set

V
al

ue

[1 3]
[1 5]

 (a) (b)

Exploration Time (a) Area Explored (b)

[1 3]
[1 5]

p-values (two decimal places, < 0.05 shaded blue)

0.20 0.04
0.39 0.34

Robot
Config. W3 W3

(c)

Figure 8.13: Comparison of task score feedback and non-feedback results at

Tm = 300 sec.

8.5 Experiments with Full Feedback

8.5.1 Poor Performance Experiments

Figure 8.14 shows the results obtained when poor performance feedback is employed

for the [1 1], [1 3], and [1 5] robot team configurations using a monitor time

Tm = 60 sec. Numerical values for threshold values P1–P4 are given in Table 8.1. At

threshold value P4, exploration time is greater for all three robot team configurations

than at threshold P1 (Figure 8.14 (a)). Exploration time increases for the [1 1] robot

team configuration as the threshold value is changed from P1–P4. This result is

expected since poor performance is detected more rapidly when the threshold value is

higher. The trend is particularly evident for the [1 1] team since the single explorer

system lacks robustness to failures when compared the multiple explorer

configurations ([1 3] and [1 5] teams).

228 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

P1 P2 P3 P4
0

5000

10000

15000
Exploration Time

Threshold value

Ti
m

e
(s

ec
)

[1 1]
[1 3]
[1 5]

P1 P2 P3 P4
0

20

40

60

80

100

120
Area Explored

Threshold value

%

[1 1]
[1 3]
[1 5]

 (a) (b)

P1 P2 P3 P4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
Exploration Rate

Threshold value

V
al

ue
 (%

/s
ec

)

[1 1]
[1 3]
[1 5]

(c)

Figure 8.14: Results of exploration with poor performance feedback.

There is little variation in percentage area explored for threshold values P1–P4

(Figure 8.14 (b)). The exploration rate obtained using threshold value P1 is greatest

for all robot team configurations (Figure 8.14 (c)). This indicates that P1 likely to be

the best threshold value to employ.

A statistical significance comparison has been made between the poor performance

feedback and non-feedback exploration results in Figure 8.15. Maximum reduction in

exploration time is achieved at threshold value P1 (Figure 8.15 (a)). Exploration time

is reduced to 73.3%, 89%, and 89.5% for the [1 1], [1 3], and [1 5] robot teams,

respectively at P1 (Figure 8.15 (a)). All reductions are statistically significant with p-

values less than 0.05 except for the [1 5] robot team at P4 (Figure 8.15 (d)).

Maximum improvement in area explored (59%) is obtained at threshold value P3 for

the [1 1] robot team (Figure 8.15 (b)). For the [1 3] team, a statistically significant

improvement of approximately 4% is attained for all threshold values (Figure

8.15 (b),(d)). The results of the area explored by the [1 5] robot team is similar to the

Feedback Coordination Experiments

229

non-feedback experiments (Figure 8.15 (b),(d)) because five explorers are able to

complete exploration within the specified MET (5000 sec) in both cases.

P1 P2 P3 P4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Exploration Time Ratio

Threshold value

V
al

ue

[1 1]
[1 3]
[1 5]

P1 P2 P3 P4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Area Explored Ratio

Threshold value

V
al

ue

[1 1]
[1 3]
[1 5]

 (a) (b)

P1 P2 P3 P4
0

0.5

1

1.5

2

2.5
Exploration Rate Ratio

Threshold value

V
al

ue

[1 1]
[1 3]
[1 5]

(c)

P1 P2 P3 P4
[1 1] < 0.01 < 0.01 < 0.01 < 0.01

[1 3] < 0.01 < 0.01 < 0.01 < 0.01
[1 5] < 0.01 0.02 < 0.01 0.06
[1 1] < 0.01 < 0.01 < 0.01 < 0.01
[1 3] < 0.01 < 0.01 < 0.01 < 0.01
[1 5] 0.40 0.38 0.47 0.47
[1 1] < 0.01 < 0.01 < 0.01 < 0.01
[1 3] < 0.01 < 0.01 < 0.01 < 0.01
[1 5] 0.03 0.13 0.06 0.16

Exploration Rate
(c)

p-values (two decimal places, < 0.05 shaded blue)

Robot
Config.

Threshold Value

Exploration Time
(a)

Area Explored
(b)

(d)

Figure 8.15: Comparison of poor performance feedback and non-feedback

results at Tm = 60 sec.

Threshold value P1 has been selected as the best since it has the highest exploration

rate improvement for all robot team configurations when compared to the non-

230 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

feedback experiments (Figure 8.15 (c)). This comparison is statistically significant

(Figure 8.15 (d)). It reduces exploration time to 73.3%, 89% and 89.5% for the [1 1],

[1 3], and [1 5] robot teams, respectively. Area explored is improved by 57.4%, and

3.75% for the [1 1] and [1 3] robot teams, respectively. Hence exploration rate is

improved by 113%, 17.2% and 7.8% for the [1 1], [1 3], and [1 5] robot teams,

respectively.

P1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Exploration Time Ratio

Threshold value

V
al

ue

[1 1]
[1 3]
[1 5]

P1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Area Explored Ratio

Threshold value

V
al

ue

[1 1]
[1 3]
[1 5]

 (a) (b)

Exploration Time (a) Area Explored (b)

[1 1]
[1 3]
[1 5]

p-values (two decimal places, < 0.05 shaded blue)

Robot
Config. P1 P1

< 0.01 < 0.01

< 0.01 0.43
< 0.01 < 0.01

(c)

Figure 8.16: Comparison of poor performance feedback and non-feedback

results at Tm = 180 sec.

Similar to the task score feedback experiments, the performance of the best threshold

value (P1) has been evaluated for Tm = 180 sec and Tm = 300 sec. Figure 8.16

illustrates the comparison of exploration with poor performance feedback at Tm =

180 sec and exploration without any feedback. A similar result to P1 in Figure 8.15

has been obtained. Exploration time is reduced to 70.1%, 86.1%, and 90.4% for the

[1 1], [1 3], and [1 5] robot teams, respectively (Figure 8.16 (a),(c)). Area explored is

improved by 57.8% and 4.1% for the [1 1] and [1 3] robot teams, respectively (Figure

8.16 (b),(c)).

Figure 8.17 compares the poor performance feedback and non-feedback results when

the monitor time is set to 300 sec. Setting the monitor time to 300 sec (Figure 8.17)

Feedback Coordination Experiments

231

also achieves similar improvements to exploration with a monitor time of 60 sec

(Figure 8.15). The [1 1], [1 3], and [1 5] robot teams have their exploration times

reduced to 68.6%, 87.3%, and 90.8%, respectively (Figure 8.17 (a),(c)).

Improvements of 57.5% and 4.3% in area explored have been obtained for the [1 1]

and [1 3] robot teams, respectively (Figure 8.17 (b),(c)).

In a team of physical robots, poor performance can be successfully detected and

corrected thereby improving task execution. The poor performance detection

threshold value will usually be a non-zero number. A threshold value closer to unity

enables faster detection of poor performance but risks false detection. Poor

performance failure detection and correction is robust to threshold variation and

monitor time interval variation.

P1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Exploration Time Ratio

Threshold value

V
al

ue

[1 1]
[1 3]
[1 5]

P1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Area Explored Ratio

Threshold value

V
al

ue

[1 1]
[1 3]
[1 5]

 (a) (b)

Exploration Time (a) Area Explored (b)

[1 1]
[1 3]
[1 5]

p-values (two decimal places, < 0.05 shaded blue)

< 0.01 0.23
< 0.01 < 0.01

Robot
Config. P1 P1

< 0.01 < 0.01

(c)

Figure 8.17: Comparison of poor performance feedback and non-feedback

results at Tm = 300 sec.

8.5.2 Partial Failure Experiments

Partial failure tests have been carried out on the [1 3] and [1 5] robot teams only. As

detailed in section 5.6.2, a partial failure is corrected by reallocating the faulty robot’s

232 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

task to a new robot. It is obvious that detecting and correcting a partial failure in the

[1 1] team will have better performance than without employing any feedback. Figure

8.18 shows the results obtained when partial failure feedback is employed for the [1

3], and [1 5] robot team configurations using a monitor time Tm = 60 sec. Table 8.1

lists the numerical values of thresholds F1–F4.

In the [1 3] and [1 5] robot teams, there is little variation in exploration time for all

tested threshold values (Figure 8.18 (a)). Thresholds F1–F4 also show little variation

in area explored for the [1 3] and [1 5] robot teams (Figure 8.18 (b)). The small

variation in exploration rates for both team configurations (Figure 8.18 (c)) indicates

that partial failure feedback is not sensitive to threshold variation. This means that the

rate at which partial failures are detected and corrected is similar for the tested

threshold values.

F1 F2 F3 F4
0

1000

2000

3000

4000

5000

6000
Exploration Time

Threshold value

Ti
m

e
(s

ec
)

[1 3]
[1 5]

F1 F2 F3 F4
0

20

40

60

80

100

120
Area Explored

Threshold value

%

[1 3]
[1 5]

 (a) (b)

F1 F2 F3 F4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
Exploration Rate

Threshold value

V
al

ue
 (%

/s
ec

)

[1 3]
[1 5]

(c)

Figure 8.18: Results of exploration with partial failure feedback.

Feedback Coordination Experiments

233

Figure 8.19 illustrates the statistical significance comparison made between the partial

failure feedback and non-feedback exploration results. A maximum reduction in

exploration time is achieved at threshold value F4 for the [1 3] robot team (Figure

8.19 (a)). Exploration time is reduced to 85.8% at this threshold value. Threshold

value F1 produces the greatest reduction in exploration time (89.1%) for the [1 5]

robot team (Figure 8.19 (a)). The reductions in exploration time are statistically

significant with p-values less than 0.05 (Figure 8.19 (d)).

F1 F2 F3 F4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Exploration Time Ratio

Threshold value

V
al

ue

[1 3]
[1 5]

F1 F2 F3 F4

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Area Explored Ratio

Threshold value

V
al

ue

[1 3]
[1 5]

 (a) (b)

F1 F2 F3 F4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Exploration Rate Ratio

Threshold value

V
al

ue

[1 3]
[1 5]

(c)

F1 F2 F3 F4

[1 3] < 0.01 < 0.01 < 0.01 < 0.01
[1 5] < 0.01 < 0.01 0.01 0.01
[1 3] < 0.01 < 0.01 < 0.01 < 0.01
[1 5] 0.30 0.26 0.21 0.09
[1 3] < 0.01 < 0.01 < 0.01 < 0.01
[1 5] < 0.01 < 0.01 0.03 0.03

Exploration Rate
(c)

p-values (two decimal places, < 0.05 shaded blue)

Robot
Config.

Threshold Value

Exploration Time
(a)

Area Explored
(b)

(d)

Figure 8.19: Comparison of partial failure feedback and non-feedback results at

Tm = 60 sec.

234 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

Area explored improvement is greatest at threshold value F1 (Figure 8.19 (b)). A

statistically significant improvement of 10.8% is achieved for the [1 3] robot team at

F1 (Figure 8.19 (b),(d)). The area explored by the [1 5] robot team is similar to the

non-feedback experiments (Figure 8.19 (b),(d)) because five explorers are able to

complete exploring the global world within the MET (5000 sec) in both cases.

Threshold value F2 has been selected the best for the [1 3] team since it has the

highest exploration rate improvement of 29.4% when compared to the non-feedback

experiments (Figure 8.19 (c)). This comparison is statistically significant (Figure

8.19 (d)). It reduces exploration time to 88.1% and area explored is improved by

10.8%. It should be noted that F1 and F3 also produce similar exploration rate

improvements to F2 indicating robustness.

For the [1 5] robot team, threshold F1 is the best since it has the highest statistically

significant exploration rate improvement (13.5%) when compared to the non-

feedback experiments (Figure 8.19 (c),(d)). Exploration time is reduced to 89.1%

when this threshold value is employed.

F2 F1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Exploration Time Ratio

Threshold value

V
al

ue

[1 3]
[1 5]

F2 F1

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Area Explored Ratio

Threshold value

V
al

ue

[1 3]
[1 5]

 (a) (b)

Exploration Time (a) Area Explored (b)
F1 F2 F1 F2

[1 3] ̶- < 0.01 ̶- < 0.01
[1 5] < 0.01 ̶- 0.07 ̶-

Robot
Config.

p-values (two decimal places, < 0.05 shaded blue)

(c)

Figure 8.20: Comparison of partial failure feedback and non-feedback results at

Tm = 180 sec.

Feedback Coordination Experiments

235

The performance of the best weight sets have also been evaluated for monitor time

values of 180 sec and 300 sec. Figure 8.20 shows a comparison of exploration with

partial failure feedback at Tm = 180 sec and exploration without any feedback. The

results for the [1 3] and [1 5] robot teams are similar to thresholds F2 and F1 in Figure

8.19 (Tm = 60 sec), respectively. Exploration time is reduced to 88.1% for the [1 3]

robot team (Figure 8.20 (a)). In the [1 5] robot team, exploration time is reduced to

91.8% (Figure 8.20 (a)). These exploration time reductions are statistically significant

(Figure 8.20 (c)). A statistically significant increase in area explored (10.4%) is

achieved for the [1 3] robot team (Figure 8.20 (b),(c)).

F2 F1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Exploration Time Ratio

Threshold value

V
al

ue

[1 3]
[1 5]

F2 F1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Area Explored Ratio

Threshold value

V
al

ue

[1 3]
[1 5]

 (a) (b)

Exploration Time (a) Area Explored (b)
F1 F2 F1 F2

[1 3] ̶- < 0.01 ̶- < 0.01
[1 5] < 0.01 ̶- 0.10 ̶-

Robot
Config.

p-values (two decimal places, < 0.05 shaded blue)

(c)

Figure 8.21: Comparison of partial failure feedback and non-feedback results at

Tm = 300 sec.

Figure 8.21 compares exploration with partial failure feedback at Tm = 300 sec and

exploration without any feedback. Partial failure feedback using Tm = 300 sec (Figure

8.21) also offers similar improvements to using Tm = 60 sec (Figure 8.19). In the [1 3]

robot team, exploration time is reduced to 88% (Figure 8.21 (a)). Exploration time is

reduced to 90.1% in the [1 5] robot team. Both exploration time reductions are

statistically significant (Figure 8.21 (c)). The [1 3] robot team also achieves a 10.7%

increase in area explored that is statistically significant (Figure 8.21 (b),(c)).

236 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

For a team of physical robots, partial failures can be successfully detected and

corrected thus improving task execution. The partial failure detection threshold value

will usually be a small number (close to zero) to reduce false detections. For the tested

values, partial failure detection and correction is robust to threshold variation and

monitor time interval variation.

8.5.3 Complete Failure Experiments

60 180 300
0

1000

2000

3000

4000

5000

6000
Exploration Time

Monitor time (sec)

Ti
m

e
(s

ec
)

[1 3]
[1 5]

60 180 300
0

20

40

60

80

100

120
Area Explored

Monitor time (sec)

%

[1 3]
[1 5]

 (a) (b)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Exploration Rate

Monitor time (sec)

V
al

ue
 (%

/s
ec

)

[1 3]
[1 5]

(c)

Figure 8.22: Results of exploration with complete failure feedback.

Similar to the partial failure experiments, complete failure experiments have also been

carried out on the [1 3] and [1 5] robot teams only. It is clear that exploration will fail

in the [1 1] team when complete failures happen. Figure 8.22 illustrates the

exploration results obtained when complete failure feedback is employed. Exploration

time, area explored, and overall scores are similar for all three monitor time values

Feedback Coordination Experiments

237

(Figure 8.22 (a)–(c)). Thus complete failure feedback can perform at multiple monitor

time values. At least 97% of the global environment is explored for all tested robot

team – monitor time combinations when complete failure feedback is utilised (Figure

8.22(b)).

60 180 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Exploration Time Ratio

Monitor time (sec)

V
al

ue

[1 3]
[1 5]

60 180 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Area Explored Ratio

Monitor time (sec)

V
al

ue

[1 3]
[1 5]

 (a) (b)

0

0.5

1

1.5
Exploration Rate Ratio

Monitor time (sec)

V
al

ue

[1 3]
[1 5]

(c)

60 180 300

[1 3] < 0.01 < 0.01 < 0.01
[1 5] < 0.01 < 0.01 < 0.01
[1 3] < 0.01 < 0.01 < 0.01
[1 5] 0.08 0.04 0.02
[1 3] < 0.01 < 0.01 < 0.01
[1 5] < 0.01 < 0.01 < 0.01

Exploration Rate
(c)

p-values (two decimal places, < 0.05 shaded blue)
Monitor Time (sec)Robot

Config.

Exploration Time
(a)

Area Explored
(b)

(d)

Figure 8.23: Comparison of complete failure feedback and non-feedback results.

Complete failure feedback results and non-feedback results are compared with

statistical significance tests in Figure 8.23. Exploration time is reduced for all robot

238 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

team – monitor time combinations (Figure 8.23 (a)). These reductions are all

statistically significant with p-values less than 0.01 (Figure 8.23 (d)). In the [1 3]

team, exploration time is reduced to 89.9%, 87.8%, and 88.3% for monitor time

values of 60 sec, 180 sec, and 300 sec, respectively. Monitor times 60 sec, 180 sec,

and 300 sec reduce exploration time to 74.5%, 73.9%, and 74.3%, respectively, for

the [1 5] robot team. These performance improvements over the various monitor

times are similar within measurement errors.

Area explored is increased for all robot team – monitor time combinations (Figure

8.23 (b)). These increments are all statistically significant except for the [1 5] robot

team at 60 sec monitor time (Figure 8.23 (d)). An 11% increase in area explored is

observed for the [1 3] robot team. In the [1 5] robot team, a 1% increase in area

explored is achieved for monitor time values of 180 sec and 300 sec.

The reduction in exploration time and increase in area explored for all tested

combinations produces a statistically significant increase in the exploration rate

(Figure 8.23 (c),(d)). In Figure 8.23 (d), the exploration rate p-values are all less than

0.01. For the [1 3] team, exploration rate is improved by 28.1%, 30.3%, and 29.3%

for monitor time values of 60 sec, 180 sec, and 300 sec, respectively. Monitor times

60 sec, 180 sec, and 300 sec improve exploration rate by 47.2%, 49.5%, and 47.2%,

respectively, for the [1 5] robot team. Again, these improvements are similar within

measurement errors.

Hence, complete failure detection is robust when monitor time is varied from 60 sec

to 300 sec.

8.5.4 Combined Feedback Experiments

This section evaluates the combined feedback system with all three types of failures

(poor performance, partial failure, and complete failure) and task score feedback

(section 8.4) enabled using their best threshold values and weights. Experiments and

results presented in this section are designed to determine if the various components

of the feedback system can function when combined in a complete system. The small

variation in performance over different threshold values and weights for the

Feedback Coordination Experiments

239

individual failure tests and task score feedback experiments means that selecting

different values from the best ones will not affect combined system performance

significantly.

Figure 8.24 illustrates the results obtained when combined feedback is employed for

exploration. Exploration time (Figure 8.24 (a)), area explored (Figure 8.24 (b)), and

exploration rate (Figure 8.24 (c)) are similar for all three monitor time values. Hence,

the combined feedback system is capable of performing at multiple monitor time

values. At least 94% of the global environment is explored for all tested robot team –

monitor time combinations (Figure 8.24 (b)).

60 180 300
0

2000

4000

6000

8000

10000

12000

14000
Exploration Time

Monitor time (sec)

Ti
m

e
(s

ec
)

[1 1]
[1 3]
[1 5]

60 180 300
0

20

40

60

80

100

120
Area Explored

Monitor time (sec)

%

[1 1]
[1 3]
[1 5]

 (a) (b)

60 180 300
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
Exploration Rate

Monitor time (sec)

V
al

ue
 (%

/s
ec

)

[1 1]
[1 3]
[1 5]

(c)

Figure 8.24: Results of exploration with combined feedback.

A statistical significance comparison between the combined feedback and non-

feedback exploration results has been made in Figure 8.25. Exploration time (Figure

8.25 (a)), area explored (Figure 8.25 (b)), and exploration rate (Figure 8.24 (c)),

240 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

produce similar results for each robot team as the monitor time is varied from 60 sec

to 300 sec.

60 180 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Exploration Time Ratio

Monitor time (sec)

V
al

ue

[1 1]
[1 3]
[1 5]

60 180 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Area Explored Ratio

Monitor time (sec)
V

al
ue

[1 1]
[1 3]
[1 5]

 (a) (b)

60 180 300
0

0.5

1

1.5

2

2.5
Exploration Rate Ratio

Monitor time (sec)

V
al

ue

[1 1]
[1 3]
[1 5]

(c)

60 180 360
[1 1] < 0.01 < 0.01 < 0.01

[1 3] < 0.01 < 0.01 < 0.01
[1 5] < 0.01 < 0.01 < 0.01
[1 1] < 0.01 < 0.01 < 0.01
[1 3] < 0.01 < 0.01 < 0.01
[1 5] 0.39 0.42 0.23
[1 1] < 0.01 < 0.01 < 0.01
[1 3] < 0.01 < 0.01 < 0.01
[1 5] 0.03 0.04 0.03

p-values (two decimal places, < 0.05 shaded blue)
Monitor Time (sec)

Exploration Rate
(c)

Robot
Config.

Exploration Time
(a)

Area Explored
(b)

(d)

Figure 8.25: Comparison of combined feedback and non-feedback results.

Robot team [1 1] achieves exploration rate improvements of 119%, 120%, and 120%

for Tm = 60 sec, Tm = 180 sec, and Tm = 300 sec (Figure 8.25 (c)). The improvement is

due to the exploration time being reduced to a statistically significant 70% of the non-

Feedback Coordination Experiments

241

feedback exploration time (Figure 8.25 (a),(d)). A statistically significant increase of

58% in area explored is achieved for the [1 1] robot team (Figure 8.25 (b),(d)).

At Tm = 180 sec, the greatest exploration rate improvement of 22.8% is achieved for

the [1 3] robot team (Figure 8.25 (c)). Exploration rate improvements of 19.7% and

20.7% are achieved for Tm = 60 sec and Tm = 300 sec, respectively. These values are

similar within measurement error. The area explored improvement is 3.6% for all

monitor time values (Figure 8.25 (b)). Exploration time is reduced to 87%, 84.8%,

and 86.4% for Tm = 60 sec, Tm = 180 sec, and Tm = 300 sec, respectively. Similar to

the exploration rate comparison, these values are similar within measurement error.

For [1 5] team, there is not much variation in exploration time or area explored when

monitor time is changed (Figure 8.25 (a),(b)). This suggests that there may be many

explorers relative to global environment size to see the effects of monitor time

change. However, exploration time is reduced to a statistically significant 89.5%,

90.4%, and 90.8% for Tm = 60 sec, Tm = 180 sec, Tm = 300 sec, respectively (Figure

8.25 (a),(d)). This produces an exploration rate improvement of approximately 7.7%

for the [1 5] robot team when complete feedback is employed.

These results verify that the various components of the feedback system exhibit

synergy when integrated. The combined system is also robust when monitor time is

varied from 60 sec to 300 sec.

8.6 Alternative Techniques

8.6.1 Mapping and Exploration

Methods that develop efficient exploration strategies to disperse robots and take

advantage of heterogeneous robots have been reviewed in section 2.9.

Singh and Fujimura [1] take advantage of heterogeneity by selecting appropriately

sized robots to investigate “tunnels” leading to unexplored regions. The BERODE

architecture [2] uses behavioural roles (maintainer, recoverer, and pusher) to address

limited communication in multi-robot exploration. In this thesis, heterogeneity in the

processing capabilities of robots is exploited for hierarchical multi-robot exploration.

242 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

A computationally powerful robot (manager) coordinates the lower-tiered limited

capability robots (planners and explorers). Different levels of abstraction are

maintained. Manager robots have a global view of the task. On the other hand,

explorer robots are only aware of the section of the environment that they are required

to explore. Planners are made aware of what plans they need to make and for which

robots.

Simmons [3] also divides the exploration task but not based on heterogeneity due to

computational ability. A central mapper unit and central executive (similar to a

manager robot) coordinate exploration. However, the approach does not use separate

planner robots as this is handled by the central executive. This reduces its ability to

handle decentralised groups of explorer robots. On the other hand, it is less dependent

on inter-robot communication. Similar to Simmons [3], Tovar et al. [4] also employ a

centralised planner to coordinate robot movement for exploration.

The robots employed for exploration in this thesis utilise infrared rangefinders. Other

exploration strategies are based on superior sensors such as ultrasonics [1, 2, 5-7],

laser scanners [3, 4, 8, 9], and vision [4]. This limitation in sensing necessitates the

division of the global environment into smaller territories for individual robots unlike

the approaches reported in section 2.9. It also makes comparisons of exploration time

in similar sized environments inappropriate. Naturally, a team of robots with superior

sensors is able to explore an environment more efficiently.

Dispersing robots within an environment for exploration generally balances an

expected revenue (or utility) and the cost of travel (a function of distance). The

approach taken in this thesis is similar to some of the methods reviewed in section 2.9

([3-8]).

Yamauchi [5] disperses robots based on proximity to frontier regions (cost of travel)

only. The robots maintain separate global maps and make independent decisions

about where to explore. Hence, there is no explicit coordination which can result in

time wastage during exploration.

Feedback Coordination Experiments

243

Simmons [3] computes a utility value for representative frontier cells based on the

difference between an estimated information gain value (revenue) and a cost value.

The cost value is computed from the optimal path between the robot’s current location

and the frontier cell. Estimated information gain is an estimate of the unexplored

space around the frontier cell. A discounting factor is applied to the estimated

information gain value to keep robots apart during exploration. Burgard et al. [8] use

an approach similar to Simmons [3]. In this approach, estimated information gain is

replaced by a utility value and the difference between utility and cost is computed. A

utility reduction function reduces the utility of target points within the sensing range

of a robot to aid dispersion. Poernomo and Ying [6] use a cost function similar to [3,

5, 8] but reduce the cost value based on the distances between robots to aid

dispersion.

Zlot et al. [7] developed a market-based exploration strategy that uses distance

information to compute costs and information gained by visiting a goal point to

compute revenue. A profit (similar to utility) is computed from the difference between

revenue and cost. Robots bid on tasks (goal points to visit) in auctions and the highest

bidders (highest profiting robots) above a reserve price are awarded tasks. This

approach is more complex than [3, 8] as it requires revenue functions, cost functions,

and reserve prices to be appropriately defined to achieve coordination. Tovar et al. [4]

use a complex product utility function that employs fourteen variables to balance cost

of travel and expected information gain (revenue).

Similar to [3, 6, 8], the method presented in this thesis disperses robots by trading off

utility and cost values. Utility values are unit interval values computed based on the

size of the local environment. Cost values are determined from a weighted

combination of the distance to a local environment and the distance to other robots.

Unlike [3-8], time-based (or performance-based) cost information is included in the

form of a novel of task score feedback value. Task score feedback allows weaker

explorer robots to reserve local environments near them.

A drawback of the method presented in this thesis is the dependence on accurate

localisation of the limited robots. This need arises since the robots are required to

traverse the environment and acquire sensor data simultaneously. Due to the limited

processing capabilities of the robots, navigation aids such as beacons or GPS are

244 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

preferred over SLAM. The exploration method also depends on initially specified

environment boundaries.

Unlike other map-building and exploration techniques (section 2.9), a feedback

coordination system is used to improve the area explored and reduce the overall

exploration time. It makes the team dynamic during exploration (to account for

failures) unlike the other approaches that employ fixed robot teams for exploration.

8.6.2 Fault Tolerance (Feedback Coordination)

Fault tolerance in multi-robot systems has been reviewed in section 2.8. The L-

ALLIANCE architecture [10] is designed for behaviour-based systems. Task

completion time is used as the performance metric and motivational behaviours effect

task reallocation. Hence, the system can detect failures but not classify them. The

performance of a robot in executing a specific task over a few recent trials is used as

an estimate of expected performance.

Kannan and Parker’s [11] task execution success and failure metrics influence fault

tolerance and overall system performance. Overall performance is computed as the

difference between successfully executed tasks (success metric) and unsuccessful task

execution (failure metric). Hence, performance can only be determined after the

completion of tasks. Kannan and Parker [12] further develop adaptive causal model

based performance metrics for fault-tolerant systems. Causal models are complex and

cumbersome to implement. They also need to be tailored for different tasks and

environments. In the SFX-EH architecture [13], robots share knowledge of the state of

their sensors and task execution to detect sensing failures. Failures are dealt with by

taking corrective actions such as reconfiguring perceptual schemas or recalibrating

sensors.

The feedback coordination system developed in thesis is designed to be used with the

novel reduced human user input task allocation system. Unlike the methods of

section 2.8, the feedback system monitors the four broad categories of robot hardware

resources (processing, communication, sensing, and actuation) explicitly. Robots are

monitored during task execution and can be replaced before task completion if

Feedback Coordination Experiments

245

performance is unsatisfactory. Failure detection accounts for suboptimal greedy

allocations, inaccurate task specifications, and hardware failures (such as sensing,

actuation, or processing). Unlike [13], the feedback system replaces robots instead of

attempting to correct the failed sensors of a robot. A simple linear weighted

combination of the four resource categories is used to determine the performance a

robot. However, similar to [10], a reasonable estimate of the ideal (best-case scenario)

performance of the robots is still required before task execution. Unlike [11], a ratio

of the current performance to ideal performance produces a task execution success

metric that can be determined during task execution.

8.7 Summary

This chapter has presented results on a novel feedback coordination mechanism that

can be employed by a hierarchical heterogeneous multi-robot system comprising

limited capability mobile robots. A customised multi-level abstracted multi-robot

mapping and exploration task (chapter 6) has been employed as a model task for

experiments. Exploration results obtained with the various types of feedback have

been compared to the results obtained without any feedback.

Task score feedback does not affect exploration time. However, it can positively

impact area explored in a global world that comprises boggy terrain. In the [1 3] robot

team, task score feedback improved the area explored by 5.2% for global worlds with

boggy terrain. Task score feedback is capable of performing at multiple monitor time

values (60 sec, 180 sec, and 300 sec).

The feedback system is able to successfully identify and correct three types of

failures. Poor performance feedback offers improvements for all three robot teams. In

the [1 1] robot team, poor performance feedback can reduce exploration time to as

low as 69% and increase area explored by up to 59%. For the [1 3] robot team, it can

reduce exploration time to as low as 84.4% and increase area explored by up to 4.1%.

Exploration time can be reduced to as low as 89.5% in the [1 5] robot team. The

impact of exploration time reduction is less as the number of explorers is increased

246 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

due to redundancy. Poor performance feedback is able to function successfully at

monitor time values of 60 sec, 180 sec, and 300 sec.

Partial failure feedback has been tested on the [1 3] and [1 5] robot team

configurations. In the [1 3] robot team, area explored can be increased by up to 10.8%

and exploration time can be reduced to as low as 85.8%. For the [1 5] robot team,

exploration time can be reduced to as low as 89.1% when partial failure feedback is

employed. Similar to poor performance feedback, partial failure feedback operates

successfully at monitor time values of 60 sec, 180 sec, and 300 sec.

Complete failure feedback has also been tested on the [1 3] and [1 5] robot teams.

Area explored can be increased by up to 11% and exploration time can be reduced to

as low as 87.8% for the [1 3] robot team. In the [1 5] robot team, exploration time can

be reduced to 73.9% and a 1% increase in area explored can be achieved. Complete

failure feedback is also able to perform at various monitor time values.

When combined into a complete system, task score feedback, poor performance

feedback, partial failure feedback, and complete failure feedback are able to function

successfully for all robot team – monitor time interval combinations.

Task score feedback is robust to achievement bias weight variation within the tested

limits. Similarly, the detection and correction of the three forms of failures is robust to

threshold value variation within the tested limits. Hence, achievement bias weights

and threshold values can be intuitively selected without having a negative impact on

performance.

All individual feedback system components are also robust to monitor time interval

variation within the tested limits. Robustness to monitor time interval variation is also

achieved in the combined system comprising all feedback system components.

Compared to a monitor time interval of 60 sec, a monitor time interval of 300 sec

reduces the volume of messages transmitted and received in the heterogeneous multi-

robot system without negatively affecting performance.

Feedback Coordination Experiments

247

A single set of ideal achievement data is employed for all the experiments presented

in this chapter. Hence, an expert user is expected to “calibrate” a robot’s performance

only when the task type is altered.

A similar procedure can be utilised to evaluate the feedback system for different

applications.

Conclusions

249

9 Conclusions

9.1 Overview

This thesis has presented an artificial intelligence system that exploits the benefits of

hierarchical heterogeneous multi-robot systems and potentially allows non-expert

human users to utilise it. In a system that consists of computationally powerful robots

at the upper level and limited capability robots at the lower levels, resources (such as

processing) can be shared and tasks can be abstracted.

A hierarchical hybrid navigation system that does not rely on periodic path planning

to enable limited capability heterogeneous robots to explore and traverse

environments is summarised in section 9.2. Section 9.3 summarises a novel two-tiered

global path planner that permits limited memory robots to utilise the memory of

computationally powerful robots. The navigation system and global path planner are

components of a customised multi-level abstracted multi-robot map building and

exploration task that is used to demonstrate a novel reduced human user input task

allocation and feedback coordination technique (section 9.4). Limited capability

mobile robots are able to efficiently execute a group task using the developed task

allocation and feedback coordination strategy.

Section 9.5 lists future extensions to the research presented in this thesis. Publications

that have arisen from this thesis and their corresponding contributions are highlighted

in section 9.6. A summary of achievements is provided in section 9.7.

9.2 Basic Robot Navigation System

A hierarchical hybrid navigation system has been developed for basic individual robot

navigation that permits both reactive and deliberative control. This offers flexibility

for navigation in known and unknown environments. The underlying navigation

system is based upon a rudimentary implementation of Lee-Johnson’s navigation

system [51]. Several bugs and shortfalls in Lee-Johnson’s initial navigation system

250 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

have been identified and corrected. The rudimentary system has been successfully

further extended to facilitate the control of heterogeneous robots.

Deliberative control is developed using a modified version of the A* path planning

algorithm and a rectangular occupancy grid map (section 3.2.2). The modified A*

algorithm permits continuous cost values instead of binary data. Inspired by frontier-

based exploration, the rectangular occupancy grid map is updated in real-time and

path replanning takes place when required.

The reactive control strategy combines a modified dynamic window approach

(section 3.5) and a direction sensor similar to the vector field histogram technique

(section 3.4). Employing only a dynamic window approach for reactive control yields

poor navigation. Combining the developed modified dynamic window with a

direction sensor reduces navigation time to 20%–50% when compared to solely

relying on the dynamic window. This combines the benefits of directional methods

and velocity space techniques to produce a reactive system that is not dependent on

periodic path planning.

In unknown environments, reactive navigation is able to achieve similar performance

to combined reactive – deliberative navigation. This removes the dependence on

periodic path planning for hybrid navigation in unexplored obstructed environments.

While the navigation system employs many empirically tuned parameters to achieve

reduced dependence on periodic planning, a fixed set of parameters has been

functional for the tested robot-environment combinations in simulations. The hybrid

navigation system has also been successfully implemented on a physical tricycle robot

and tested in an indoor corridor environment.

9.3 Memory Constrained Path Planning

A novel method for global path planning that enables limited memory robots to utilise

the memory of computationally powerful robots has been developed and evaluated.

The technique is suitable for use in hierarchical heterogeneous multi-robot systems to

allow memory constrained robots to navigate beyond localised regions of a global

Conclusions

251

environment. This is useful for tasks such as exploration where robots may be

required to map large environments.

Specifically, the developed global path planning strategy is well suited for use in a

hierarchical heterogeneous multi-robot system such as Victoria University of

Wellington’s urban search and rescue system (chapter 1). As outlined in section 1.1,

manager robots supervise worker robots during task execution. However, due to

limited processing ability, manager robots may not be able to perform global path

planning and maintain full communication with all worker robots. Instead of relying

on a single centralised path planning robot, global path planning is decentralised and

assigned to some of the worker robots.

Smaller sized local maps are created from a large global map that cannot be

completely stored in a memory constrained robot. The local map size is dependent on

the memory constrained robot’s memory capacity. After dividing the large

environment into small sections, a two-tiered A* algorithm was developed that

sequentially searches the local maps for a global path. The path planning algorithm

executes entirely on the memory constrained robot. During path planning, the

memory constrained robot retrieves local map data from other higher memory

capacity robots.

Superior or comparable execution times to non-memory constrained path planning are

achieved by the memory constrained technique when the local map size is much

smaller than the global map size. A limited memory robot is able to further improve

memory constrained planning by dividing its available memory space to store

multiple smaller sized local maps.

Memory constrained path planning search space is reduced at high (≥ 20%) obstacle

densities. This can affect obstacle clearance. However, path length is not adversely

affected at these higher obstacle densities. In general, many real environments have

low overall obstacle densities and smaller regions of high density obstacles may be

confined to a few local maps. This reduces obstacle clearance issues in memory

constrained planning. Employing a hybrid navigation system with a good reactive

controller also mitigates this issue. Moreover, if obstacles block some local map

252 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

boundaries, the back tracking algorithm can find a path through other local maps

provided that exit points exist in them.

9.4 Task Allocation and Feedback Coordination
Mechanism

A novel reduced human user input task allocation and feedback coordination

mechanism for limited capability mobile robots has been developed and evaluated. As

previously mentioned, an urban search and rescue system under development at

Victoria University of Wellington is a potential application of the developed task

allocation and feedback technique. Three levels of control exist in the mechanism. At

the highest level of control, a remote base station computer specifies a group task and

the robots available for selection. The second and third levels of control comprise

manager robots and worker robots, respectively. Task allocation (devolution)

processes identify the managers and workers from the list of available robots. Once

the managers are identified, the remote base station is no longer needed since

executive control is transferred to them. Worker robots execute tasks based on

instructions from the manager robots.

To reduce human user input, tasks and robots are specified using four major

categories of robot capabilities (i.e. resources): processing, communication, sensing

and actuation. The task allocation algorithms employ numerical vector of merit

(VOM) data that specifies robot capabilities. The four major resource categories are

also encoded in vector of task requirements (VOTR) data to specify tasks that require

allocation. By representing robots and tasks using these four major resources, the task

allocation process is also made generic. A vector of task suitability (VOTS) is

computed from VOTR and VOM data to identify eligible robots for task execution. A

primary task devolution process identifies the manager robots while a secondary task

allocation process is employed to select worker robots.

Often, a human user may not be able to accurately specify the type of mobile robot

required for a task. For example, it is often unreasonable to specify the exact quantity

and type of sensors required for an exploration task. In such situations it is often better

to input a grading for a sensor type (or the sensing resource/capability) and let the task

Conclusions

253

allocation process choose the best robot for the task. Hence, the reduced human user

input task allocation system also permits tasks to be specified with such graded

information. This is unlike many other task allocation strategies that rely on expert

knowledge for task specification. Fuzzy Inference Systems (FISs) have been

employed to simplify the VOM data for comparison with the VOTR data. However, it

should be noted that additional effort is required from the system designer to reduce

complexity for non-expert users.

After initial task allocation, the worker robots may fail to perform adequately. This

can be due suboptimal initial task allocations or unexpected failures (such as

inaccurate task specifications or hardware failure). In the developed system, a

feedback mechanism monitors the efficiency of worker robots during task execution.

If the performance of a worker robot is unsatisfactory, a task reallocation algorithm

adjusts the task-robot combinations of the team.

Three forms of unsatisfactory performance can be detected by the feedback system.

Poor performance is detected when the overall success of a robot during its entire

period of operation falls below a non-zero threshold. Partial failure detection

considers the recent success of a robot. If a robot’s recent success falls below a

threshold value that is usually close to zero, it has partially failed. A completely failed

robot is detected when performance data are not received from the robot and it fails to

send pulse signal activity messages.

A customised multi-level abstracted multi-robot map-building and exploration task

has been implemented as a model group task to demonstrate the effectiveness of the

developed task allocation and feedback coordination system. It is important to note

that the developed system is generic and not limited purely to exploration.

The map-building and exploration technique takes advantage of the benefits of

hierarchical heterogeneous multi-robot systems. It is well suited for a three-tiered

multi-robot system comprising worker robots with limited sensing and processing

capabilities. Worker robots can be assigned planner and explorer tasks. A

computationally powerful manager robot coordinates the planner and explorer tasks to

enable mapping of a large environment containing scattered obstacles. Thus, the

manager robot maintains a global view of the task. Planner tasks enable robots to

254 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

navigate to new localised regions of the large environment. Robots that are assigned

planner tasks only need to be made aware of what plans they need to make and for

which robots. The explorer task permits navigation and exploration within a localised

region of the global environment. Hence, robots that are assigned explorer tasks are

only made aware of the section of the environment that they are required to explore.

Task devolution experiments show that primary task devolution is able to successfully

identify and select suitable robots for manager tasks. The selection of manager robots

is robust for the tested VOTS summation weight sets. Secondary task devolution is

able to successfully identify and select worker robots. Applying small weightings to

sensing and actuation in the planner worker task gives unique rankings to robots

without affecting robustness of task allocation. Similarly, giving small weightings to

planning and communication in the explorer task also enables unique ranks for robots

without adversely affecting robustness.

Experiments on the feedback system show that the three forms of failures (poor

performance, partial failure and complete failure) are successfully detected and

corrected. This results in improved task execution performance. In smaller teams, task

score feedback it able to provide a small improvement in the area explored for

environments comprising regions of boggy terrain without affecting the time taken to

complete exploration. Task score feedback, poor performance feedback and partial

failure feedback are robust to weight and threshold variation within the tested limits.

Hence, it is possible to select weights and thresholds intuitively without negatively

affecting performance. The feedback system is also robust to monitor time interval

variation within the tested limits, allowing dependence on communication to be

varied. Additionally, a single set of ideal achievement data is employed in the

experiments. Thus, it is expected that an expert user will need to “calibrate” a robots

performance only when the task type is changed.

9.5 Future Work

The vast majority of the experiments presented in this thesis are simulations because

multiple robots are tested in a variety of environments. Navigation system

experiments on physical robots have been limited to a single tricycle mobile robot.

Conclusions

255

More experiments on a variety of physical heterogeneous robots in a range of real

environments would be useful to evaluate the navigation system’s performance in real

world situations. Extensive simulation experiments have evaluated the novel two-

tiered global path planning technique for limited memory mobile robots. The

performance of the two-tiered path planner in the real world can be investigated with

physical robots in tasks such as multi-robot exploration. Similarly, the task allocation

and feedback coordination technique can be applied to a multi-robot mapping and

exploration task utilising physical robots to evaluate its effectiveness in the real

world.

To investigate the degree to which the reduced human user input task allocation and

feedback coordination technique is generic, it would be useful to implement and

evaluate its performance in alternative multi-robot applications such as cooperative

object transportation and security system applications. Eventually, it would be

beneficial to have the task allocation and feedback coordination strategy integrated in

the three-tiered hierarchical multi-robot system for urban search and rescue being

developed at Victoria University of Wellington. This would test the effectiveness of

the reduced human user input system in the real world.

In all the navigation and exploration experiments presented in this thesis, the robots

were assumed to know their global position at all times. Long term experiments in the

real world without external devices such as GPS or beacons will cause localisation

uncertainties as (for example) odometry or inertial navigation system (INS) errors will

accumulate. Such errors will also cause distortions in the maps created during

exploration. Thus, the implementation of a robust simultaneous localisation and

mapping (SLAM) algorithm would be beneficial to reduce these uncertainties and

errors.

The presented navigation system employs empirically tuned fixed parameter values

and simple weighted linear objective functions. An extension to the existing

implementation would be to design objective functions using fuzzy inference systems.

The performance of a non-linear fuzzy system utilising various rule combinations can

be investigated. Furthermore, neuro-adaptive techniques can be employed to train the

weightings of rules in the objective function fuzzy inference systems for optimal

navigation system performance.

256 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

In the task allocation component, fuzzy inference systems have been employed to

simplify human user input and compute weighted sums in the task allocation process.

It would be useful to extend the use of fuzzy systems to the feedback system. For

instance, if a human user is required to input threshold, weight and monitor time

values, these can be specified as graded inputs (say for example, ‘low’, ‘medium’ or

‘high’). Following this, a fuzzy inference system can be developed to detect robot

failures. Furthermore, the feedback fuzzy system can utilise neuro-adaptive

techniques to self-tune thresholds and weights if user input is incorrect. Presently, the

developed feedback system is able to function appropriately without incorporating

hysteresis loops for avoiding false detections due to noise during task reallocation. It

would be useful to investigate the incorporation of hysteresis loops into the task

reallocation process to improve feedback system performance.

The current implementation of the feedback system requires an initial test sequence in

a simple real environment or some expert knowledge to determine an informed

starting estimate of expected achievement data. If this expected achievement data is

incorrectly determined, it will affect failure detection. It would be useful to investigate

the degree to which the feedback system is tolerant to incorrect achievement data.

9.6 Publications

Five conference proceedings, one book chapter and four international journal articles

(two currently under review) have emerged from the research presented in this thesis.

They are listed in the subsections below.

Book chapter B1 presents an overview of the concept of utilising a decentralised

hierarchical multi-robot system. It also presents a review of cooperative mobile robot

control architectures (section 2.6).

Publication C1 presents initial work on the reactive control system for limited sensing

robots that employs a hybrid of directional approaches (polar histogram) and velocity

space techniques (dynamic window approach). Initial work on the novel two-tiered

global path planning strategy for limited memory robots is presented in conference

proceeding C2. The application of the hybrid deliberative-reactive navigation system

Conclusions

257

in the customised multi-level abstracted multi-robot mapping and exploration task

utilising heterogeneous mobile robots is presented in conference proceeding C4.

Journal paper J2 presents and evaluates the latest version the hybrid reactive-

deliberative navigation system based on the work presented in chapter 3. Based on

chapter 4, the latest version of the two-tiered global path planning strategy is

presented and evaluated in journal paper J3.

Conference proceeding C3 presents initial work on the reduced human user input task

allocation and feedback coordination system for limited capability robots. The

feedback system component is further developed to detect and correct the three forms

of robot failures in publication C5. Journal paper J1 presents and evaluates the

feedback system detailed in chapter 5. A reduced human user input task allocation

system for non-expert users that employs fuzzy inference systems (detailed in

chapter 5 and chapter 7) is presented and evaluated in journal paper J4.

9.6.1 Refereed Conference Proceedings

C1. P. Chand and D. A. Carnegie, "Reactive control of a tricycle mobile robot,"
in Proceedings of the Twelfth Electronics New Zealand Conference, 2005,
pp. 129-134.

C2. P. Chand and D. A. Carnegie, "Memory-time tradeoffs in a path planning

approach utilising limited memory robots," in Proceedings of the
International Conference on Computational Intelligence, Robotics and
Autonomous Systems, 2007, pp. 243-248.

C3. P. Chand and D. A. Carnegie, "Task Allocation and Coordination for Limited

Capability Mobile Robots," in Proceedings of the Australasian Conference
on Robotics and Automation, 2007.

C4. C. P. Lee-Johnson, P. Chand, and D. A. Carnegie, "Applications of a

Adaptive Hierarchical Mobile Robot Navigation System," in Proceedings of
the Australasian Conference on Robotics and Automation, 2007.

C5. P. Chand and D. A. Carnegie, "Feedback coordination of limited capability

mobile robots," in Proceedings of the International Conference on
Mechatronics and Machine Vision in Practice, 2008, pp. 531-536.

258 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

9.6.2 Book Chapters

B1. D. A. Carnegie, A. D. Payne, and P. Chand, "The design of a pair of identical
mobile robots to investigate cooperative behaviours," in Cutting Edge
Robotics – Section V Multi-Robot Systems. Austria: International Journal of
Advanced Robotic Systems, 2005, pp. 377-396.

9.6.3 International Journal Articles

J1. P. Chand and D. A. Carnegie. "Feedback coordination of limited capability
mobile robots," International Journal of Intelligent Systems Technologies
and Applications, vol. 8, no. 1/2/3/4, pp. 144-157, 2010.

J2. P. Chand and D. A. Carnegie, “Development of a Navigation System for

Heterogeneous Mobile Robots.” International Journal of Intelligent Systems
Technologies and Applications, vol. 10, no. 3, pp. 250-278, 2011.

J3. P. Chand and D. A. Carnegie, “A Two-Tiered Global Path Planning Strategy

for Limited Memory Mobile Robots.” Robotics and Autonomous Systems.
(under review)

J4. P. Chand and D. A. Carnegie, “A Multi-Robot Task Allocation Technique

Using Fuzzy Inference Systems," Robotica. (under review)

9.7 Summary of Achievements (Contributions)

This thesis has made a number of contributions to mobile robotics research. A

hierarchical hybrid deliberative-reactive navigation system for heterogeneous mobile

robots with limited sensing and processing capabilities has been developed. It is

capable of offering a high degree of flexibility for navigation in known and unknown

environments. While the system relies on a number of empirically tuned parameters, a

fixed set of parameters has been functional in the various robot and environment

configurations tested. A reactive controller comprising a modified dynamic window

method (velocity space technique) and a polar histogram (directional method)

outperforms reactive control that relies only on the dynamic window method. The

developed reactive controller is able to offer similar performance to hybrid

deliberative-reactive navigation when utilised in unknown environments. This

removes the need for periodic path planning when employing hybrid navigation in

unexplored obstructed environments. Subsequently, this can be beneficial in a multi-

Conclusions

259

robot system where paths are planned on other mobile robots due to processing

constraints.

A novel global path planning technique that utilises the memory of a computationally

powerful robot but executes entirely on a limited memory mobile robot has been

developed. This allows global path planning to be decentralised in a hierarchical

heterogeneous multi-robot system instead of relying on a single computationally

powerful robot. The two-tiered A* based path planning strategy is able to achieve

superior or comparable execution times to non-memory constrained path planning

when small sized local maps (such as 64 KB or 128 KB) are employed in large global

environments (such as 38.15 MB). In large global environments, the distance

traversed by a robot can be greater than the communication range. This would require

additional communication nodes or relocation of the computationally powerful robot

when replanning is needed. Reduced search space of the memory constrained

planning technique at higher obstacle densities (≥ 20%) can potentially affect obstacle

clearance. However, when obstacles are sufficiently large to block some local map

boundaries, the back tracking algorithm can find a path through alternative local maps

as long as exit points exist in them. This technique for global path planning is unique

when compared to other memory constrained path planning methods reported in the

literature.

Furthermore, a novel reduced human user input task allocation and feedback

coordination mechanism for the efficient execution of a global task by limited

capability mobile robots has been successfully developed. It is well suited for

hierarchical heterogeneous multi-robot systems. The task allocation process has the

advantage of employing fuzzy inference systems to permit simplified human user

inputs (such as “low”, “medium”, or “high”) for physical robot capability

requirements at the task specification stage. This is unlike other task allocation

methods reported in the literature that require more detailed expert knowledge for

specifying tasks. However, additional effort is required by an expert user to design the

reduced human user input system. A simple greedy technique allows tasks to be

allocated quickly.

260 Development of an Artificial Intelligence System for the Instruction
and Control of Cooperating Mobile Robots

The success of task allocation is monitored with a feedback system that detects and

corrects abnormalities during task execution thus improving the performance of task

execution. This mitigates the potentially sub-optimal initial greedy allocations and

handles unexpected robot failures (such as hardware failure or failures due to

inaccurate task specification). The developed feedback system is robust to weight and

threshold variation within the tested limits. This allows weights and thresholds to be

intuitively selected without negatively affecting performance. Additionally,

dependence on communication can be varied as the feedback system is robust to

monitor time interval variation within the tested limits. An expert user is expected to

“calibrate” a robot’s performance only when the task type is altered. Hence, the

developed task allocation and feedback coordination strategy has the ability to specify

tasks in a generic format such that non-expert human users can adapt and utilise

multi-robot systems.

References

261

References

[1] H. S. Shim, H. S. Kim, M. J. Jung, I. H. Choi, J. H. Kim, and J. O. Kim,

"Designing distributed control architecture for cooperative multi-agent system

and its real-time application to soccer robots," Robotics and Autonomous

Systems, vol. 21, no. 2, pp. 149-165, 1997.

[2] J. L. de la Rosa, A. Oller, J. Vehi, and J. Puyol, "Soccer team based on agent-

oriented programming," Robotics and Autonomous Systems, vol. 21, no. 2, pp.

167-176, 1997.

[3] E. Pagello, A. D'Angelo, and E. Menegatti, "Cooperation issues and

distributed sensing for multirobot systems," Proceedings of the IEEE, vol. 94,

no. 7, pp. 1370-1383, 2006.

[4] M. J. Mataric, M. Nilsson, and K. T. Simsarian, "Cooperative multi-robot box-

pushing," in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, 1995, pp. 556-561.

[5] N. Miyata, J. Ota, T. Arai, and H. Asama, "Cooperative transport by multiple

mobile robots in unknown static environments associated with real-time task

assignment," IEEE Transactions on Robotics and Automation, vol. 18, no. 5,

pp. 769-780, 2002.

[6] B. Donald, L. Gariepy, and D. Rus, "Distributed manipulation of multiple

objects using ropes," in Proceedings of the IEEE International Conference on

Robotics and Automation, 2000, pp. 450-457.

[7] T. Huntsberger, P. Pirjanian, A. Trebi-Ollennu, H. Das Nayar, H. Aghazarian,

A. J. Ganino, M. Garrett, S. S. Joshi, and P. S. Schenker, "CAMPOUT: a

control architecture for tightly coupled coordination of multirobot systems for

planetary surface exploration," IEEE Transactions on Systems, Man and

Cybernetics, Part A, vol. 33, no. 5, pp. 550-559, 2003.

[8] B. Yamauchi, "Decentralized coordination for multirobot exploration,"

Robotics and Autonomous Systems, vol. 29, no. 2-3, pp. 111-118, 1999.

262 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

[9] R. Zlot, A. Stentz, M. B. Dias, and S. Thayer, "Multi-robot exploration

controlled by a market economy," in Proceedings of the IEEE International

Conference on Robotics and Automation, 2002, pp. 3016-3023.

[10] A. W. Stroupe and T. Balch, "Value-based action selection for observation

with robot teams using probabilistic techniques," Robotics and Autonomous

Systems, vol. 50, no. 2-3, pp. 85-97, 2005.

[11] W. Burgard, M. Moors, C. Stachniss, and F. Schneider, "Coordinated multi-

robot exploration," IEEE Transactions on Robotics, vol. 21, no. 3, pp. 376-

386, 2005.

[12] L. E. Parker, "ALLIANCE: an architecture for fault tolerant multirobot

cooperation," IEEE Transactions on Robotics, vol. 14, no. 2, pp. 220-240,

1998.

[13] L. Vig and J. A. Adams, "Multi-robot coalition formation," IEEE Transactions

on Robotics, vol. 22, no. 4, pp. 637-649, 2006.

[14] T. Balch, "Reward and diversity in multirobot foraging," in Proceedings of the

IJCAI-99 Workshop on Agents Learning About, From and With Other Agents,

1999.

[15] D. A. Carnegie, A. D. Payne, and P. Chand, "The design of a pair of identical

mobile robots to investigate cooperative behaviours," in Cutting Edge

Robotics – Section V Multi-Robot Systems. Austria: International Journal of

Advanced Robotic Systems, 2005, pp. 377-396.

[16] D. A. Williamson and D. A. Carnegie, "Embedded platform for search and

rescue applications," in Proceedings of the International Conference on

Autonomous Robots and Agents, 2006, pp. 373-378.

[17] C. L. Cawley, The Enhancement of a Multi-Terrain Mechatron for

Autonomous Outdoor Applications. MSc Thesis, University of Waikato, 2006.

[18] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X.

Nicollin, A. Olivero, J. Sifakis, and S. Yovine, "The algorithmic analysis of

References

263

hybrid systems," Theoretical Computer Science, vol. 138, no. 1, pp. 3-34,

1995.

[19] B. P. Gerkey and M. J. Mataric, " Multi-robot task allocation: analyzing the

complexity and optimality of key architectures," in Proceedings of the IEEE

International Conference on Robotics and Automation, 2003, pp. 3862-3868.

[20] A. Farinelli, L. Iocchi, and D. Nardi, "Multirobot systems: a classification

focused on coordination," IEEE Transactions on Systems, Man, and

Cybernetics, vol. 34, no. 5, pp. 2015-2028, 2004.

[21] L. E. Parker and F. Tang, "Building multirobot coalitions through automated

task solution synthesis," Proceedings of the IEEE, vol. 94, no. 7, pp. 1289-

1305, 2006.

[22] L. E. Parker, "L-ALLIANCE: task-oriented multi-robot learning in behavior-

based systems," Advanced Robotics, vol. 11, no. 4, pp. 305-322, 1997.

[23] R. Brooks, "A robust layered control system for a mobile robot," IEEE

Journal of Robotics and Automation, vol. 2, no. 1, pp. 14-23, 1986.

[24] R. C. Arkin, "Motor Schema-Based Mobile Robot Navigation," The

International Journal of Robotics Research, vol. 8, no. 4, pp. 92-112, 1989.

[25] R. C. Arkin, Behavior-Based Robotics. Cambridge Massachusetts: The MIT

Press, 1998.

[26] M. J. Mataric, "Integration of representation into goal-driven behavior-based

robots," IEEE Transactions on Robotics and Automation, vol. 8, no. 3, pp.

304-312, 1992.

[27] M. J. Mataric and F. Michaud, "Behavior-based systems," in Springer

Handbook of Robotics, vol. part E, B. Siciliano and O. Khatib, Eds. Berlin:

Springer, 2008, pp. 891-909.

[28] D. Jung and A. Zelinsky, "An architecture for distributed cooperative planning

in a behaviour-based multi-robot system," Robotics and Autonomous Systems,

vol. 26, no. 2-3, pp. 149-174, 1999.

264 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

[29] J. Rosenblatt, "DAMN: a distributed architecture for mobile navigation,"

Journal of Experimental and Theoretical Artificial Intelligence, vol. 9, no. 2-3,

pp. 339-360, 1997.

[30] J. S. Albus, "Outline for a theory of intelligence," IEEE Transactions on

Systems, Man and Cybernetics, vol. 21, no. 3, pp. 473-509, 1991.

[31] A. Kosaka and A. C. Kak, "Fast vision-guided mobile robot navigation using

model-based reasoning and prediction of uncertainties," in Proceedings of the

Proceedings of the 1992 lEEE/RSJ International Conference on Intelligent

Robots and Systems, 1992, pp. 2177-2186.

[32] R. C. Arkin and T. Balch, "AuRA: principles and practice in review," Journal

of Experimental and Theoretical Artificial Intelligence, vol. 9, no. 2-3, pp.

175-189, 1997.

[33] D. M. Lyons and A. J. Hendriks, "Planning as incremental adaptation of a

reactive system," Robotics and Autonomous Systems, vol. 14, no. 4, pp. 255-

288, 1995.

[34] E. Gat, "Integrating planning and reacting in a heterogeneous asynchronous

architecture for controlling real-world mobile robots," in Proceedings of the

Tenth National Conference on Artificial Intelligence (AAAI-92), 1992, pp.

809-815.

[35] K. Konolige, K. Myers, E. Ruspini, and A. Saffiotti, "The saphira architecture:

a design for autonomy," Journal of Experimental and Theoretical Artificial

Intelligence, vol. 9, no. 2-3, pp. 215-235, 1997.

[36] P. Chand and D. A. Carnegie, "Reactive control of a tricycle mobile robot," in

Proceedings of the Twelfth Electronics New Zealand Conference, 2005, pp.

129-134.

[37] C. P. Lee-Johnson, P. Chand, and D. A. Carnegie, "Applications of a Adaptive

Hierarchical Mobile Robot Navigation System," in Australasian Conference

on Robotics and Automation, vol. 1. Brisbane, Australia: ARAA, 2007.

References

265

[38] D. Fox, W. Burgard, and S. Thrun, "The dynamic window approach to

collision avoidance," IEEE Robotics and Automation Magazine, vol. 4, no. 1,

pp. 23-33, 1997.

[39] P. Ogren and N. E. Leonard, "A convergent dynamic window approach to

obstacle avoidance," IEEE Transactions on Robotics, vol. 21, no. 2, pp. 188-

195, 2005.

[40] J. A. Primbs, V. Nevistic, and J. C. Doyle, "Nonlinear optimal control: A

control Lyapunov function and receding horizon perspective," Asian Journal

of Control, vol. 1, no. 1, pp. 14-24, 1999.

[41] L. Guoyang, W. Genxia, and W. Wei, "ND-DWA: a reactive method for

collision avoidance in troublesome scenarios," in Proceedings of the The Sixth

World Congress on Intelligent Control and Automation, 2006, pp. 9307-9311.

[42] R. Philippsen and R. Siegwart, "Smooth and efficient obstacle avoidance for a

tour guide robot," in Proceedings of the IEEE International Conference on

Robotics and Automation, 2003, pp. 446-451.

[43] R. Murphy, Introduction to AI Robotics. Cambridge MA: MIT Press, 2000.

[44] K. Macek, I. Petrovic, and E. Ivanjko, "An approach to motion planning of

indoor mobile robots," in Proceedings of the IEEE International Conference

on Industrial Technology, 2003, pp. 969-973.

[45] M. Seder, K. Macek, and I. Petrovic, "An integrated approach to real-time

mobile robot control in partially known indoor environments," in Proceedings

of the Annual Conference of IEEE Industrial Electronics Society, 2005, pp.

1785-1790.

[46] A. Stentz, "Optimal and efficient path planning for partially-

knownenvironments," in Proceedings of the IEEE International Conference

on Robotics and Automation, 1994, pp. 3310-3317.

266 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

[47] O. Brock and O. Khatib, "High-speed navigation using the global dynamic

window approach," in Proceedings of the IEEE International Conference on

Robotics and Automation, 1999, pp. 341-346.

[48] K. O. Arras, J. Persson, N. Tomatis, and R. Siegwart, "Real-time obstacle

avoidance for polygonal robots with a reduced dynamic window," in

Proceedings of the IEEE International Conference on Robotics and

Automation, 2002, pp. 3050-3055.

[49] C. Schlegel, "Fast local obstacle avoidance under kinematic and dynamic

constraints," in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, 1998, pp. 594-599.

[50] J. Minguez, "The obstacle-restriction method for robot obstacle avoidance in

difficult environments," in Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2005, pp. 2284-2290.

[51] C. P. Lee-Johnson and D. A. Carnegie, "Towards a Computational Model of

Affect for the Modulation of Mobile Robot Control Parameters," in

Proceedings of the International Conference on Autonomous Robots and

Agents, 2006, pp. 367-372.

[52] C. P. Lee-Johnson, Emotion-based Parameter Modulation for a Mobile Robot

Planning and Control System. PhD Thesis, Victoria University of Wellington,

2008.

[53] O. Khatib, "Real-time obstacle avoidance for manipulators and mobile

robots," International Journal of Robotics Research, vol. 5, no. 1, pp. 90-98,

1986.

[54] M. Khatib and R. Chatila, "An extended potential field approach for mobile

robot sensor-based motion," in Proceedings of the International Conference

on Intelligent Autonomous Systems (IAS-4), 1995, pp. 490-496.

[55] H. J. S. Feder and J. J. E. Slotin, "Real-time path planning using harmonic

potentials in dynamic environments," in Proceedings of the IEEE

International Conference on Robotics and Automation, 1997, pp. 874-881.

References

267

[56] S. Quinlan and O. Khatib, "Elastic bands: connecting path planning and

control," in Proceedings of the IEEE International Conference on Robotics

and Automation, 1993, pp. 802-807.

[57] J. Minguez and L. Montano, "Nearness diagram (ND) navigation: collision

avoidance in troublesome scenarios," IEEE Transactions on Robotics and

Automation, vol. 20, no. 1, pp. 45-59, 2004.

[58] I. Ulrich and J. Borenstein, "VFH+: Reliable obstacle avoidance for fast

mobile robots," in Proceedings of the IEEE International Conference on

Robotics and Automation, 1998, pp. 1572-1577.

[59] R. Simmons, "The curvature velocity method for local obstacle avoidance," in

Proceedings of the IEEE International Conference on Robotics and

Automation, 1996, pp. 3375-3382.

[60] M. Khatib, H. Jaouni, R. Chatila, and J. P. Laumond, "Dynamic path

modification for car-like nonholonomic mobile robots," in Proceedings of the

IEEE International Conference on Robotics and Automation, 1997, pp. 2920-

2925.

[61] J. Minguez and L. Montano, "Robot navigation in very complex, dense, and

cluttered indoor/outdoor environments," in Proceedings of the IFAC World

Congress on Automatic Control, 2002.

[62] J. Minguez and L. Montano, "The ego-kinodynamic space: collision avoidance

for any shape mobile robots with kinematic and dynamic constraints," in

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2003, pp. 637-643.

[63] I. Ulrich and J. Borenstein, "VFH*: Local obstacle avoidance with look-ahead

verification," in Proceedings of the IEEE International Conference on

Robotics and Automation, 2000, pp. 2505-2511.

[64] N. Y. Ko and R. Simmons, "The lane-curvature method for local obstacle

avoidance," in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, 1998, pp. 1615-1621.

268 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

[65] P. Chand and D. A. Carnegie, "Memory-time tradeoffs in a path planning

approach utilising limited memory robots," in Proceedings of the International

Conference on Computational Intelligence, Robotics and Autonomous

Systems, 2007, pp. 243-248.

[66] S. Thrun, "Robotic mapping: a survey," in Exploring artificial intelligence in

the new millennium, G. Lakemeyer and B. Nebel, Eds. San Francisco,

California: Morgan Kaufmann Publishers Inc., 2003, pp. 1-35.

[67] R. Siegwart and Nourbakhsh, Introduction to Autonomous Mobile Robots.

MA: The MIT Press, 2004.

[68] N. J. Nilsson, "A mobile automaton: an application of artificial intelligence

techniques," in Proceedings of the First International Conference on Artificial

Intelligence, 1969, pp. 509-520.

[69] F. Aurenhammer, "Voronoi diagrams: a survey of a fundamental geometric

data structure," ACM Computing Surveys, vol. 23, no. 3, pp. 345-405, 1991.

[70] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem

Solving. Reading Massachusetts: Addison-Wesley, 1984.

[71] B. Bakker, Z. Zivkovic, and B. Krose, "Hierarchical dynamic programming

for robot path planning," in Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2005, pp. 2756-2761.

[72] S. Sekhavat, P. Svestka, J. P. Laumond, and M. H. Overmars, "Multilevel Path

Planning for Nonholonomic Robots Using Semiholonomic Subsystems," The

International Journal of Robotics Research, vol. 17, no. 8, pp. 840-857, 1998.

[73] S. Thrun, "Learning metric-topological maps for indoor mobile robot

navigation," Artificial Intelligence, vol. 99, no. 1, pp. 21-71, 1998.

[74] F. Wallner, M. Kaiser, H. Freidrich, and R. Dillman, "Integration of

topological and geometrical planning in a learning mobile robot," in

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems, 1994, pp. 1-8.

References

269

[75] C. W. Warren, "Fast path planning using modified A* method," in

Proceedings of the IEEE International Conference on Robotics and

Automation, 1993, pp. 662-667.

[76] Y. Zhao, C. V. Ravishankar, and S. L. BeMent, "Coping with Limited On-

Board Memory and Communication Bandwidth in Mobile-Robot Systems,"

IEEE Transactions on Systems, Man, and Cybernetics, vol. 24, no. 1, pp. 58-

72, 1994.

[77] S. Koenig, "Agent-centered search," AI Magazine, vol. 22, no. 4, pp. 109-131,

2001.

[78] J. Bruce and M. Veloso, "Real-time randomized path planning for robot

navigation," in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2002, pp. 2383-2388.

[79] K. Doki, S. Hayakawa, T. Suzuki, S. Okuma, and T. Aoki, "Hierarchical

memory structure for the real-time search for action acquisition of an

autonomous mobile robot," in Proceedings of the IEEE International

Symposium on Intelligent Control, 2002, pp. 815-820.

[80] A. A. Razavian and J. Sun, "Cognitive Based Adaptive Path Planning

Algorithm for Autonomous Robotic Vehicles," in Proceedings of the IEEE

SoutheastCon, 2005, pp. 153-160.

[81] R. C. Holte, M. B. Perez, R. M. Zimmer, and A. J. MacDonald, "Hierarchical

A*: Searching Abstraction Hierarchies Efficiently," in Proceedings of the

Thirteenth National Conference on Artificial Intelligence, 1996, pp. 530-535.

[82] M. DeLoura, Game Programming Gems. Boston MA: Charles River Media,

2000.

[83] M. Schneider, M. Guthe, and R. Klein, "Real-time Rendering of Complex

Vector Data on 3D Terrain Models," in Proceedings of the 11th International

Conference on Virtual Systems and Multimedia, 2005, pp. 573-582.

270 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

[84] D. Z. Chen, R. J. Szcerba, and J. J. Uhran, "A Framed-Quadtree Approach for

Determining Euclidean Shortest Paths in a 2-D Environment," IEEE

Transactions on Robotics and Automation, vol. 13, no. 5, pp. 668-681, 1997.

[85] A. Yahja, A. Stentz, S. Singh, and B. L. Brumitt, "Framed-Quadtree Path

Planning for Mobile Robots Operating in Sparse Environments," in

Proceedings of the IEEE International Conference on Robotics and

Automation, 1998, pp. 650-655.

[86] R. Korf, "Depth-first iterative deepening: An optimal admissible tree search,"

Artificial Intelligence, vol. 27, no. 1, pp. 97-109, 1985.

[87] R. Korf, "Linear-space best-first search," Artificial Intelligence, vol. 62, no. 1,

pp. 41-78, 1993.

[88] R. Korf, W. Zhang, I. Thayerand, and H. Hohwald, "Frontier Search," Journal

of the ACM, vol. 52, no. 5, pp. 715-748, 2005.

[89] R. Zhou and E. Hansen, "Sparse-memory graph search," in Proceedings of the

18th International Joint Conference on Artificial Intelligence, 2003, pp. 1259-

1266.

[90] Y. U. Cao, A. S. Fukunaga, and A. B. Kahng, "Cooperative mobile robotics:

antecedents and directions," Autonomous Robots, vol. 4, no. 1, pp. 7-27, 1997.

[91] T. Fukuda and G. Iritani, "Construction mechanism of group behaviour with

cooperation," in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, 1995, pp. 535-542.

[92] P. Glorennec, "Coordination between autonomous robots," International

Journal of Approximate Reasoning, vol. 17, no. 4, pp. 433-446, 1997.

[93] C. Sossai, P. Bison, G. Chemello, and G. Trainito, "Sensor fusion for

localization using possibility theory," Control Engineering Practice, vol. 7,

no. 6, pp. 773-782, 1999.

References

271

[94] B. P. Gerkey and M. J. Mataric, "A formal analysis and taxonomy of task

allocation in multi-robot systems," International Journal of Robotics

Research, vol. 23, no. 9, pp. 939-954, 2004.

[95] R. Simmons, S. Singh, D. Hershberger, J. Ramos, and T. Smith, "First results

in the coordination of heterogeneous robots for large-scale assembly," in

Experimental Robotics VII, vol. 271, Lecture Notes in Control and

Information Sciences. London, UK: Springer-Verlag, 2000, pp. 323-332.

[96] F. R. Noreils, "Toward a robot architecture integrating cooperation between

mobile robots: application to indoor environment," International Journal of

Robotics Research, vol. 12, no. 1, pp. 79-98, 1993.

[97] M. B. Dias and A. Stentz, "Opportunistic optimization for market-based

multirobot control," in Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2002, pp. 2714-2720.

[98] S. C. Botelho and R. Alami, "M+: a scheme for multi-robot cooperation

through negotiated task allocation and achievement," in Proceedings of the

IEEE International Conference on Robotics and Automation, 1999, pp. 1234-

1239.

[99] L. Chaimowicz, V. Kumar, and M. F. M. Campose, "A paradigm for dynamic

coordination of multiple robots," Autonomous Robots, vol. 17, no. 1, pp. 7-21,

2004.

[100] M. B. Dias and A. Stentz, "A market approach to multi-robot coordination,"

Carnegie Mellon University, Pittsburgh, Pennsylvania, Technical Report

CMU-RI -TR-01-26, August 2001.

[101] B. P. Gerkey and M. J. Mataric, "Sold! auction methods for multi-robot

coordination," IEEE Transactions on Robotics and Automation, vol. 18, no. 5,

pp. 758-768, 2002.

[102] B. B. Werger and M. J. Mataric, "Broadcast of local eligibility for multi-target

observation," in Proceedings of the International Symposium on Distributed

Autonomous Robotic Systems, 2000, pp. 347-356.

272 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

[103] I. D. Chase, M. Weissburg, and T. H. Dewitt, "The vacancy chain process: a

new mechanism of resource distribution in animals with application to hermit

crabs," Animal Behavior, vol. 36, pp. 1265-1274, 1988.

[104] T. S. Dahl, M. J. Mataric, and G. S. Sukhatme, "Multi-robot task allocation

through vacancy chains," in Proceedings of the IEEE International

Conference on Robotics and Automation, 2003, pp. 2293-2298.

[105] M. J. Mataric, G. S. Sukhatme, and E. H. Ostergaard, "Multi-robot task

allocation in uncertain environments," Autonomous Robots, vol. 14, no. 2-3,

pp. 255-263, 2004.

[106] M. B. Dias and A. Stentz, "Traderbots: a market-based approach for resource,

role, and task allocation in multirobot coordination," Carnegie Mellon

University, Pittsburgh, Pennsylvania, Technical Report CMU-RI-TR-03-19,

August 2003.

[107] R. Zlot and A. Stentz, "Complex task allocation for multiple robots," in

Proceedings of the IEEE International Conference on Robotics and

Automation, 2005, pp. 1515-1522.

[108] P. Stone and M. Veloso, "Task decomposition, dynamic role assignment, and

low-bandwidth communication for real-time strategic teamwork," Artificial

Intelligence, vol. 110, no. 2, pp. 241-273, 1999.

[109] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, and B. Stewart,

"Distributed multirobot exploration and mapping," Proceedings of the IEEE,

vol. 94, no. 7, pp. 1325-1339, 2006.

[110] N. R. Jennings, "Controlling cooperative problem solving in industrial multi-

agent systems," Artificial Intelligence, vol. 75, no. 2, pp. 195-240, 1995.

[111] M. Tambe, "Towards flexible teamwork," Journal of Artificial Intelligence

Research, vol. 7, no. 1, pp. 83-124, 1997.

[112] P. R. Cohen and H. Levesque, "Teamwork," Nous, vol. 25, no. 4, pp. 487-512,

1991.

References

273

[113] B. J. Grosz, "Collaborative systems," AI Magazine, vol. 17, no. 2, pp. 67-85,

1996.

[114] O. Shehory and S. Kraus, "Methods for task allocation via agent coalition

formation," Artificial Intelligence, vol. 101, no. 1-2, pp. 165-200, 1998.

[115] L. Vig and J. A. Adams, "Market-based multi-robot coalition formation," in

Proceedings of the International Symposium on Distributed Autonomous

Robotic Systems, 2006, pp. 227-236.

[116] B. Kannan and L. E. Parker, "Fault-tolerance based metrics for evaluating

system performance in multi-robot teams," in Performance Metrics for

Intelligent Systems Workshop. Gaithersburg, Maryland, 2006.

[117] B. Kannan and L. E. Parker, "Metrics for quantifying system performance in

intelligent, fault-tolerant multi-robot teams," in Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2007, pp. 951-

958.

[118] M. T. Long, R. R. Murphy, and L. E. Parker, "Distributed multi-agent

diagnosis and recovery from sensor failures," in Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2003, pp. 2506-

2513.

[119] R. R. Murphy and D. Hershberger, "Handling sensing failures in autonomous

mobile robots," The International Journal of Robotics Research, vol. 18, no. 4,

pp. 382-400, 1999.

[120] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun, and H.

Younes, "Coordination for multi-robot exploration and mapping," in

Proceedings of the National Conference on Artificial Intelligence, 2000, pp.

852-858.

[121] B. Tovar, L. Muñoz-Gómez, R. Murrieta-Cid, M. Alencastre-Miranda, R.

Monroy, and S. Hutchinson, "Planning exploration strategies for simultaneous

localization and mapping," Robotics and Autonomous Systems, vol. 54, no. 4,

pp. 314-331, 2006.

274 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

[122] K. Singh and K. Fujimura, "Map making by cooperating mobile robots," in

Proceedings of the IEEE International Conference on Robotics and

Automation, 1993, pp. 254-259.

[123] J. V. D. Diosdado, Behaviour Based Simulated Low-Cost Multi-Robot

Exploration. PhD Thesis, University of Edinburgh, 2006.

[124] S. Thrun, "A probabilistic on-line mapping algorithm for teams of mobile

robots," The International Journal of Robotics Research, vol. 20, no. 5, pp.

335-363, 2001.

[125] D. Hahnel, R. Triebel, W. Burgard, and S. Thrun, "Map building with mobile

robots in dynamic environments," in Proceedings of the IEEE International

Conference on Robotics and Automation, 2003, pp. 1557-1563.

[126] J. W. Fenwick, P. M. Newman, and J. J. Leonard, "Cooperative concurrent

mapping and localization," in Proceedings of the IEEE International

Conference on Robotics and Automation, 2002, pp. 1810-1817.

[127] A. K. Poernomo and H. S. Ying, "New cost function for multi-robot

exploration," in Proceedings of the 9th International Conference on Control,

Automation, Robotics and Vision, 2006, pp. 1-6.

[128] B. Yamauchi, "Frontier-based exploration using multiple robots," in

Proceedings of the International Conference on Autonomous Agents, 1998, pp.

47-53.

[129] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun, "Collaborative

multi-robot exploration," in Proceedings of the IEEE International Conference

on Robotics and Automation, 2000, pp. 476-481.

[130] H. Moravec, "Sensor fusion in certainty grids for mobile robots," AI

Magazine, vol. 9, no. 2, pp. 61-74, 1988.

[131] C. P. Lee-Johnson, The Development of a Control System for an Autonomous

Mobile Robot. MSc Thesis, University of Waikato, 2004.

References

275

[132] P. Chand and D. A. Carnegie, "Feedback coordination of limited capability

mobile robots," in Proceedings of the International Conference on

Mechatronics and Machine Vision in Practice, 2008, pp. 531-536.

[133] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach

Featuring the Internet. Boston Massachusetts: Addison Wesley Longman,

2001.

[134] Hacker Friendly LLC. (2007). Wireless Networking in the Developing World:

A practical guide to planning and building low-cost telecommunications

infrastructure. [Online]. Available: http://wndw.net/pdf/wndw2-en/wndw2-

ebook.pdf.

[135] A. Barr and E. A. Feigenbaum, The Handbook of Artificial Intelligence.

Stanford, California: Heuris Tech Press, 1981.

[136] L. Reznik, Fuzzy Controllers. Oxford Great Britain: Newnes (Butterworth-

Heinemann), 1997.

[137] RoboProbe Technologies, Inc. (2009). Model 2 - Platform with Claw-Arm.

[Online]. Available: http://www.roboprobe.com/catalog.aspx?productid=2.

[138] E.-G. Talbi, Metaheuristics: From Design to Implementation Hoboken New

Jersey: Wiley, 2009.

[139] T. J. Richer and D. R. Corbett, "A dynamic territorial robotic system," in

Proceedings of the Australasian Conference on Robotics and Automation,

2004.

[140] M. Schneider-Fontan and M. J. Mataric, "Territorial multi-robot task

division," IEEE Transactions on Robotics and Automation, vol. 14, no. 5, pp.

815-822, 1998.

[141] H. Choset, "Coverage for robotics - a survey of recent results," Annals of

Mathematics and Artificial Intelligence, vol. 31, no. 1-4, pp. 113-126, 2001.

[142] M. Ben-Ari, Principles of Concurrent and Distributed Programming, 2nd ed.

New York: Addison-Wesley, 2006.

http://wndw.net/pdf/wndw2-en/wndw2-ebook.pdf
http://wndw.net/pdf/wndw2-en/wndw2-ebook.pdf
http://www.roboprobe.com/catalog.aspx?productid=2

276 Development of an Artificial Intelligence System for the Instruction and
Control of Cooperating Mobile Robots

[143] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics:

Principles and Practice, 2nd ed. New York: Addison-Wesley, 1996.

[144] S. Zilberstein, "Using anytime algorithms in intelligent systems," AI

Magazine, vol. 17, no. 3, pp. 73-83, 1996.

[145] D. Avis, "A survey of heuristics for the weighted matching problem,"

Networks, vol. 13, no. 1, pp. 475-493, 1983.

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Objectives
	1.2 Thesis Outline

	2 Background and Related Work
	2.1 Overview
	2.2 Single Robot Control Architectures
	2.3 Hybrid Navigation Systems
	2.4 Reactive Motion Control and Obstacle Avoidance
	2.5 Memory Constrained Path Planning
	2.6 Multiple Robot Control Architectures
	2.7 Task Allocation and Coordination
	2.8 Fault Tolerance
	2.9 Multi-Robot Map Building and Exploration
	2.10 Summary

	3 Basic Robot Navigation System
	3.1 Navigation System Overview
	3.2 Environment Representation and Path Planning
	3.2.1 Environment Representation
	3.2.2 Path Planning

	3.3 Reactive Control Overview
	3.4 Direction Sensor
	3.5 Modified Dynamic Window Method
	3.6 Simulation Experiments
	3.6.1 Parameter Tuning
	3.6.2 Experimental Configurations
	3.6.3 Results

	3.7 Physical Robot Experiments
	3.8 Alternative Techniques
	3.9 Summary

	4 Memory Constrained Path Planning
	4.1 Overview
	4.2 Global and Local Map Representations
	4.3 Lower-Level A* Algorithm
	4.4 Higher-Level A* Algorithm
	4.5 Two-Tiered A* Algorithm
	4.6 Simulation Experiments
	4.6.1 General Trends of Local Map Size and Global Map Size Variation
	4.6.2 Comparison of Cost Method 1 and Cost Method 2
	4.6.3 Comparison of Overall Execution Time in the Three Largest Global Worlds
	4.6.4 Comparison of Overall Execution Time Using the Three Smallest Local Map Sizes
	4.6.5 Comparison of Overall Execution Time Using Various Local Map Quantities
	4.6.6 Sample Paths

	4.7 Alternative Techniques
	4.8 Summary

	5 Task Allocation and Feedback Coordination Mechanism
	5.1 Overview
	5.2 Task Specification
	5.3 Robot Specification Description
	5.3.1 Processing Fuzzy Inference System
	5.3.2 Communication Fuzzy Inference System
	5.3.3 Sensing Fuzzy Inference System
	5.3.4 Actuation Fuzzy Inference System

	5.4 Task and Robot Specifications for a Multi-Robot Map Building and Exploration Task
	5.5 Task Devolution
	5.5.1 Task Devolution Description
	5.5.2 Multi-Robot Map Building and Exploration Task Devolution

	5.6 Feedback Coordination Mechanism
	5.6.1 Performance Monitoring
	5.6.2 Task Reallocation
	5.6.3 Multi-Robot Map Building and Exploration Task Feedback Example

	5.7 Scalability of Task Allocation and Feedback Coordination
	5.8 Summary

	6 Multi-Robot Map Building and Exploration Task
	6.1 Overview
	6.2 Explorer Task
	6.2.1 Exploring the Assigned Local Environment
	6.2.2 Mapping the Assigned Local Environment

	6.3 Planner Task
	6.3.1 Local Environment Assignment

	6.4 Manager Responsibilities
	6.4.1 Job Queue Maintenance
	6.4.2 Global Map Data and Local Environment Status Updates
	6.4.3 Estimated Completion Time (ECT) Computation

	6.5 Scalability
	6.6 Summary

	7 Task Allocation (Devolution) Experiments
	7.1 Overview
	7.2 Task Allocation (Devolution) Experiment Configurations
	7.3 Primary Task Devolution Results
	7.4 Secondary Task Devolution Results
	7.4.1 Worker Task WT1 (Planner)
	7.4.2 Worker Task WT2 (Explorer)

	7.5 Alternative Techniques
	7.6 Summary

	8 Feedback Coordination Experiments
	8.1 Overview
	8.2 Feedback Coordination Experiment Configurations
	8.3 Experiments without Feedback
	8.4 Experiments with Task Score Feedback
	8.5 Experiments with Full Feedback
	8.5.1 Poor Performance Experiments
	8.5.2 Partial Failure Experiments
	8.5.3 Complete Failure Experiments
	8.5.4 Combined Feedback Experiments

	8.6 Alternative Techniques
	8.6.1 Mapping and Exploration
	8.6.2 Fault Tolerance (Feedback Coordination)

	8.7 Summary

	9 Conclusions
	9.1 Overview
	9.2 Basic Robot Navigation System
	9.3 Memory Constrained Path Planning
	9.4 Task Allocation and Feedback Coordination Mechanism
	9.5 Future Work
	9.6 Publications
	9.6.1 Refereed Conference Proceedings
	9.6.2 Book Chapters
	9.6.3 International Journal Articles

	9.7 Summary of Achievements (Contributions)

	References

