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Abstract 
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Abstract 
 
This thesis focuses on the development of an artificial intelligence system for a 

heterogeneous ensemble of mobile robots. Many robots in the ensemble may have 

limited processing, communication, sensing, and/or actuation capabilities. This means 

that each robot may not be able to execute all tasks that are input to the system. A 

hierarchical system is proposed to permit robots with superior processing and 

communication abilities to assign tasks and coordinate the less computationally able 

robots. The limited processing robots may also utilise the resources of superior robots 

during task execution. Effective task allocation and coordination should result in 

efficient execution of a global task. Many existing approaches to robot task allocation 

assume expert knowledge for task specification. This is not ideal if a non-expert 

human user wants to modify the task requirements.  

 
A novel reduced human user input task allocation and feedback coordination 

technique for limited capability mobile robots is developed and implemented. Unlike 

existing approaches, the presented method focuses on expressing tasks and robots in 

terms of processing, communication, sensing, and actuation physical resources. This 

has the potential to allow non-expert human users to specify tasks to the team of 

robots. Fuzzy inference systems are utilised to simplify detailed robot information for 

comparison with simple human user inputs that represent task resource requirements. 

Like many existing task allocation methods, a greedy algorithm is employed to select 

robots. This can result in suboptimal task allocation. In addition to this, the non-expert 

user’s task specifications might be erroneous in some instances. Hence, a feedback 

coordination component monitors robot performance during task execution. 

 
In this thesis, a customised multi-robot mapping and exploration task is utilised as a 

model task to test the effectiveness of the developed task allocation and feedback 

coordination strategy. Extensive simulation experiments with various robot team 

configurations are executed in environments of varying sizes and obstacle densities to 

assess the performance of the technique. Task allocation is able to identify suitable 

robots and is robust to selection weight variation. The task allocation process is 

subjective to fuzzy membership function parameters which may vary for different 
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users. Feedback coordination is robust to variation in weights and thresholds for 

failure detection. This permits the correction of suboptimal allocations arising from 

greedy task allocation, incorrect initial task specifications or unexpected failures. By 

being robust within the tested limits, weights and thresholds can be intuitively 

selected. However, other parameters such as ideal achievement data can be difficult to 

accurately characterise in some instances.   

 
A hierarchical hybrid deliberative-reactive navigation system for memory constrained 

heterogeneous robots to navigate obstructed environments is developed. Deliberative 

control is developed using a modified version of the A* algorithm and a rectangular 

occupancy grid map. A novel two-tiered path planner executes on limited memory 

mobile robots utilising the memory of a computationally powerful robot to enable 

navigation beyond localised regions of a large environment. Reactive control is 

developed using a modified dynamic window approach and a polar histogram 

technique to remove the need for periodic path planning.  

 
A range of simulation experiments in different sized environments is conducted to 

assess the performance of the two-tiered path planning strategy. The path planner is 

able to achieve superior or comparable execution times to non-memory constrained 

path planning when small sized local maps are employed in large global 

environments. Performance of hybrid deliberative-reactive navigation is assessed in a 

range of simulated environments and is also validated on a real robot. The developed 

reactive control system outperforms the dynamic window method. 
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Introduction 
 

 

1 

1 Introduction 
 
Cooperative robotic behaviour independent of human intervention is an active area of 

mobile robotic research. Ideally, a human should only provide the initial command to 

a team of robots that then decide for themselves how to execute the given task.  

 
There are several advantages to cooperative behaviour in multi-robot systems. By 

working in parallel, multiple robots can increase efficiency and reduce the time 

required to complete a task. Reliability is increased by introducing redundancy when 

using a team of robots, while cost can be reduced due to the use of smaller simplistic 

machine designs. Application specific design and manufacturing costs can be reduced 

by fabricating semi-generic robots. New complex tasks can be introduced to a team of 

robots which are difficult for a single robot to achieve. 

 
Multi-robot systems can be homogeneous or heterogeneous. Homogeneous systems 

consist of robots with identical hardware and software elements. This provides good 

robustness to individual robot failure. However, the robots are required to be 

generalists that can perform any type of task given to team. It can be expensive to 

manufacture a team of generalists. Hence, many conventional homogeneous systems 

are limited to simplistic robot designs that employ detailed human user inputs for 

control. 

 
Similar to homogeneous systems, heterogeneous systems can be robust to individual 

robot failure. But, heterogeneous systems comprise robots with non-identical 

hardware and software elements. Hence, the thesis presented here is that a 

heterogeneous ensemble of mobile robots can be hierarchically organised with task 

feedback control, which significantly reduces the need for human user input. 

 
Three broad categories of multi-robot system applications are transportation, sensing, 

and foraging. Object transportation involves multiple robots transporting objects from 

one location to another and has been exhibited in robot soccer teams [1-3] as well as 

in object pushing [4, 5] and object lifting and carrying [6, 7]. Cooperative sensing 

develops a group robotic system for localisation, map building, and exploration [8-
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11]. In foraging, groups of robots must locate and move objects scattered in an 

environment to a storage location [12-14].  

 
A variety of mobile robots are currently under development at Victoria University of 

Wellington (VUW). Amongst these is a pair of functionally equivalent tricycle robots 

for investigating cooperative behaviour such as object transportation or sensing [15]. 

Another two robots, Rubble-bot [16] and Tank [17], are being developed as part of an 

urban search and rescue (USAR) multi-robot application [18].  

 
The VUW USAR hierarchical heterogeneous multi-robot system has three categories 

of robots: grandmothers, mothers, and daughters. At the top of the hierarchy, the 

grandmothers are physically the largest and most computationally powerful. 

Grandmother robots are generally employed to manage the operation of a group task. 

They achieve this by monitoring and coordinating lower tiered robots (mothers and 

daughters). Mothers and daughters are smaller in size and less computationally 

powerful. They are also limited in their sensing and actuation abilities. The smaller 

size of the mother and daughter robots enables them to be deployed for searching the 

environment as worker robots. 

 
Coordinating a team of mobile robots such as the VUW USAR system usually 

involves implementing task allocation and coordination mechanisms. Task allocation 

mechanisms address the question: “which robot should execute which task?” [19] 

Coordination mechanisms enable the actions performed by each robot to take into 

consideration the actions of the other robots in the team resulting in coherent team 

operation [20]. Recently research in multi-robot systems has also addressed coalition 

formation, the organising of multiple robots into temporary subgroups to accomplish 

an assigned task that would otherwise be impossible to complete [13, 21]. 

 
In certain multi-robot applications, such as exploration (section 2.9), predefined task 

allocation and coordination may not always work as desired. This is due to the 

inability to model all aspects of a robot’s interactions with the environment prior to 

task execution. Task allocation may also fail if tasks are incorrectly specified. Robots 

with limited capabilities also present the challenge of using resources effectively to 

achieve the objectives of the group task.  
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Allocating tasks to robots in a team like the VUW USAR system requires a strategy 

that takes into account the physical capabilities (i.e. resources) of the different robots. 

Generally, the resources present on a robot may be classified into four broad 

categories: processing, communication, sensing and actuation. 

 
Most of the existing task allocation methods require expert knowledge to specify tasks 

to a team of robots. None of the methods reviewed in section 2.7 attempt to specify 

tasks in terms of the four broad physical capability categories. Specifying tasks in 

terms of these physical capability categories may have the potential to allow non-

expert users to intuitively select task requirements. 

 
After initial task allocation, robots may not perform as desired due to the inability to 

fully model all interactions with the environment accurately. Additionally, existing 

task allocation algorithms (section 2.7) employ heuristic greedy methods to select 

robots which can be suboptimal. It may also be possible for a user to inaccurately 

specify tasks when using the four broad physical capability categories. These 

problems need to be mitigated by employing a feedback mechanism that monitors 

task execution. Task execution can be classified into four broad categories: planning, 

communication, sensing and actuation. Hence, a feedback mechanism may be 

designed in terms of these four categories to detect and correct abnormal 

performance. Consequently, a group task should be executed with increased 

efficiency. 

 
Using limited capability robots also presents challenges in task execution. In 

exploration tasks, robots are required to navigate beyond localised regions of an 

environment. Memory constrained robots in a heterogeneous system require a hybrid 

of deliberative and reactive control to achieve this. Deliberative control should be able 

to provide a path to travel beyond the localised region of the environment. A limited 

memory robot may be able to utilise the resources of computationally powerful robots 

to achieve this. Reactive control must facilitate collision avoidance and modify the 

path of travel when obstacles are encountered during movement. 
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1.1 Objectives 
 
In this thesis, the aim is to develop an artificial intelligence system to instruct and 

control a heterogeneous ensemble of mobile robots. Motivated by the VUW USAR 

hierarchical system that is under development, the robots will have a variety of 

processing, communication, sensing and actuation resources. Many of the robots will 

have limited processing, sensing, and actuation capabilities.  

 
One of the specific objectives is to develop a task allocation strategy based on 

physical robot capabilities. Tasks and robots will need to be specified in terms of the 

four broad physical capabilities (processing, communication, sensing and actuation). 

Specifying tasks in terms of the four major physical capabilities should allow non-

expert human users to use the task allocation strategy.  

 
Existing task allocation methods employ heuristic greedy techniques which can often 

be suboptimal. Developing an optimal mapping of tasks to robots is NP-hard [22]. 

Therefore, another major objective is to develop a feedback coordination strategy that 

monitors robots during task execution. Task execution performance will be 

characterised in the broad categories of planning, communication, sensing and 

actuation. By detecting and correcting failures, the feedback system should facilitate 

improved group task execution.  

 
A conceptual diagram of the task allocation and feedback coordination mechanism 

(also motivated by the VUW USAR system) is shown in Figure 1.1. There are three 

levels of control. At the highest level (level A) a remote base station computer is used 

to specify the group task (management and worker tasks) and robots. Depending on 

the management task requirements and robot capabilities, the remote computer 

identifies manager robot(s) (level B). The manager robots are delegated the 

responsibilities of global data maintenance, worker task devolution and performance 

monitoring. After manager task devolution, the remote computer is no longer required 

by the robot team since task management is essentially transferred to the manager 

robot(s). 
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Figure 1.1: Overview of the multi-robot task allocation and coordination 
mechanism. 

 
At the third level of control (level C), worker robots are responsible for executing the 

objectives of the group task. Worker robots are selected by the manager robot(s) 

during execution of a worker task devolution process. Depending on the nature of 

worker tasks to be allocated, the worker robots are assigned a position in a predefined 

hierarchy. Worker robots executing some tasks (e.g. Task i) could be supervising 

robots executing other tasks (e.g. Task j). Following the worker task devolution 

process, the worker robots perform their tasks and the manager robots monitor and 

direct their performance using a feedback coordination mechanism. 

 
To evaluate the developed task allocation and feedback coordination strategies, a 

suitable multi-robot task needs to be implemented. A customised multi-robot map-

building and exploration task is developed for this objective.  

 
In some situations, the limited memory worker robots may be required to perform 

global path planning (deliberative control) to navigate beyond localised regions of the 

global world. This can be problematic if the limited memory robots are unable to store 

the entire map in their local memory. The methods reviewed in section 2.5 cannot be 

applied to the multi-robot application presented in this thesis. Thus another objective 

is to explore a new approach to global path planning for limited memory robots.  

 



6          Development of an Artificial Intelligence System for the Instruction and 
Control of Cooperating Mobile Robots 

 

To successfully navigate obstructed environments, limited memory heterogeneous 

robotics requires a hybrid of deliberative and reactive control. Hence, a navigation 

system that combines the benefits of reactive and deliberative control for 

heterogeneous mobile robots is also developed in this thesis. 

 

1.2 Thesis Outline 
 

• Chapter 2 – A review of relevant literature is presented. Topics of interest in 

single robot and multiple robot control, such as control architectures, 

navigation systems, task allocation and coordination techniques, and fault-

tolerance are reviewed. A review of multi-robot map building and exploration 

strategies is also included.  

 
• Chapter 3 – The hybrid generic navigation system employed by the 

heterogeneous mobile robots is presented. Its design is based on the A* 

algorithm, a polar histogram and a modified dynamic window approach. 

Simulation experiments with three heterogeneous robots in a range of 

environments are conducted. Initial hardware experiments demonstrate the 

navigation system working in the real world. 

 
• Chapter 4 – A two-tiered path planning technique to permit global path using 

limited (processing and memory) capability mobile robots is presented. Using 

a two-tiered A* algorithm that executes entirely on the limited capability 

robots, a set of local maps describing the global map is searched for a global 

path. Planning time, data communication and path length are evaluated for 

various combinations of local and global maps. 

 
• Chapter 5 – Details of the proposed task allocation and feedback coordination 

technique for limited capability mobile robots are presented. The task 

allocation component employs Fuzzy Inference Systems (FISs) to simplify 

human user input at the task specification stage. FISs are also employed in the 

primary (manager) and secondary (worker) task devolution processes. 

Feedback coordination executes periodically to detect and correct three forms 

of robot failure: poor performance, partial failure and complete failure. An 
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exploration task (defined in chapter 6) is employed as a specific example to 

demonstrate the technique. 

 
• Chapter 6 – The customised multi-robot map building and exploration task is 

detailed. A global environment is divided into local environments for limited 

capability mobile robots to explore. Planner and explorer tasks are executed by 

the limited capability robots to complete the exploration of a global world. 

Explorer robots utilise the navigation system presented in chapter 3 and 

planner robots plan global paths using the technique presented in chapter 4. 

Exploration of global worlds with relatively flat terrain containing sections of 

boggy terrain is considered. 

 
• Chapter 7 – Experimental results of utilising the task allocation mechanism for 

the customised multi-robot map building and exploration task are presented. 

The influence of weight variation on ranking and selecting candidate robots is 

evaluated for five sets of eight robots.  

 
• Chapter 8 – Results obtained from executing the multi-robot mapping and 

exploration task without any feedback is compared with task execution 

employing feedback coordination. Each type of feedback (task score, poor 

performance, partial failure and complete failure) is tuned and a complete 

system with tuned parameters is also evaluated. 

 
• Chapter 9 – A summary of the contributions and publications arising from this 

research is presented as well as a discussion of future work. 
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2 Background and Related Work 
2.1 Overview 
 
The development of a hierarchical heterogeneous multi-robot system incorporates 

several areas of both single robot and multiple robot control. Figure 2.1 illustrates the 

relevant literature areas that have been reviewed. The chapter begins by discussing 

topics related to single robot control. These areas include single robot control 

architectures (section 2.2), hybrid navigation systems (section 2.3), reactive motion 

control and obstacle avoidance (section2.4) and memory constrained path planning 

(section 2.5).  

Multi-Robot Control 
Architecture
(Section 2.6)

Single Robot 
Control 

Architecture
(Section 2.2)

Task Allocation & 
Coordination
(Section 2.7)

Fault Tolerance
(Section 2.8)

Multi-Robot (or 
Group) Task

e.g. Mapping & 
Exploration

(Section 2.9)

Hybrid Navigation
(Section 2.3)

Deliberative
e.g. Memory 

Constrained Path 
Planning

(Section 2.5)

Reactive
e.g. Obstacle 

Avoidance 
(Section 2.4)

Multi-Robot 
Control

Single Robot 
Control

 
Figure 2.1: Block diagram of relevant literature areas reviewed. 

 
Next, the chapter proceeds to topics in multi-robot control. Relevant areas reviewed 

include multi-robot control architectures (section 2.6), task allocation and 

coordination (section 2.7), and fault tolerance (section 2.8). The primary objective of 

a multi-robot system is to perform a multi-robot (or group) task. This thesis utilises a 
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multi-robot exploration and map building task as an example application. Hence, a 

review of multi-robot map building and exploration is included (section 2.9). 

 

2.2 Single Robot Control Architectures 
 
A robot’s control architecture provides the framework in which a variety of control 

algorithms are implemented to enable appropriate functionality. There are three main 

categories of robot control architectures: reactive, deliberative, and hybrid systems. 

 
Two popular reactive control architectures for mobile robots include the subsumption 

architecture [23] and the motor schema architecture [24]. In the subsumption 

architecture, reactive systems are structured from the bottom up using layered sets of 

rules. Inspired by the biological sciences, the motor schema architecture provides 

distributed and parallel primitive behaviours that are coordinated to produce an 

intelligent robot.  

 
Behaviour-based systems, such as those reviewed by Arkin [25], can also be classified 

under reactive control architectures. However, Mataric [26] and Mataric and Michaud 

[27] have argued that there is a distinction between reactive and behaviour-based 

systems. Examples of behaviour-based systems include Control Architecture for 

Multirobot Planetary OUTposts (CAMPOUT) [7], Architecture for Behaviour-Based 

Agents (ABBA) [28], and Distributed Architecture for Mobile Navigation 

(DAMN) [29].  

 
Generally, there is a tight coupling between sensing and actuation in reactive and 

behaviour-based systems. They feature real-time response, less dependence on 

complete world models and reduced predictive capabilities when compared with 

deliberative systems. However, tasks that require explicit world representations and 

high level intelligence can be difficult to implement in reactive and behaviour-based 

systems. 

 
Before the development of reactive and behaviour-based architectures, deliberative 

reasoning methods were extensively used in robotics research [25]. Deliberative 

architectures [30, 31] integrate world knowledge into a robot’s control by maintaining 

an explicit world representation. World knowledge is used to reason about the robot’s 
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actions by optimising its performance relative to the world representation. The 

explicit world representation enables deliberative systems to solve certain types of 

problems better than reactive systems. However, systems relying solely on 

deliberative control are rare because they are generally too slow to cope with real 

world dynamic environments. World knowledge maintenance and optimal action 

selection computational overheads are the main causes of latency.  

 
Hybrid architectures [32-35] have become popular in recent years as they combine the 

benefits of reactive control and deliberative control. According to Arkin [25] and 

Mataric and Michaud [27], reactive and deliberative control can be complementary. 

The deliberative component can guide the reactive component to avoid local minima 

situations. In turn, the reactive component can assist the deliberative component by 

making subtle changes to plans during execution. Managing the interactions between 

the reactive and deliberative components is a key challenge in hybrid architecture 

design.  

 
The Autonomous Robot Architecture (AuRA) [32] was one of the first implemented 

hybrid architectures. AuRA uses motor schemas for reactive control and a traditional 

AI spatial planner for deliberative control. In the Planner-Reactor architecture [33], a 

planning mechanism is used to continuously modify a reactive controller according to 

some high level objectives. The three level Atlantis architecture was developed by 

Gat [34] and tested on the Mars rover Robby. In Atlantis, the deliberator and 

sequencer levels acknowledge failures and adapt the reactive control level 

accordingly. Layered behaviours link sensing to actuation via a local perceptual space 

in the Saphira architecture [35]. Saphira’s Procedural Reasoning System (PRS) 

controls the activation and deactivation of the layered behaviours.   

 
Based on the benefits of hybrid systems, a hierarchical hybrid approach [36, 37] is 

utilised to control individual robots in this thesis (chapter 3). 

 

2.3 Hybrid Navigation Systems 
 
Robot navigation systems are analogous to robot control architectures. A range of 

algorithms to facilitate successful navigation to a goal location are implemented in 
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navigation systems. Part of this thesis focuses on the development of a navigation 

system that can be employed on memory constrained heterogeneous robots. In 

particular, heterogeneity refers to robots with varying size, shape, drive type and 

sensor quantities for this thesis. A high degree of flexibility is needed for successful 

navigation in known and unknown environments. Hence, a hybrid navigation system 

that employs both reactive and deliberative control is favoured. A hierarchical hybrid 

navigation system can achieve the benefits of deliberative and reactive control. 

 
The dynamic window approach [38] is a popular reactive collision avoidance 

technique. A weighted combination of goal-directedness, obstacle clearance and 

linear velocity determines the suitability of angular and linear velocity pairs in most 

implementations. It has been adapted, merged with other reactive techniques and 

combined with deliberative navigation techniques to produce a range of navigation 

systems. 

 
A convergent dynamic window approach has been developed by Ogren and Leonard 

[39]. This technique combines the dynamic window approach with exact robot 

navigation using artificial potential functions. A framework suggested by Primbs et 

al. [40] combines the complementary properties of the two navigation strategies. 

Convergence is mathematically proved and a simulation example has been presented 

for circular-shaped robots only. 

 
The nearness diagram method and dynamic window approach have been combined to 

produce reactive collision avoidance in dense and cluttered environments [41]. A 

direction for the current situation is computed from seven situations in the nearness 

diagram module. This direction is tracked using the dynamic window approach [42]. 

The framework has been implemented on a rectangular non-holonomic robot. Limited 

experiments indicate the robot travelled at average speeds of 0.318 m/sec to 

0.48 m/sec through a cluttered environment. 

 
A navigation strategy that integrates the dynamic window approach, elastic band and 

NF1 [43] path planning has been implemented for a differential drive tour guide robot 

[42]. In this implementation, the dynamic window method has been modified to use 

look-up tables for collision prediction. Collision prediction employs time to collision 

instead of distance to collision. The NF1 planner generates new plans that are adapted 
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by the elastic band as the robot moves through the environment. This implementation 

is hybrid deliberative-reactive and it is unclear how the modifications made to the 

dynamic window method function in a reactive system. 

 
The A* path planning algorithm and dynamic window method have been integrated 

for indoor mobile robot navigation [44]. In this approach, the velocity space search 

advantages of the dynamic window method are combined with the local minimum 

free search characteristics of the A* algorithm. Global path planning is performed at 

every control cycle for navigation in unknown environments. A circular differential 

drive robot in a simulated environment is used to verify the method. This navigation 

system is extended in [45] where the A* algorithm is replaced with the focused D* 

algorithm [46] to achieve real-time control in dynamic environments. 

 
A globalized version of the dynamic window approach similar to [44] is presented in 

[47]. Here, the dynamic window approach is used with an NF1 path planner instead of 

the A* algorithm. The framework permits goal-directed reactive motion in unknown 

environments and has been demonstrated on a circular holonomic robot. 

 

Robot navigation comprises a model stage and planning stage in [48]. A reduced 

dynamic window (dynamic line) method accounts for robot shape and dynamics in the 

model stage. In the planning stage, an NF1 path planner generates paths with a 

curvature dependent velocity profile. The navigation system has been tested on two 

rectangular differential drive robots. A disadvantage of this method is that it is not 

discussed how the model stage copes if planning fails. 

 
In [49], real-time obstacle avoidance based on the dynamic window approach is 

achieved via robot-specific look-up tables. A wave front expansion algorithm is used 

to generate intermediate way points for global navigation. The system has been tested 

on a circular synchrodrive robot and a forklift tricycle robot. 

 
The obstacle-restriction method for robot obstacle avoidance in difficult environments 

is a two stage navigation technique [50]. A sub-goal selector stage identifies free 

space and selects alternative sub-goals if necessary. In the motion computation stage, 

motion towards the target direction is determined while avoiding collisions. The 

motion computation stage, like the dynamic window method, accounts for motion 



14          Development of an Artificial Intelligence System for the Instruction and 
Control of Cooperating Mobile Robots 

 

 

constraints and steering direction motion. This method has been demonstrated on 

differential drive rectangular robots where reversing was not required. 

 
A rudimentary hybrid navigation system that employs an A* path planner and the 

dynamic window method has been developed by Lee-Johnson [51]. This rudimentary 

system only supports differential drive robots with circular shapes. Hence, a major 

shortfall is a lack of support for robots with varying drive types and shapes. A pre-

generated grid map with fixed binary occupancy data is employed for path planning. 

Hence, the system does not have map updating capabilities. Additionally, the path 

planner does not account for the size of the robot and varying occupancy probabilities. 

Lee-Johnson has independently further developed the rudimentary navigation system 

into an emotion-based control system [52]. 

 
The methods described above are not well suited for heterogeneous robots that may 

have limited sensing and processing capabilities. Additionally, the reactive control 

component is highly dependent on the deliberative component such that regular 

(periodic) path re-planning is required in unexplored obstructed environments. Hence, 

additional reactive control techniques and memory constrained path planning 

strategies are reviewed in section 2.4 and section 2.5, respectively.    

 

2.4 Reactive Motion Control and Obstacle Avoidance 
 
Reactive control for point-to-point motion and local obstacle avoidance is an 

important component of many autonomous mobile robots. Arras et al. [48] present a 

brief overview of various obstacle avoidance techniques. Some of these techniques 

include: potential field approaches [53-55], the elastic band concept [56], nearness 

diagram concept [57], vector field histogram concept [58], curvature velocity 

approach [59] and dynamic window approach [38].  

 
Many obstacle avoidance approaches are restricted to a simplified robot shape 

(mainly circular) [48]. With the exception of [36, 37, 48, 49, 60, 61] all reviewed 

techniques assume a circular shaped robot. However, a circular shaped robot may not 

be ideal for some tasks. For instance, tricycle robots can provide good stability and 

manoeuvrability for object manipulation [15]. Approximating a non-circular robot 
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with a circle often results in highly conservative obstacle avoidance behaviour. The 

ego-kinodynamic space [62] is a complex framework that abstracts vehicle constraints 

from reactive control methods allowing robots with different shapes to use common 

obstacle avoidance approaches. 

 
Many obstacle avoidance techniques can be broadly classified into directional 

methods [53-55, 58] and velocity space approaches [38, 59]. These methods are of 

interest because they deduce a motion command from the current sensor readings by 

applying a single rule. These techniques have been improved. Search-based look-

ahead verification has been added to the vector field histogram concept [63]. The lane 

curvature approach [64] overcomes problems arising from the curvature velocity 

assumption that the robot always moves on circular arcs. A globalized version of the 

dynamic window approach is presented in [47]. The dynamic window approach is 

used with an NF1 path planner in [49], where real-time capability is achieved via a 

robot-specific look-up table. In [48] a reduced dynamic window (dynamic line) is 

used with an NF1 path planner to avoid the use of look-up tables.  

 
Directional methods generally have limited ability to account for kinematics and 

dynamics of a robot. As a result, they are generally unsuitable for high speed 

navigation. On the other hand, velocity space approaches account for kinematics and 

dynamics but can be overly conservative.  

 
The methods presented in this section have not been tested on a variety of robot 

shapes and drive types. Additionally, they do not explicitly combine directional 

methods and velocity space techniques. A hybrid of directional methods and velocity 

space approaches is presented in [36, 37] to mitigate their weaknesses. Chapter 3 

details this hybrid approach to reactive collision avoidance. 

 

2.5 Memory Constrained Path Planning 
 
Microcontroller based mobile robots often have limited memory capacity and hence 

cannot store large volumes of environment data. In certain applications, these memory 

constrained robots may need to perform path planning to navigate beyond their local 
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region [65]. However, several reviews of path planning strategies do not outline any 

memory efficient implementations that enable these robots to perform such a function.  

 
In this thesis, a rectangular occupancy grid [66] is used to represent the robot’s 

environment. This has been favoured over more complex decompositions [67] or 

roadmap methods [68], [69] because of its simplicity and usability in a range of 

environments. Occupancy grids can be searched using algorithms such as A* [70], 

Dynamic A* (D*) [46], spreading activation [26] or wavefront propagation [43]. The 

A* algorithm has been selected for its ease of implementation. 

 
The A* algorithm [70] is a best-first heuristic search algorithm that is often used for 

path planning on mobile robots that maintain node based maps [36], [43]. While A* is 

an efficient algorithm that utilises heuristics to guide the path planning process, its 

scalability is limited by the size of the map it has to search, just like any other path 

planning algorithm. Multi-tiered path planning strategies that do not utilise A* have 

previously been investigated primarily to facilitate faster plan generation rather than 

addressing memory limitations [71-74]. A review of multi-tiered and memory 

efficient implementations of A* based path planning is considered in the context of 

this thesis.  

 
Warren [75] has developed a path planner using a modified A* method. The method 

involves using trial vectors that span several cells to perform a “loose” search in a fine 

grid, sacrificing path optimality in favour of speed. However, the issue of memory 

requirements for map storage and path planning variables is not addressed.  

 
Zhao et al. [76] consider implementing a navigation system on mobile robots with 

limited on-board memory and communication bandwidth by using cache memories 

and auxiliary memory. The auxiliary memory and cache memories are physically 

(locally) available on the robot. A modified A* heuristic-search algorithm is used to 

plan global paths in a node-based map. For local planning, a potential field method 

searches a grid map for a path. The effect of various local and global cache policies 

on data access and planning times is investigated. Portions of the local map cached 

vary in size depending on robot velocity and a desired sample interval. Global cache 

data varies based on the environment type. Overall, this method addresses limited 

memory planning by installing additional memory on a robot. 
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Agent-centred search (also known as real-time or local search) is a technique for 

interleaving the planning and execution of paths. This type of search trades off 

planning and execution cost and may lead to memory savings. Learning real-time A* 

(LRTA*) [77] uses state values in a local search space to navigate towards a goal 

incrementally. Several other agent-centred methods similar to LRTA* are also 

discussed in [77].  

 
Additional agent-centred search methods unlike LRTA* include [78] that employs 

rapidly-exploring random trees and [79] where a complex neural network and 

evolution strategy trades-off computation and memory search times. Agent-centred 

methods may require a robot to revisit a local search space while traversing towards 

the goal, especially if it has limited sensing abilities. Also, execution costs can be 

significantly higher than planning costs for mobile robots thus the local search space 

needs to be carefully selected.  

 
Razavian and Sun [80] have developed an adaptive path planning algorithm that 

consists of a primary path stage and a refined path stage. Their adaptive algorithm’s 

performance is compared to the A* algorithm. The performance metric used is the 

ratio of cells in the final path to the number of cells searched in determining the path. 

While their method reduces the number of cells searched and may save memory in 

path finding, the approach will not necessarily always produce a near optimal path. 

The method also implicitly assumes that the entire grid map is locally available on the 

robot.  

 
Holte et al. [81] use a STAR abstraction technique to implement a hierarchical A* 

search algorithm. Path planning using their technique essentially involves searching 

for a path in an abstracted search space followed by using the abstract path to guide 

the search in the original search space. The emphasis of their work was to reduce path 

planning time and analysis of memory usage is not considered.  

 
Game programmers have also developed hierarchical variants of the A* algorithm for 

path planning [82]. These methods employ a macro level search to produce a coarse 

resolution path followed by micro level search between coarse path nodes to refine 

the path. Schneider et al. [83] take a similar approach to address the issue of real-time 
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non-holonomic path planning in huge terrain datasets. These approaches are mainly 

used for faster plan generation and do not address memory issues involved in storing 

large grid maps. 

 
The framed-quadtree approach [84] uses a grid based representation that lumps free 

space into single cells to save memory. This approach has been used with the D* 

algorithm [46] to plan paths for mobile robots in sparse environments [85]. However, 

as shown in [85] the memory requirements for this method of path planning increase 

with obstacle density and eventually exceeds that used by a regular grid 

representation. Similarly, the execution time increases with obstacle density to 

eventually exceed that of a regular grid. In addition to this, a framed-quadtree 

approach presents difficulties in planning paths to avoid other robot territories and 

obstacles simultaneously. 

 
The memory requirements for storing variables associated with the A* search can be 

reduced by implementing linear space variants of A* such as iterative deepening A* 

(IDA*) [86] and recursive best-first search (RBFS) [87]. However, these methods 

have been shown to perform poorly in grid maps [88]. 

 
Alternatively, memory can be saved by not storing the closed list when searching for 

a path using A*. This has been demonstrated in [88] where a divide-and-conquer 

technique is employed to plan paths while avoiding duplicate search. Optimal paths 

can be produced using this method. However, this method is unable to produce partial 

paths that can be useful in mobile robot navigation. Zhou and Hansen [89] 

implemented a similar sparse-memory A* algorithm that only stores a small part of 

the closed list to save memory. These techniques are not well suited for a limited 

memory implementation where the entire map cannot be stored locally. This is due to 

essential recursive calls to the algorithm that may introduce significant 

communication overheads. 

 
Since the methods reviewed in this section are not directly suitable for the 

heterogeneous limited memory robots and multi-robot application presented in this 

thesis, an alternative strategy is proposed (chapter 4). This alternative technique is a 

two-tiered global path planning method based on the A* algorithm. 
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2.6 Multiple Robot Control Architectures 
 

The multi-robot or group architecture provides the infrastructure upon which 

collective behaviours are implemented and determines the capabilities and limitations 

of a multi-robot system [90]. One of the key features of a group architecture for 

mobile robots is whether the system is centralised or decentralised.  Centralised 

architectures are characterised by a single control agent whereas decentralised 

architectures allow multiple control agents. In pure centralised architectures, all slave 

robots are completely dependent on a central master robot for commands and control. 

If communication is lost at any point in time then the slave robots fail to function. The 

decentralised architecture has been the dominant group architecture since it has 

several inherent advantages over centralised structures.  Two types of decentralised 

architectures include hierarchical architectures and distributed architectures [90]. 

 
Hierarchical architectures are locally centralised and can consist of multiple master 

control agents. Subordinate robots are independent in carrying out tasks to achieve 

certain goals but they communicate with a master or host that has a global view of 

operations and assigns goals to the agents. The subordinate robots can remain 

functional with intermittent loss of communication. CEBOT, a hierarchical 

architecture, consists of a group robotic system that is dynamically reconfigurable, 

has been simulated [91]. The GOFER architecture, which uses a central task planning 

and scheduling system, was used to study distributed problem solving by multiple 

robots in an indoor environment using traditional AI techniques and was successfully 

used with three physical robots [90]. Cooperative behaviour based on fuzzy logic 

optimized by micro genetic algorithms for fixed obstacle and multiple robot 

avoidance in a centrally managed robot system has been simulated in [92]. 

 
Hierarchical architectures have also been implemented in cooperative robot soccer 

teams where autonomous soccer robots are linked to a host computer system [2]. The 

use of two cooperative robots operating in a master/slave configuration to facilitate 

localization and mapping has also been studied [93].   

 
Distributed architecture implementations remove the need for a master or host. All 

robots have equal control and are largely autonomous in their decisional process, 
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relying only on critical information from other robots. Robots in distributed systems 

can function autonomously when communication is partially or completely lost. A 

practical application based on a distributed architecture is map building for 

exploration in an unknown environment using two cooperative robots [8]. In this 

application the robots share perceptual information, but maintain separate maps and 

make independent decisions which leads to the system being robust to the loss of 

communication between them as well as to the loss of a robot. A distributed system 

carrying out a box pushing task using explicit communication for coordination has 

been shown to perform more effectively than a single robot or two non-

communicating robots [4].  

 
A cooperative box pushing mission by two heterogeneous robots has been achieved 

using a fully distributed system at both the individual robot and team levels based on 

the ALLIANCE architecture [12]. This architecture has also been implemented on a 

physical robot team performing a laboratory version of a hazardous waste cleanup. 

The ALLIANCE architecture has the advantage of using adaptive actions to achieve 

fault tolerant control within small to medium sized teams of heterogeneous robots. 

The ABBA architecture [28], which is designed for distributed cooperative planning, 

has been utilized in the implementation of a cooperative cleaning task with two 

autonomous mobile robots. This implementation has also shown the advantage of 

robustness in the face of failures. CAMPOUT [7], a distributed control architecture 

for tightly coupled coordination of multiple robot systems has been developed at the 

Jet Propulsion Laboratory. It has been applied to ongoing physical experiments 

involving the exploration of cliff faces and the deployment of extended payloads. 

 

A fully distributed architecture is cost expensive to implement if there are many 

robots in the system. All robots will need to have sufficient processing abilities to 

plan and execute tasks independently. However, in this thesis, many of the robots will 

have limited processing, sensing, and actuation capabilities. Hence, a decentralised 

hierarchical architecture is proposed for the multi-robot system (section 1.1). Manager 

robots act as master control agents. Subordinate worker robots are independent in 

carrying out tasks to achieve certain goals, but they communicate with the mangers to 

receive their goals and tasks. 
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2.7 Task Allocation and Coordination 
 
Central to the success of many multi-robot systems is the ability of the individual 

robots to cooperate and coordinate their activities. This can result in advantages such 

as increased efficiency in performing tasks and robustness to failure of individual 

robots. Coordinating a team of mobile robots usually involves implementing task 

allocation and coordination mechanisms. Various methods for coordination and task 

allocation in multi-robot systems have been discussed in [19, 20, 94]. Whereas [20] 

focuses on coordination, [19, 94] address task allocation. 

 
Of the classifications based on coordination identified in [20], the weakly centralised 

systems [95-97] are of particular interest since they can be utilised in hierarchical 

heterogeneous systems. In these systems, a leader robot is selected dynamically 

during task execution based on the situation of the team and the environment.  

 
A weakly centralised approach is proposed in [95] where the robots start auctions and 

bid to become the team leader. The proposed method intends to take into account the 

physical capabilities of robots but has not been fully implemented. A fixed set of 

robots and fixed task assignments are employed in experiments. In [96] the robots are 

heterogeneous and a leader is selected based on specific sensing or actuation 

capabilities. A pair of robots (a supervisor and pusher) is utilised to accomplish a box 

pushing task. Experiments with larger teams of robots are neither simulated nor 

physically implemented. Market based strategies (described below) are employed for 

dynamic selection in [97]. Pockets of centralisation improve task allocation optimality 

when compared to purely distributed methods. Revenue and cost functions need to be 

defined but these are not expressed in terms of physical robot capabilities. A task 

domain specific clustering algorithm is required to process bids and select a leader 

robot in a timely manner. 

 
In [94] a taxonomy has been developed for the multi-robot task allocation problem, 

differentiating robots as either single-task (ST) or multi-task (MT), tasks as either 

single-robot (SR) or multi-robot (MR), and assignment types as either instantaneous 

(IA) or time-extended (TA). Representative approaches to multi-robot task allocation 

[9, 12, 98-102] are analysed in [94] based on the developed taxonomy. In these 

approaches, a set of indivisible tasks is distributed amongst a team of robots such that 
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each robot executes an individual task. It has been shown that developing an optimal 

mapping of tasks to robots is NP-hard [22]. Hence, existing approaches employ 

heuristic greedy methods to achieve this mapping, leading to suboptimal solutions. 

 
ALLIANCE [12] and BLE [102] are examples of behaviour-based approaches to 

multi-robot task allocation. Behaviour sets typically represent tasks in these 

approaches and action selection mechanisms are utilised to enable or disable 

behaviours representing tasks. ALLIANCE uses motivational behaviours to monitor 

and dynamically reallocate tasks thus achieving fault tolerance and adaptive 

behaviour. In the BLE system, each robot has a corresponding behaviour that is 

capable of executing each task. The robots select a task to execute by continuously 

broadcasting locally computed eligibilities followed by determining the most eligible 

task using a greedy algorithm. A behaviour-based approach to multi-robot task 

allocation that uses the concept of “vacancy chains” [103] is presented in [104]. 

Vacancy chains are social structures capable of resource redistribution. In [104], the 

resources to be redistributed are the tasks requiring allocation or reallocation. The 

approach is demonstrated in groups of homogeneous robots where “vacancy chains” 

emerge through reinforcement learning. 

 
Market-based task allocation methods [9, 97, 98, 100, 101, 105] have also been 

widely utilised in multi-robot systems. In these approaches, the global task consists of 

a set of tasks that the robots bid and negotiate on. Costs and revenues are associated to 

the tasks, and robots can trade the tasks trying to maximise their revenue. An 

auctioning mechanism utilises a task to revenue/cost mapping function to greedily 

assign tasks to the highest bidders. TraderBots [106] is a market-based approach that 

has the ability to allocate resources and roles in addition to tasks. This is achieved via 

a RoboTrader module that executes on each robot. Complex tasks comprising sets of 

atomic tasks with some constraints placed on them can be represented as task trees in 

market-based techniques [107]. Robots can bid on combinations of task tree nodes 

resulting in a complex task being assigned to one or more robots. A drawback of 

market-based methods is that it can be difficult to express revenue and cost functions 

in terms of robot physical capabilities such as processing, communication, sensing 

and actuation. Additionally, the reviewed market based methods assume that a robot 

already meets the physical capability requirements of a task when it makes a bid. 
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Dynamic role assignment [99]  assigns roles to each robot in the team. The behaviour 

of robots is modelled using a continuous state space representation. A hybrid 

automaton [18] models robot behaviour together with the roles, role assignments and 

associated variables. Each role is a control mode of the hybrid automaton. During the 

execution of a cooperative task, robots within a team can dynamically exchange roles 

in a synchronised manner adapting to changes in the environment. Specialised 

dynamic role assignment methods have been used for robotic soccer [3, 108] where 

the robots dynamically switch between roles such as attacker and defender or master 

and supporter. These approaches do not address the issue of robots autonomously 

determining contributions to the solution based upon processing, communication, 

sensing and actuation capabilities. Additionally, the robot team is known a priori in 

dynamic role assignment. 

 
Burgard et al. [11] address task allocation and coordination in multi-robot exploration. 

For each robot, they trade-off the utility and cost of potential target points for 

exploration. In this manner, each robot is assigned a target point for exploring. A 

more recent example using a similar technique for coordination is [109]. The 

coordination strategies of [11, 109] are not explicitly based on the computational and 

physical resources that each robot possesses and assumes that each robot is capable of 

solving the exploration problem. Additionally, robot malfunctions are not addressed 

in these implementations. 

 
Teamwork models have been developed that provide mechanisms for agents to form 

teams to accomplish a common goal [110, 111]. A general model of teamwork, 

STEAM (Shell for TEAMwork) is presented in [111]. It facilitates monitoring of team 

performance and allows team reorganisation. STEAM is based on a hybrid of joint 

intentions theory [112] and SharedPlans theory [113]. Joint intentions theory relies on 

high level conditions that are based on robots having mutual goals (joint persistent 

goals). SharedPlans is not based on a joint team mental attitude, unlike joint 

intentions. Instead, individual agents intend that a collaborator is able to produce a 

solution for a required action. STEAM has been applied to the simulated tasks of 

helicopter attack and transport formation and RoboCup synthetic soccer.   
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Another general model based on joint intentions theory is the joint responsibility 

GRATE (Generic Rules and Agent model Testbed Environment) system [110]. This 

system involves satisfying defined preconditions before collaboration can begin in 

addition to generating plans for agent behaviour during collaboration. Hence, it is able 

to provide an explicit model of cooperative problem solving for industrial 

applications. GRATE agents have two components; a cooperation layer and a domain 

level system. The GRATE system has been applied to the real-world domain of 

electricity transportation management.  

 
STEAM and GRATE provide high-level models for problem solving and role 

assignment. However, the contributions and requirements of physical robot 

capabilities (such as processing, communication, sensing and actuation) are not 

addressed in these approaches. 

 
Parker and Tang [21] consider the problem of single-task robots performing multi-

robot tasks in the development of heterogeneous robot coalitions that solve single 

multi-robot tasks. They use an approach called ASyMTRe (Automated Synthesis of 

Multirobot Task solutions through software Reconfiguration) to generate multi-robot 

coalitions using complete information. The approach employs perceptual and motor 

control schemas to encode robot capabilities. Connections between schemas across 

multiple robots are determined and evaluated to find a task solution. Hence, 

ASyMTRe is primarily suited to reactive or behaviour-based systems. The approach is 

demonstrated on multi-robot transportation tasks that require robots to share sensor 

and effector capabilities. Due to its dependence on schemas, ASyMTRe may be 

difficult to apply to systems that do not employ schemas or are not behaviour-based. 

 
Vig and Adams [13] identify issues that arise while attempting to use multi-agent 

coalition formation algorithms for multi-robot systems. Their work also addresses the 

problem of single-task robots performing multi-robot tasks. They develop a multi-

robot coalition formation algorithm using an adaptation of Shehory and Kraus’ [114] 

algorithm for multi-agent coalitions. Shehory and Kraus’ algorithm is a distributed 

task allocation strategy that assigns a task to a group of agents. It consists of greedy 

distributed set-partitioning and set-covering algorithms. Their algorithm considers 

cases where tasks have a precedence order and is applied to a Blocks World domain 
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problem where blocks are moved from an initial configuration to a final configuration 

using multiple agents. A drawback of Shehory and Kraus’ algorithm is that no 

auxiliary mechanisms are employed to monitor the potentially suboptimal coalitions 

during task execution. Subsequently, unexpected failures during task execution are 

also not accounted for. 

 
By addressing the issues of computation versus communication, task format, and 

coalition imbalance, Vig and Adams develop their multi-robot coalition algorithm. 

The first stage of the algorithm involves distributively calculating initial coalition 

values for all possible coalitions while a second stage involves robots agreeing on 

coalitions and forming them. Iteratively, the algorithm is able to form multiple 

coalitions, hence assigning multiple robots to multiple tasks. Coalition sizes of two to 

five robots have been demonstrated for box pushing, cleanup and sentry duty tasks. 

Vig and Adams multi-robot coalition formation method also suffers from the 

drawbacks of Shehory and Kraus’ algorithm.  

 
Vig and Adams [115] also developed RACHNA (Robot Allocation through Coalitions 

using Heterogeneous Non-Cooperative Agents), a market-based multi-robot task 

allocation scheme. A multi-unit combinatorial auction is employed to allocate 

resources (robots) to the best (optimal) set of tasks through overall utility 

maximisation. This reverse auction strategy is achievable due to the inherent 

redundancy in sensor and actuator capabilities of robots. Service agents and task 

agents are required to facilitate the bidding process of the auction. Tasks are classified 

in three categories (urgent, standard and non-preemtable) to achieve successful 

coalition formation. Preliminary simulations show that RACHNA is able to 

outperform global greedy (best task first) algorithms in terms of overall utility. A 

disadvantage of RACHNA is that the formed teams are highly dependent on the initial 

utilities assigned to tasks. Task utility usually incorporates a balance between quality 

(revenue) and cost. It can be difficult to quantify the quality of task execution prior to 

coalition formation. Additionally, no performance monitoring system is employed 

during task execution. 

 
An area of task allocation and coordination that has not been addressed in the 

literature is the ability to specify tasks in a generic format such that non-expert human 

users can adapt and utilise multi-robot systems. This requires a reduction of human 
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user inputs to the system. The requirements of physical robot capabilities (such as 

processing, communication, sensing and actuation) can be specified as graded inputs 

by non-expert human users. Specifying task requirements explicitly in terms of 

physical robot capabilities and utilising this information to determine the 

contributions of robots towards a global task has not been addressed in the reported 

approaches. Chapter 5 presents a task allocation strategy that utilises reduced human 

user inputs and has the potential to be utilised by non-expert human users. 

 
A potential problem faced after task allocation is the failure of robots during task 

execution. This may be due to hardware failures, interactions with the environment, or 

incorrect task-robot matching. Some form of feedback is required to address this 

issue.   

 

2.8 Fault Tolerance 
 

Fault tolerance in multi-robot systems can be viewed as a specialised form of multi-

robot coordination. In fault tolerant multi-robot systems performance metrics and 

monitors are used to detect robot failures. The team responds to individual robot 

failures by dynamically reselecting or reassigning the tasks of the failed robot.  

 
Parker [22] has implemented performance monitors for behaviour sets in the L-

ALLIANCE architecture. Task completion time is used as the performance metric in 

this architecture. Hence, the performance monitor on each robot keeps track of task 

completion times of any robots performing similar tasks to it. Task reallocation is 

effected via a learning process that updates the control parameters of the behaviour 

sets associated with the task that a robot executes. A drawback of L-ALLIANCE is 

that it is tailored for behaviour based systems making it potentially difficult to apply 

to non-behaviour based architectures. 

 
Kannan and Parker [116] have developed task execution success and failure metrics to 

investigate the influence of fault tolerance on overall system performance. In their 

implementation, the robots are required to perform a number of tasks and each robot-

task pair contributes towards the overall performance. The overall performance is the 

difference in the reward gained from successfully executed tasks (success metric) and 
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the punishment for unsuccessful task execution (failure metric). Experimental data are 

used to quantify the performance of a large-scale locate-and-protect mission involving 

a large team of heterogeneous robots. A drawback of this approach is that 

performance is only determined after task execution completes and not during task 

execution. 

 
An extension to Kannan and Parker’s work on fault tolerance [117] measures the 

effectiveness of fault tolerance in box pushing and deployment tasks. Fault tolerance 

in these tasks is tested using predefined and adaptive causal model methods. A case-

based reasoning approach is utilised in the implementation of the adaptive causal 

model. Their results indicate that adaptive models provide more effective fault 

tolerance than predefined models. However, the implementation of causal model 

methods can be cumbersome when there are many robots, fault nodes, and fault 

combinations. Additionally, causal model methods need to be tailored for the task that 

the robots execute and the environment that they operate in.  

 
Tolerance to sensor failures in a small team of distributed robots has been investigated 

in [118]. This research extends the sensing fault tolerance capability of the Sensor 

Fusion Effects (SFX-EH) architecture [119] to multiple robots. Sensor failures are 

diagnosed by allowing the robots to share knowledge of state of their sensors and task 

execution via communication. Tasks are redistributed when robots become 

inoperable. The distributed nature of the multi-robot system allows robots with failed 

sensors to attempt recovery by accessing sensory information from other robots in the 

team. A target search scenario using two robots demonstrates the usefulness of the 

fault tolerance mechanism. The main drawback of this implementation is that it only 

addresses sensing failures. Also, the implementation uses cameras and it would be 

difficult to apply this technique to limited capability robots that do not employ vision 

sensors. 

 
None of the reviewed fault tolerance methods monitor the four broad categories of 

robot hardware resources (processing, communication, sensing and actuation) 

explicitly. Such an approach is required if tasks are specified to robots in terms of 

these resource categories. It is envisioned that this will enable the detection and 

correction of various types of hardware failures and failures due to poor interaction 

with the environment (possibly due to incorrect task-robot matching). A feedback 
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coordination mechanism that achieves fault tolerance by monitoring the four broad 

categories of robot resources is presented in chapter 5.  

 

2.9 Multi-Robot Map Building and Exploration  
 

In a multi-robot map building or exploration task, a team of mobile robots is utilised 

to construct a map of an unknown environment in a minimum period of time. Several 

techniques for multi-robot map building and exploration have been proposed. 

Generally, these techniques can be classified into either hierarchical [11, 120, 121] or 

distributed [8-10, 122, 123] approaches similar to the multi-robot control architecture 

classification of section 2.6.  

 
Some research in multi-robot exploration and mapping (e.g. simultaneous localisation 

and mapping (SLAM)) [67] has focussed on issues relating to sensor data and robot 

position uncertainty.  SLAM methods employ alternating localisation and mapping 

steps. Sensor data is used to improve the position of a robot based on the current map 

in the localisation stage. In the mapping stage, the improved robot position and sensor 

data updates the map data. The SLAM problem can be “solved” by spending money 

on sophisticated sensing and processing based robots. This is the general approach 

taken in many implementations [67, 124-126]. However, practical mapping with 

inexpensive robots must handle limitations in sensing, computing and memory. In 

such a scenario, navigation aids such as beacons or GPS (DGPS) can be employed to 

correct imprecise localisation. 

 
This thesis considers the issue of implementing efficient exploration strategies for 

multiple robots. The central question in implementing an efficient exploration strategy 

is: “Given the current location of a robot, what is the best place or area to move to in 

an environment that consists of unexplored space?” Many exploration strategies are 

based on the distance to traverse to unexplored space and the expected information 

gain from the unexplored space [8] [120] [11] [9] [10] [127] [121]. Other strategies 

take advantage of robot capabilities to select robots for special situations [122] [123] . 

 
Singh and Fujimura [122] address cooperation in heterogeneous multi-robot 

exploration. Heterogeneity arises due to varying robot sizes. During exploration, the 
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robots identify “tunnels” to unexplored regions. If a robot is too large to pass through 

a tunnel, a delegation process informs other robots and the tunnel is assigned to a 

smaller robot. The robots use a north-south horizontal sweeping heuristic to explore 

the environment. Robots utilising this approach do not take into account the 

allocations of other robots. Hence, there can be interference between robots or 

overlapping of areas explored by the robots.  

 
Yamauchi [8] presents a decentralised strategy for multi-robot exploration where 

robots share perceptual information but maintain separate grid maps. Frontier based 

exploration directs the robots independently to areas that are likely to provide new 

information. Experimental results are presented for a pair of homogeneous robots. 

The minimal coordination arising from independent navigation can cause robots to 

waste time exploring areas previously covered by other robots. Also, the performance 

of the team is not quantitatively analysed. 

 
A centralised approach to merge maps and explicitly coordinate robots has been 

implemented by Simmons [120]. A relatively low cost algorithm attempts to produce 

good results by maximising overall utility such that overlapping information is 

minimised. Local map data are forwarded by each robot to the central mapper unit to 

create a consistent global map. Experiments were carried out using a team of three 

robots. In environments with minimal obstacles, this approach can produce significant 

interference between multiple robots.  

 
Burgard et al. [11] carried out extensive experiments to validate Simmons’ approach 

for teams of up to twenty robots in three types of environments. The results indicate 

that the coordinated approach significantly outperforms an uncoordinated system. 

Burgard et al. also extends the technique to robot teams with limited communication 

range. Limited communication experimental results indicate that a communication 

range of 30% of the diameter of the environment produces similar performance to 

exploration with unlimited communication. The authors remark that their research on 

multi-robot exploration and mapping can be extended to investigate scenarios in 

which robots may malfunction or break. 

 
Zlot et al. [9] applied a market based approach to multi-robot exploration. In this 

approach each robot generates a set of goal points that are organised into a tour. 
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Exploration is achieved by subsequently refining the tours through continuous inter-

robot negotiation. Experimental results suggest that selecting goal points using a 

greedy strategy yields poor performance compared to random and quadtree methods. 

The authors remark that incorporating time-based cost information could improve 

exploration efficiency and that their approach does not handle robot losses explicitly. 

 
Stroupe et al. [10] present the Move Value Estimation for Robot Teams (MVERT) 

approach for directing the movement of robots mapping objects in their environment. 

In this approach, each robot maximises a value function with the objective of reducing 

uncertainty in target measurements. Hence, multiple robots are initially drawn 

towards uncertain targets when they are found. As a target’s uncertainty reduces, the 

robots disperse to specialise in observing other targets. Overlapping exploration by 

robots is a necessity in this approach to improve observation accuracy.  Experimental 

results indicate that MVERT can initially reduce uncertainty much faster than a non-

cooperative approach. However, the eventual improvement in value is between three 

and thirteen percent.  

 
A new cost function for multi-robot exploration has been proposed [127]. The new 

cost function includes a value for robot separation expressed in terms of the distance 

between assigned frontier cells. This facilitates maximum robot separation in a 

reduced period of time during exploration. For simplicity, a greedy algorithm is 

employed to assign frontier locations. Experiments are carried out to compare the 

performance of the new cost function with Yamauchi [128] and Burgard et al. [129]. 

Yamauchi [128] employs a similar cost function to Yamauchi [8] and Burgard et al. 

[129] uses a cost function similar to Simmons [120]. Results from exploration in a 

tunnel-type environment with no obstacles suggest that the new cost function yields 

lower exploration times. 

 
Diosdado [123] developed the BEhavioural ROle DEcentralised (BERODE) 

architecture to address limited communication in multi-robot exploration and 

mapping. A minimum spanning tree (MST) control network maintains connectivity 

between the team of robots. During exploration the MST control network is updated 

to improve the signal quality of the network. The robots use behavioural roles to 

balance the tasks of exploration and network maintenance to improve the efficiency of 
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the team. It is assumed that robots are selected a priori for the exploration task. 

Diosdado remarks that robots can only explore a limited size environment using this 

approach due to computational costs associated with map updates. The performance 

could be improved using local maps. 

 
An exploration strategy that balances two priorities has been proposed [121]. One 

priority is to explore unknown regions of an environment, while the other is to 

maintain a small amount of overlap with explored areas to improve localisation. A 

complex utility function is optimised by a randomised sampling scheme to achieve 

this balance. Simulations and experiments with real robots are presented. The authors 

argue that their strategy reduces robot proximity to objects thus reducing sensing 

blindness or short-sightedness.  

 
All of the map building and exploration approaches reviewed assume that the robots 

have sufficient memory to locally store the entire map of the global area to be 

explored. However, this may not always be the case, especially if a robot uses a 

microcontroller as its main processor. Hence, an alternative method for map building 

and exploration is required (chapter 6). Additionally, using a feedback coordination 

strategy (chapter 5) scenarios where robots malfunction or break-down are also 

investigated. 

 

2.10 Summary 
 
Several areas of single robot and multiple robot control have been reviewed. From the 

relevant literature reviewed in single robot control, hybrid control architectures have 

been identified as the best option since they combine the benefits of reactive and 

deliberative control. Consequently, a hybrid system is the best option for navigation. 

Previously implemented hybrid navigation systems are not well suited for 

heterogeneous robots that may have limited sensing and processing capabilities.  

 
A method that does not need periodic planning like the approaches reviewed is 

required for navigation in unexplored obstructed environments utilising limited 

memory robots. Existing approaches to reactive control have not attempted to 

explicitly combine the benefits of directional methods and velocity space techniques 
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such that dependence on periodic planning can be removed. Additionally, the memory 

constrained path planning methods reviewed for deliberative control are not suitable 

for the limited memory robots in the hierarchical multi-robot system outlined in 

chapter 1. Chapter 3 and chapter 4 present methods for hybrid navigation and memory 

constrained path planning that can be applied to a hierarchical heterogeneous multi-

robot system comprising limited capability robots.  

 
In the area of multi-robot control, justification for the selection of a decentralised 

hierarchical architecture for the heterogeneous robots has been presented. While a lot 

of research has been carried out in the area of task allocation and coordination, there 

has been no work attempting to reduce human user input for task specification such 

that non-expert users can adapt and utilise multi-robot systems. Specifying tasks in 

terms of physical robot capabilities (such as processing, communication, sensing and 

actuation) may enable non-expert users to specify tasks. There is always the 

possibility that tasks specified by non-expert users can be erroneous. Hence, some 

form of feedback to achieve fault tolerance is needed. Existing methods for fault 

tolerance cannot be utilised as they do not attempt to monitor the four broad physical 

capability categories of robots. Chapter 5 presents a task allocation and feedback 

coordination strategy that permits reduced human user input for task specification and 

detects abnormalities during task execution. 

 
Existing approaches to multi-robot mapping and exploration assume that robots have 

sufficient memory to locally store the entire map of the global area. However, this 

may not always be possible in a hierarchical heterogeneous system that consists of 

limited memory robots. A customised multi-robot mapping and exploration task that 

exploits the benefits of hierarchical heterogeneous systems to permit exploration with 

limited capability robots is presented in chapter 6. 
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3 Basic Robot Navigation System 
 

3.1 Navigation System Overview 
 
A hierarchical hybrid system has been selected to implement basic robot navigation. 

This allows the navigation system to exhibit the benefits of both reactive and 

deliberative control. A rudimentary version of Lee-Johnson’s navigation system [51] 

has been adapted for use. There were several bugs and shortfalls in this initial 

navigation system (highlighted in section 2.3) that have been addressed independently 

of Lee-Johnson [51].  

 
The generic control architecture used by the mobile robots in this project is illustrated 

in Figure  3.1. It consists of a number of modules for sensing (information extraction 

and sensor fusion), modelling (localisation, environment map), planning (multi-robot 

coordination interface, task planning and decomposition, deliberative control) and 

acting (reactive control, low-level motion control/execution). The hierarchy of the 

modules provides an indication of the temporal decomposition of control. Modules on 

the left and right represent perception/representation and action/planning respectively. 

The indicated update rates are employed for the tricycle robots Itchy and Scratchy. 

These frequencies can be adjusted for other robots. 

 

3.2 Environment Representation and Path Planning 
 

3.2.1 Environment Representation 
 
As outlined in section 2.5, a rectangular occupancy grid has been selected for 

representing a robot’s environment because of its simplicity and usability in a range 

of environments. An occupancy grid map is generated by dividing the environment 

into discrete cells and assigning unit interval values to represent occupancy 

probability. Figure  3.2 illustrates a 30 cm resolution occupancy grid map for a 38.4 m 

by 38.4 m environment. Darker shaded cells represent higher occupancy probability.  
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While navigating towards a goal location, a robot can update occupancy probability 

data using Bayes’ rule [8, 130]. To ensure that Bayes’ rule updates probabilities 

correctly, occupancy probability data are restricted to a range of [0.05,0.95]. Updating 

occupancy probability data is further detailed in section 6.2.2. 
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Figure  3.1: Generic mobile robot control architecture. 
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Figure  3.2: Rectangular occupancy grid map. 

 

3.2.2 Path Planning 
 
A single-tiered modified A* algorithm is employed for path planning if the occupancy 

grid to be searched can be stored in the robot’s local memory. Where the entire 

occupancy grid map cannot be stored locally, a two-tiered (memory constrained) A* 

algorithm searches for a path (chapter 4). 

 
The A* algorithm is a best-first heuristic search algorithm that ranks nodes based on 

the cost of travelling through them. Cost is usually represented by node distances 

where lower cost values denote a better path to travel. The total cost f(x) of node x is 

the sum of two cost values, g(x) and h(x). g(x) represents the cost of travelling from 

the start node to node x while h(x) is a heuristic cost of travelling from x to the goal 

node.  

 ( ) ( ) ( )f x g x h x= +  (3.1) 
 
Normally, the A* algorithm [70] considers binary occupancy values where the nodes 

are either traversable or non-traversable. Hence, g(x) is dependent on the node 

distance of the lowest cost path from the start node to the parent node xpar and the 

Euclidean distance dn(x,xpar) between x and xpar. Heuristic cost h(x) is generally an 

optimistic estimate represented by the Euclidean or Manhattan distance from the 

current node x to the goal node. Infinity cost is represented by the Inf variable in the 

MATLAB code. Alternatively, it can be represented by a large number such as 1012. 
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( ) ( , ) if traversable

( )
otherwise

par n parg x d x x
g x

+
= ∞

 (3.2) 

 
Inspired by frontier-based exploration [8], the g(x) and h(x) costs have been modified 

to account for a varying degree of occupancy probability pi ranging from 0.05 to 0.95. 

Nodes whose occupancy probabilities exceed a threshold PT are eliminated from the 

cost calculation. The cost of all other nodes is linearly dependent on a cost multiplier 

cm. 

 

 
( ) ( , ). ( ) if ( )

( )
otherwise

par n par m i Tg x d x x c x p x P
g x
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 (3.3) 

 

 
( , ). ( ) if ( )

( )
otherwise

n goal m i Td x x c x p x P
h x

<
= ∞

 (3.4) 

 
Before calculating cm, occupancy probability pi(x) is modified by cost function cp 

which can favour nodes within critical probabilities pcmin and pcmax. This can be useful 

when exploring unknown environments. 

 

 
max min

1 min max

2
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p x p p x p
c x w p x p p x p p x

w p x p x

 < <
= − ≤ ≤ ≠
 − =

 (3.5) 

 
For path planning in known environments, weights wp1 and wp2 can be set to zero. In 

unknown environments the weights are unit interval values varied dynamically based 

on the progress distance dprog towards the goal. The weights are multiplied by factor fw 

when progress is below threshold dprogmin, otherwise default initial values are used. In 

this way the balance between navigating through known and unknown terrain can be 

controlled. 

 

 min. if 
otherwise

old w prog prog
new

init

w f d d
w

w
<

= 


 (3.6) 

 
The unit interval cost multiplier cm takes into account the occupancy probability cost 

cp(x) of node x. It also includes a mean occupancy probability cost cprc(x) representing 

a robot clearance of r nodes around node x. Weights wpi and wprc control the balance 

between the two inputs and are set to 0.5 for equal preference. 
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 ( ) 1 ( ) ( )m pi p prc prcc x w c x w c x= + +  (3.7) 

 1( ) ( )
r

prc p i
i

c x c x
r

= ∑  (3.8) 

 
If the path planner cannot find a path to the goal, it is able to retain a partial path 

closest to the goal. After the last node in a partial path the mobile robot can employ 

reactive control techniques in an attempt to reach the goal. 

  

3.3 Reactive Control Overview 
 
An outline of various approaches for reactive control of mobile robots has been 

presented in section 2.4. A reactive control strategy has been implemented that 

combines a modified dynamic window approach [38] with a polar histogram 

technique similar to the vector field histogram method [58]. Figure  3.3 shows a 

simplified block diagram of the two-stage optimisation process that can track paths 

and avoid obstacles. All heading (orientation) values are normalised to lie within the 

interval [−π,π). A target heading angle is input to the direction sensor that produces a 

modified target heading as output. The modified target heading angle is decomposed 

into linear and angular wheel velocities (v,ω) by the modified dynamic window 

approach. 

Direction Sensor

Objective function:

Target heading

1
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( )1 dir t ob
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smooth do
d

θ θ
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π
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Figure  3.3: Overview of reactive control strategy. 
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3.4 Direction Sensor 
 
At the direction sensor stage, the kinematic constraints, dynamic constraints and non-

circular shapes are all ignored. A circular shape represents the robot as shown in 

Figure  3.4. Robot radius rm is selected to encompass the entire robot. The current 

pose and goal pose of the robot are defined as (xc,yc,θc) and (xg,yg,θg) respectively. If 

the robot is following a planned path, (xg,yg,θg) represents the coordinates of a node 

that is Nt nodes ahead of the node closest to the robot. Otherwise, (xg,yg,θg)  points to 

the final destination of the robot. Target heading angle θt is calculated from the 

current and goal pose of the robot and input to the direction sensor.  

 

x

y

Obstacle 1

Obstacle 2

R

Robot

maxobd obd

dir cθ θ−

t cθ θ−
Target 

direction

mr

 
Figure  3.4: Direction sensor representation. 

 

 1tan g c
t

g c

x x
y y

θ −
 −

=   − 
 (3.9) 

 
To determine the most appropriate direction, the robot is represented as a point and 

each obstacle is enlarged by the radius of the robot. The region surrounding the robot 

is then divided by an arbitrary number of lines Nθ (Table  3.2) to represent candidate 

orientations θdir. All orientation angles are converted to the robot’s reference frame R 

by subtracting the current absolute orientation θc of the robot. 

 
Goal directedness |θdir − θt| and distance to obstacles dob is maximised by applying an 

objective function to each candidate orientation (3.10). A higher objective function 
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value denotes a better direction. The maximum obstacle distance, dobmax, is set to the 

maximum sensing range and the minimum obstacle distance is set to rm. A smoothing 

function, smooth, is applied to obstacle distances to achieve better clearance around 

obstacles. Essentially, smooth is a one-dimensional filter that takes a weighted 

average of adjacent obstacle distances at θdir. α1 and β are unit interval weightings for 

goal directness and obstacle clearance. Smaller weights and larger weights translate to 

lower and higher preferences respectively. Hence, an α1 value of 0.5 and β value of 1 

is sufficient to balance goal directedness and obstacle clearance for robots tested in 

this thesis. 

 

 1
max

( )( ) 1 dir t ob
ds dir

ob

smooth do
d

θ θ
θ α β

π
 −   

= − +   
  

 (3.10) 

 

3.5 Modified Dynamic Window Method 
 
In the dynamic window approach, a portion of the velocity space that is achievable 

within the next control cycle is searched for a velocity pair (v,ω). The achievable 

velocity space depends on the current velocities, acceleration and kinematic 

constraints and the shape of the robot. Originally, the dynamic window method [38] 

has been demonstrated on synchronous drive (holonomic) robots where linear and 

angular acceleration is independently varied at all speeds. However, in nonholonomic 

robots such as tricycle drive or differential drive robots, linear and angular 

acceleration are implicitly dependent. Linear and angular acceleration depend on the 

current velocity and kinematic constraints for these robot types. 

 
The minimum velocity limit is dynamic in this thesis to enable robots to perform 

reversing manoeuvres when necessary. This is especially useful for tricycle drive 

robots as they cannot perform point turns. Also, the estimated distance to collision at 

velocity (vcd,ωcd) DCcd is not explicitly used to maximise the objective function since 

the direction sensor (section 3.4) adjusts the target heading using obstacle distances. 

Instead, DCcd is employed as additional admissible velocity criteria to control 

reversing and avoid collisions. 
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Integrating the direction sensor with the dynamic window method requires the robot 

reference frame, R, to be translated to the physical centre of the robot as shown in 

Figure  3.5. The linear velocity v1 and curvature radius r1 also have to be adjusted to 

this new reference before the dynamic window approach can be applied. The 

curvature radius at the centre r is a function of the y axis offset in R and the minimum 

curvature radius r1min (3.11). Linear velocity v at the centre of the robot can be 

computed from angular velocity ω and radius r (3.12).  
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1 1 1min

22
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off
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r y r r
r
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 (3.11) 

 

 1
1

rv v r
r

ω= =  (3.12) 

 
A velocity-axis angle θv between velocity vector v and the robot frame y axis is 

calculated for each (v,ω) pair (3.13). This velocity-axis angle is employed to perform 

an axes rotation of the robot reference frame and obstacles so that the collision 

distance can be computed as described in [48]. 
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 (3.13) 
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Figure  3.5: Modification of a robot’s reference frame to allow compatibility 

between the direction sensor and dynamic window controls. 
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Figure  3.6: Overview of modified dynamic window method. 

 
An overview of the modified dynamic window method employed on robots in this 

thesis is shown in Figure  3.6. There are seven major inputs to the algorithm. A target 

heading θtmod is the output from the direction sensor. The Euclidean distance to the 

final goal location dtgt, current velocity (vc,ωc) and global maximum linear velocity 

vgmax are also input. Additionally, the kinematic constraints, dynamic constraints and 

obstacle distances dob are input to the dynamic window algorithm. These inputs limit 

the maximum and minimum linear and angular velocities used to generate velocity 

windows. The velocity windows, target heading and obstacles are evaluated with a 

modified dynamic window objective function (Figure  3.7) to select an optimal 

velocity pair (vn,ωn) for the next control cycle. 

 
The maximum linear velocity vmax is derived from vgmax and varies depending on goal 

proximity dtgt and front obstacle distances dobfr. When the robot is within deceleration 
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and stopping distances, ddecel and dstop, the goal maximum linear velocity limit vglmax is 

linearly varied between vgmax and zero (3.14). The set of Nfs sensors situated at the 

front of the robot FRS determines the obstacle maximum linear velocity limit vobmax 

(3.15)–(3.17). If the maximum front sensor distance dobfr is greater than a minimum 

distance dobfrmin but less than a maximum limit dobfrmax, vobmax is linearly varied 

between vgmax and a minimum obstacle speed vobmin. The minimum of vglmax and vobmax 

is selected as vmax (3.18).  
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 min( )obfrd FRS=  (3.16) 
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 (3.17) 

 
 max max maxmin( , )gl obv v v=  (3.18) 
 
To dynamically adjust the minimum linear velocity (for reversing) vmin, obstacle 

distances at the front dobfr, rear dobrr and immediate rear dobirr of the robot are obtained. 

The obstacle distance at the front of the robot is determined from the set of front 

sensors FRS using (3.15) and (3.16). Similarly, dobrr and dobirr are determined from the 

set of rear sensors RRS and immediate rear IRRS sensors respectively (3.19)–(3.22). 

The obstacle distances are compared with threshold values dobfrT1, dobfrT2, dobrrT and 

dobirrT to adjust the minimum velocity limit between zero and −vgmax (3.23). Reversing 

is subsumed if an obstacle is located directly behind the robot (dobirr < dobirrT) (3.23). 

Two threshold values are employed for the front sensors such that dobfrT2 is less than 

dobfrT1 (3.23). When dobfr is less than dobfrT2, a robot can back away from an obstacle. 

Forward motion can be resumed when dobfr is greater than dobfrT1. The minimum 
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velocity is also set to –vgmax when a tricycle drive robot is close to a goal location but 

requires orientation correction. 

 
 { }1 2, ,...,

rsobrr obrr obrrNRRS d d d=  (3.19) 

 
 min( )obrrd RRS=  (3.20) 
 
 { }1 2, ,...,

irsobirr obirr obirrNIRRS d d d=  (3.21) 

 
 min( )obirrd IRRS=  (3.22) 
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Dynamic constraints (linear acceleration aa and deceleration ad) and linear velocity 

limits (vmin and vmax) are applied to the current velocity to produce a linear velocity 

window [vwmin,vwmax] for the next control cycle. The velocity window is discretised 

into an arbitrary number of divisions Nvd for evaluation.  

 
The angular velocity of each robot has a global maximum ωgmax and a global 

minimum −ωgmax. A minimum cmin and maximum cmax curvature for the next control 

cycle is determined from the current state, kinematic and dynamic constraints of a 

robot’s drive. Dynamic constraints considered in a differential drive robot include the 

maximum linear wheel acceleration and deceleration while the state corresponds to 

the current linear speed of the robot’s wheels. For a tricycle drive, the state 

corresponds to the current steering wheel angle while the steering rate is the dynamic 

constraint. Combinations of cmin, cmax, vwmin and vwmax are tested to determine the 

minimum and maximum angular velocity for the next control cycle (3.24)–(3.25). 

 
 min max max min max max min min minmin( , , , )w w w wc v c v c v c vω =  (3.24) 
 
 max max max min max max min min minmax( , , , )w w w wc v c v c v c vω =  (3.25) 

 
The difference of ωmax and ωmin from current angular velocity ωc is used to determine 

angular acceleration αa and deceleration αd.  A minimum angular acceleration αmin 
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employed by the modified dynamic window objective function calculation is set to the 

minimum of the absolute values of αa and αd. 

 
Dynamic constraints (angular acceleration αa and deceleration αd limits), angular 

velocity limits (ωmin and ωmax) and global velocity limits are applied to the current 

angular velocity to produce an angular velocity window [ωwmin,ωwmax] for the next 

control cycle. The angular velocity window is also discretised into an arbitrary 

number of divisions Nωd for evaluation. 

 
A safety margin SM is added to the robot’s perimeter to allow it to stop or reverse 

before colliding with obstacles. If obstacle dob breaches the safety margin, a proximity 

flag PRob is set to enable velocity rejection in the obstacle’s direction (3.26). The 

safety margin has a minimum value of SMmin and is increased proportionally based on 

the robot’s current linear velocity vc and a safety margin growth factor kSM (3.27). 

Non-circular robots can have independent safety margins for each side of the robot. 

This arrangement enables the front and rear of the robot to have greater safety 

margins when travelling forward or reverse. 

 

 
1 if 
0 otherwise

ob
ob

d SM
PR

≤
= 


 (3.26) 

 
 min SM cSM SM k v= +  (3.27) 
 
A flowchart of the process to select an optimal velocity pair (vn,ωn) for the next 

control cycle is shown in Figure  3.7. The angular and linear velocity windows are 

used to generate (vcd,ωcd) candidate velocity pairs for evaluation. Each candidate 

velocity pair is checked for curvature constraint satisfaction. Four curvature 

constraints, CC1, CC2, CC3 and CC4 are employed to determine the overall constraint 

satisfaction CCT for tricycle robot candidate curvatures ccd (3.28)–(3.32). These 

conditions coordinate forward and reverse movement while preventing deadlock at 

zero velocity. Candidate curvature ccd needs to be within [cmin,cmax] to satisfy the 

curvature constraint CCD for differential drive robots.    

 
 1 max min( ).( ).( 0).( 0)cd cd cd cdCC c c c c v ω= ≤ ≥ = ≠  (3.28) 
 
 2 max min( ).( ).( 0).( 0)cd cd c cdCC c c c c v v= ≤ ≥ > <  (3.29) 
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 3 max min( ).( ).( 0).( 0)cd cd c cdCC c c c c v v= ≤ ≥ < >  (3.30) 

 
 4 ( 0).( 0)c cdCC v v= = =  (3.31) 

 
 1 2 3 4( | | ).TCC CC CC CC CC=  (3.32) 
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Figure  3.7: Flowchart of optimal velocity pair selection. 
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Next, the distance to collision DCcd if the robot travels at the candidate velocity pair is 

determined [48]. Tricycle robot collision distances are multiplied by a reduction factor 

DCF if the candidate velocity pair steers the robot towards a close obstacle CLob on 

the side the robot. The reduction factor attempts to reduce instances of the robot being 

stuck in v-shaped corners that can result from closely positioned obstacles (Figure  

3.8). If the distance to collision is satisfactory (DCcd > 0), it is used to determine if the 

robot can stop in sufficient time to avoid collision. The Boolean variables STv and STω  

represent the robot’s ability to successfully stop at the candidate linear and angular 

velocities respectively (3.33)–(3.34). Tricycle drive robots utilise only STv for 

stopping distance checking. 
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Figure  3.8: Tricycle robot stuck between closely positioned obstacles. 

 

If the robot is able to stop in sufficient time to avoid collision, a primary objective 

function value is computed for the candidate velocity pair (3.35). A secondary 

objective function value is calculated for ωcd if the robot is unable to stop in time. The 

secondary objective function attempts to steer the robot away from an obstacle even if 

it is too close to stop. Secondary objective functions odwst(ωcd) and odwsd(ωcd) are 

calculated for tricycle and differential drive robots respectively (3.36)–(3.37). Smaller 
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and larger weightings for each parameter translate to lower and higher preferences 

respectively. Hence, an α2 value of 0.4 and γ value of 0.2 is sufficient to balance goal 

directedness and velocity for robots tested in this thesis. If α2 is reduced, the robot 

may not be drawn to the goal location. On the other hand, an increase in α2 can 

compromise obstacle avoidance as the robot may not deviate from its goal direction. 

Similarly, the robot may not travel at a reasonable speed if γ  is too low. A large value 

of γ can compromise obstacle avoidance since it favours higher speeds. An α3 value of 

0.01 is sufficient to reduce objective values when collision distance DCcd is below 

threshold DCcdmin. 
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After all velocity pairs have been checked and evaluated, a velocity pair with the 

maximum primary objective value is searched for. If a valid velocity pair is found 

then it is set as the target velocity for the next control cycle. However, if a valid pair is 

not found then a linear velocity that opposes the current direction is selected. This 

enables the robot to avoid collisions in the current direction of movement. Candidate 

angular velocities are searched for the maximum secondary objective value. If a valid 

angular velocity is obtained then it is set as the angular velocity for the next control 

cycle. When the primary and secondary objective value searches both return invalid 

data, the next angular velocity is determined from the average curvature and linear 

velocity that opposes the current motion. 

3.6 Simulation Experiments 
 
The navigation system has been implemented for simulated robotic agents using 

MATLAB® 2007a. Figure  3.9 illustrates the MATLAB simulator developed to test 

the navigation system. Robot A (Table  3.1) is travelling from the top-left corner to 

bottom-right corner of a 20% obstacle density environment. The simulator accounts 

partially for uncertainties and delays by adding and filtering Gaussian noise to sensing 

and actuation signals.  
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Figure  3.9: Tricycle robot traversing in a known environment. 
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Table  3.1: Simulated robot attributes. 

Robot A B C 
Shape pentagon circle rectangle 
Drive tricycle differential differential 
Size (minimum circular radius) [m] 0.5 0.35 0.67 
Max. linear velocity vgmax [m/sec] 0.5 0.5 0.3 
Max. angular velocity ωgmax [rad/sec] π/7 π/7 π/7 
IR Sensors Qty 11 10 14 

Range [m] 1.5 1.5 1.5 
 

3.6.1 Parameter Tuning 
 
The tested robots (Table  3.1) used the direction sensor parameters outlined in Table  

3.2. The direction sensor parameters have been empirically tuned. Initially, dobmax is 

set to the maximum range of the infrared sensors. Next, Nθ is selected to balance 

computational effort and direction resolution. Finally, α1 followed by β is adjusted to 

balance goal-directness and obstacle avoidance.  

 
The modified dynamic window parameters (Table  3.3) have also been empirically 

tuned. Acceleration aa and deceleration ad are determined from the robot’s dynamic 

constraints. Parameters that are largely independent of obstacles can then be tuned. 

Initially, α2 and γ are tuned to attract the robot to a goal in environments with minimal 

obstacles. Next, Nvd and Nωd can be adjusted to balance computational speed and 

motion smoothness. Following this, the parameters for decelerating and stopping the 

robot are determined. Stopping distance dstop is calculated from velocity profile data 

[131], while decelerating distance ddecel is tuned to slow down the robot when it is 

near the goal location.  

 
 
 

Table  3.2: Direction sensor parameter data. 

Parameter Numerical Value 
α1 0.5 
β 1 

dobmax 1.5 m 
Nθ 41 
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Table  3.3: Modified dynamic window parameter data. 

Parameter Numerical Value 
aa 0.1 m/sec2 
ad -0.1 m/sec2 
α2 0.4 
α3 0.01 
γ 0.2 

DCcdmax 3 m 
DCcdmin 0.6 m 

DCF 0 
ddecel 2 m 

dobfrmax 2 m 
dobfrmin 0.5 m 
dobfrT1 0.95 m 
dobfrT2 0.75 m 
dobirrT 0.5 m 
dobrrT 0.7 m 
dstop 0.3162 m 
kSM 0.1 sec 
Nvd 5 
Nωd 11 

vobmin 0.2 m/sec 
 
Obstacle dependent parameters can be tuned after obstacle independent parameters 

have been tuned. The parameters used to determine vobmax can be tuned first. dobfrmax 

and dobfrmin are approximately the maximum and minimum sensing ranges relative to 

the centre of the robot respectively. vobmin is selected such that the robot can stop 

within a couple of control cycles if necessary. Next, the front and rear obstacle 

distances (dobfrT1, dobfrT2, dobirrT, and dobrrT) to control the minimum velocity limit for 

reversing are empirically tuned. 

 
Parameters employed in optimal velocity pair selection can be tuned next. Maximum 

collision distance DCcdmax is determined from curvature data and the maximum 

sensing range of the robot. Safety margin growth gain kSM is tuned to ensure that 

higher linear velocities in the dynamic window are rejected quickly when the robot 

travels close to its maximum velocity. Minimum collision distance DCcdmin and α3 are 

tuned to reduce the preference of candidate velocities before STv becomes zero. 

Collision distance reduction factor DCF is tuned to quickly reject candidate velocities 

that steer a robot toward close side obstacles. 
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All parameters can be further tuned if the combined performance is not adequate.  

 

3.6.2 Experimental Configurations 
 
Table  3.1 details the attributes of three robots employed to evaluate the navigation 

system’s performance. Evenly distributed obstacles at 5%, 10%, 15% and 20% 

densities were automatically generated for 15 m × 15 m worlds. It was 

computationally difficult to achieve evenly distributed automatically positioned 

obstacles at higher obstacle densities. Ten worlds were generated for each obstacle 

density. The performance of pure reactive and hybrid reactive-deliberative navigation 

in known and unknown environments has been evaluated. Experiments on each 

navigation technique were repeated ten times for all worlds tested. This produced a 

total of 100 samples for each obstacle density. 

 
In pure reactive control, the robot attempts to travel in a straight line to the goal 

location while avoiding any obstacles it encounters. A path is initially planned and 

tracked while the robot navigates towards the goal in the hybrid reactive-deliberative 

approaches. In unknown environment navigation, the robot regularly updates the 

occupancy grid map and re-plans accordingly as it travels towards the goal. 

 
Three additional configurations have been evaluated to compare the performance of 

the final reactive controller (FRC). Firstly, the performance of employing only the 

original dynamic window (ODW) method for reactive navigation is evaluated. 

Secondly, the original dynamic window method coupled with the developed direction 

sensor is evaluated (ODWDS). Finally, a reduced parameter modified dynamic 

window method is coupled with the developed direction sensor to produce a reduced 

final reactive controller (RFRC).  

 

The original dynamic window method does not employ (3.18)–(3.23), (3.28)–(3.32) 

and (3.35)–(3.37). Hence, vobmax is set to vgmax while vmin is set to –vgmax. The tricycle 

curvature constraint CCT is determined in a similar manner to the differential drive 

curvature constraint CCD. Additionally, tricycle robot collision distances are not 

influenced by the reduction factor DCF. Equations (3.35)–(3.37) are replaced with 

(3.38). Obstacle clearance weight β1 has been empirically tuned to 0.3. A β1 weight of 
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0.005 has been tuned when the original dynamic window method is combined with 

the direction sensor. The direction sensor’s ability to provide obstacle clearance 

causes the reduced weighting. 

 

mod
2 1

max max

( )
if  and 

( , , )

1 otherwise

t c cd cd cd
v

dw cd cd cd cd

v DC ST ST
o v DC v DC ω

θ θ ω
α γ β

ω π
  − −     

+ +      =      
−

 (3.38) 
 
In the reduced parameter modified dynamic window method, parameters considered 

to have the least impact on performance have been removed. For tricycle robots, the 

collision distance reduction factor DCF is set to 1 and close obstacles CLob are not 

monitored. Weight α3 is removed from the primary objective function (3.35) to 

produce (3.39). With the removal of CLob, the secondary objective function for 

tricycle robots (3.36) is reduced to (3.40). 
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It is unsuitable to compare the modified dynamic window method with the original 

approach since the modified method is tailored for use with the direction sensor. 

Consequently, unlike the original method, the modified dynamic window does not 

explicitly maximise obstacle clearance in its objective function. 

 
Each of the navigation approaches has been evaluated for navigation time NT, path 

length index PI, success rate SR and average velocity AV. Navigation time is limited 

to 300 sec for 5% and 10% obstacles, while it is restricted to 450 sec for the 

remaining obstacle densities. Path length index is determined by comparing the length 

of the optimal planned path with the actual path traversed by the robot. It is possible 

for a robot to achieve a path length index greater than unity since the length of the 

optimally planned path may not necessarily be the shortest path. The optimally 
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planned path is not always the shortest path because obstacle clearance is also 

accounted for during path planning. Success rate, path length index and average 

velocity have been combined with equal weightings to produce a score representing 

overall success OS. 

 
 ( ) 3OS SR PI AV= + +  (3.41) 
 
In the results figures, each bar represents the average value and the corresponding 

error bar illustrates standard deviation. A paired sample t-test with two-sided p-values 

is used to compare the results of employing the various navigation approaches. 

Comparisons are statistically significant if p-values are less than or equal to 0.05 (5% 

statistical significance level). Performance ratios are computed to determine 

superiority or inferiority by dividing the results obtained from one method by the 

results obtained from another method. 

 

3.6.3 Results 
 

Figure  3.10 – Figure  3.15 illustrates the performance of the various navigation 

strategies for the tested robots over obstacle density combinations. Each bar in the 

graphs represents the mean value of the test configuration (obstacle density – robot 

combination). The error bars denote the standard deviation of the tested 

configurations.  

 
Generally, the FRC, HRDK, HRDU, ODWDS and RFRC methods show similar 

trends for each robot as obstacle density is varied. As obstacle density increases, 

navigation time increases. Path length index generally decreases with increasing 

obstacle density. Success rate tends to decrease for Robots A and B as obstacle 

density increases. Average travelling velocity also decreases with obstacle density. 

The kinematic constraints of Robot A (tricycle robot) generally cause it to travel 

longer paths, requiring greater navigation time, than Robots B and C. Robots B and C 

have the advantage of point turn manoeuvres since they are differential drive robots. 

However, Robot C is the largest robot and its success rate deteriorates at higher 

obstacle densities. Robot B, the smallest robot, has a circular shape and produces very 

high success rates for all navigation strategies except the ODW method. 
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The FRC results are presented in Figure  3.10 (a)–(e). This navigation strategy can 

work well on all three of the tested robots. The navigation time for all robots is less 

than the maximum set limit (Figure  3.10 (a)). Good path length indices (>0.83) can 

be achieved with Robots B and C (Figure  3.10 (b)).  
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Figure  3.10: Final reactive controller (FRC) results. 
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Robot C’s success rate in 20% obstacle density environments is limited to 80%, while 

Robots A and B achieve higher success rates (>88%) (Figure  3.10 (c)). The mean 

overall scores of Robots A, B and C are greater than 0.75, 0.86 and 0.77 respectively 

(Figure  3.10 (e)). 
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Figure  3.11: Results for hybrid reactive-deliberative navigation in known 

environments (HRDK). 
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Figure  3.11 (a)–(e) illustrates the results for HRDK navigation. Again, this method 

works well on all three tested robots. Good path length indices (>0.89) are achievable 

for Robots B and C at all obstacle densities (Figure  3.11 (b)). High success rates 

(>94%) are possible for Robots A and B (Figure  3.11 (c)). The mean overall score of 

each robot – obstacle density combination is comparable and varies between 0.73 and 

0.97 (Figure  3.11 (e)). 
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Figure  3.12: Hybrid reactive-deliberative navigation in unknown environments 
(HRDU). 
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Hybrid reactive-deliberative navigation experiments in unknown environments 

(HRDU navigation) results are shown in Figure  3.12 (a)–(e). This navigation 

technique can also work on all three robots that have been tested. Navigation time 

varies between 46 sec and 136 sec for the different combinations tested (Figure  3.12 

(a)). Good path length indices (>0.80) are achievable with Robot B (Figure  3.12 (b)). 

Robots A and C achieve path length indices greater than 0.59 and 0.74 respectively 

(Figure  3.12 (b)).  

 
Robot B can achieve 100% success in the tested environments (Figure  3.12 (c)). 

Robot A has a good success rate (>81%) while Robot B can attain a success rate 

greater than 65% (Figure  3.12 (c)). The mean overall scores of Robots A, B and C are 

greater than 0.68, 0.85 and 0.77 respectively (Figure  3.12 (e)). 

 
The evaluation of the ODW method is presented in Figure  3.13 (a)–(e). This method 

yields poor performance on all the tested robots. Despite the average velocity of each 

robot being greater than 53% (Figure  3.13 (d)), navigation time is significantly high 

(Figure  3.13 (a)), indicating poor goal-directedness. The low path length index values 

(<0.48) for all robots also indicate poor goal-directedness when relying solely on the 

DWA method for navigation (Figure  3.13 (b)).  

 
Extremely poor success rates (<5%) have been attained for Robots A and C (Figure  

3.13 (c)). Robot B produces above average success rates at 15% and 20% obstacle 

densities (Figure  3.13 (c)). Consequently, the overall scores are also poor with only 

Robot B achieving above the 0.5 level at 15% and 20% obstacle densities (Figure  

3.13 (e)). 

 
When the direction sensor is combined with the ODW method, it can perform 

adequately on all the tested robots (Figure  3.14 (a)–(e)). The average velocity 

achieved by the robots is good (>70%) (Figure  3.14 (d)). For Robots B and C, above 

average path length indices (>65%) are achievable (Figure  3.14 (b)). However, path 

length index values are poor (0.28–0.50) for Robot A at 15% and 20% obstacle 

densities (Figure  3.14 (b)). 
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Figure  3.13: Original dynamic window (ODW) reactive navigation results. 
 
 
The success rate of Robot B is high (>94%) for all obstacle densities (Figure  3.14 

(c)). However, Robots A and C have significantly lower success rates at higher 

obstacle densities (Figure  3.14 (c)). The mean overall scores of Robots A, B and C 

are greater than 0.51, 0.78 and 0.64 respectively (Figure  3.14 (e)). 
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Figure  3.14: Reactive navigation with original dynamic window approach and 

direction sensor (ODWDS). 
 
A reduced parameter reactive controller (RFRC) has also been evaluated (Figure  3.15 

(a)–(e)). Similar to the FRC, this navigation strategy is capable of performing on all 

the tested robots. The navigation time for all robots is less than the maximum set limit 

(Figure  3.15 (a)). Robots B and C have good path length indices (>0.81) (Figure  

3.15 (b)). Robot B has a high success rate (>91%), while Robots A and C have at least 
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76% and 75% success respectively (Figure  3.15 (c)). The mean overall score of each 

robot – obstacle density combination is comparable and varies between 0.70 and 0.94 

(Figure  3.15 (e)). 
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Figure  3.15: Reduced parameter reactive controller (RFRC) results. 
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A comparison of the overall scores and navigation times of the various navigation 

strategies is illustrated in Figure  3.16 – Figure  3.20. In each case, the alternative 

navigation methods are compared with the final reactive controller (FRC). The first 

two parts of each figure ((a) and (b)) illustrates the overall score comparison’s ratio 

and navigation time ratio, respectively. Overall score ratio is calculated by dividing 

the alternative navigation technique’s overall score by the FRC overall score. A ratio 

less than unity represents inferior performance while a ratio greater than unity 

indicates superior performance. The alternative navigation technique’s navigation 

time divided by the FRC navigation time determines the navigation time ratio. 

Superior performance is denoted by a ratio less than unity, while a ratio greater than 

unity indicates inferior performance. The third part of each figure ((c)) shows the p-

values for the overall score and navigation time comparisons. P-values less than 0.05 

(5% statistical significance level) are highlighted in blue to indicate comparisons that 

are statistically significant. 
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Figure  3.16: Comparison of HRDK navigation and FRC. 

 
Figure  3.16 (a)–(c) shows a comparison of HRDK navigation and the FRC. For all 

test configurations, the overall score ratio is greater than unity (Figure  3.16 (a)). The 
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comparison is statistically significant for all cases (Figure  3.16 (c)), with best case 

improvement for HRDK navigation performance of 8% (Robot B in 15% obstacle 

density environment). Figure  3.16 (c) also indicates that the comparison is 

statistically significant for majority of the cases even at a 1% significance level. 

Navigation time comparison suggests that the FRC is inferior (Figure  3.16 (b),(c)). 

Eight out of twelve cases are statistically significant (Figure  3.16 (c)). The four cases 

with p-values greater than 5% (Figure  3.16 (c) have navigation time ratios closer to 

unity than the other cases. 
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Figure  3.17: Comparison of HRDU navigation and FRC. 

 
A comparison of HRDU navigation and the FRC is shown in Figure  3.17 (a)–(c). The 

overall score ratio is 0.83–1.04 with 11 out of 12 cases greater than 0.9 (Figure  

3.17 (a)). However, only four out of twelve cases are statistically significant (Figure  

3.17 (c)). Hence, at lower obstacle densities (5%–15%) HRDU navigation and FRC 

have similar performance. However, at 20% density HRDU navigation is generally 

inferior (Figure  3.17 (c)). Navigation time ratio is 0.84–1.15 with five out of twelve 

cases greater than unity (Figure  3.17 (b)). Three out of twelve cases are statistically 

significant (Figure  3.17 (c)). Two out these three statistically significant cases 
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indicate the HDRU navigation has inferior performance. The inferior performance of 

HRDU navigation can be attributed to time delays before re-planning is triggered. 

Additionally, path planning in unknown environments can favour unexplored areas of 

the environment as re-planning frequency rises. 
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Figure  3.18: Comparison of ODW and FRC. 

 
The original dynamic window (ODW) method has also been compared with the FRC 

(Figure  3.18 (a)–(c)). From the overall score comparison (Figure  3.18 (a),(c)), the 

FRC clearly outperforms the ODW method. The ODW method’s performance is 

37%–74% lower than the FRC (Figure  3.18 (a)). A similar trend appears when 

navigation time is compared (Figure  3.18 (b),(c)). Navigation time is increased by a 

factor of up to 5.2 when the ODW method is used (Figure  3.18 (b)). The navigation 

time comparison can be misleading for higher obstacle densities since navigation 

difficulty is disproportionate to the maximum allowable navigation time. 

 
Figure  3.19 (a)–(c) compares the ODWDS method and the FRC. All comparisons of 

the overall scores are statistically significant with p-values less than 1% (Figure  

3.19 (c)). The FRC outperforms the ODWDS method by up to 27.5% (Figure  3.19 

(a)). Similar to the overall score comparison, the navigation time ratios are 
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statistically significant with p-values less than 1% (Figure  3.19 (c)). The navigation 

time of the ODWDS method is 10%–98% greater than the FRC. 
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Figure  3.19: Comparison of ODWDS and FRC. 

 
 
A comparison of the performance of the RFRC and FRC is shown in Figure  3.20 (a)–

(c). There is no statistically significant difference in the overall score comparison for 

Robot B (Figure  3.20 (c)). However, for Robot C there is a statistically significant 

difference in performance in 15% and 20% obstacle density environments (Figure  

3.20 (c)) indicating the RFRC is inferior (Figure  3.20 (a)). Additionally, the RFRC is 

inferior in 20% obstacle density environments for Robot A (Figure  3.20 (a),(c)). This 

result is expected since the additional features in the FRC are designed to improve 

performance in higher obstacle density environments. Navigation time comparison 

yields no statistically significant difference (Figure  3.20 (c)). There is still no 

statistically significant difference in navigation time if the level of significance is 

changed to 10% (Figure  3.20 (f)). 
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Figure  3.20: Comparison of RFRC and FRC. 

 
 

3.7 Physical Robot Experiments 
 
 

 
Figure  3.21: The tricycle robot Scratchy. 
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Limited experiments have been conducted on real robots. Reactive and hybrid 

reactive-deliberative navigation has been implemented on Itchy and Scratchy (Figure  

3.21), a pair of functionally equivalent tricycle robots in the VUW mechatronics 

group [15]. The MATLAB control algorithms were converted to Visual C++ to ensure 

compatibility with the existing rudimentary control system on the robots. 

 
Figure  3.22 shows a screen shot of the developed Visual C++ GUI. Controls for 

manually and autonomously driving the robots are on the left side of the GUI. The 

right side of the GUI has seven tabs for hardware, low-level control, robot settings, 

other robot state, reactive control, environment map and planning.  

 
Figure  3.23 displays the reactive control and environment map tabs. The environment 

map tab displays the position of the robot in the world. Robot specific settings files 

are required for network communication, sensing, low-level control, reactive control 

and planning. 

 

 
Figure  3.22: Screen shot of tricycle robot GUI. 
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Figure  3.23: Reactive control and environment map tabs. 

 
Table  3.4 lists the acceleration and velocity constraints determined from experimental 

data obtained from the pair of robots. Navigation experiments were conducted in an 

office corridor environment. The reactive control parameters tuned in the simulations 

required minimal adjustment.  

 
Table  3.4: Acceleration and velocity constraints. 

Parameter Numerical Value 
Linear acceleration/deceleration  ± 0.1 m/sec2 
Angular acceleration/deceleration ± 0.15 rad/sec2 
Maximum/minimum linear velocity ± 0.3 m/sec 
Maximum/minimum angular velocity ± 0.3 rad/sec 
 
Figure  3.24 shows the path travelled by one of the robots when reactive control is 

combined with deliberative control. In this experiment, the robot was required to 

navigate from one end of the corridor (4 m, 6 m) and perform a right turn to reach a 

goal location in the adjacent corridor (14 m, 4 m).  Orange lines in Figure  3.24 

illustrate the corridor walls. The robot successfully reached the goal while avoiding 

collision with the corridor wall. However, loss of localisation accuracy, actuator noise 

and sensor noise resulted in the robot having to perform several reversing manoeuvres 

to avoid collision. This indicates that the reactive control component can override 
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deliberative control to avoid collision. The black dots in Figure  3.24 represent points 

of the corridor walls sensed by the robot as it traversed through the corridor. 

 

 
 

 

3 5 7 9 11 13 15 16
2

4

6

8

x[m]

y[
m

]

start

goal

 
Figure  3.24: Tricycle robot hybrid reactive-deliberative navigation. 

 
 

3.8 Alternative Techniques 
 
The reactive control component of the developed hybrid-reactive deliberative 

navigation system is based on a combination of directional and velocity space 

methods. It is able to function on robots with different shapes and drive types in 

scattered obstacle environments. Additionally, it works with limited sensors such as 

infrared rangefinders and does not use complex algorithms. 

 
Originally, the dynamic window approach (DWA) [38], a velocity space method, was 

designed for and tested on a synchronous drive (holonomic) robot. In contrast, the 

system developed in this chapter can function on the differential drive and tricycle 

drive robots employed in this thesis that are non-holonomic in nature. The curvature 

velocity method [59] is similar to the dynamic window method. Its main limitation is 

that it assumes a circular shape for a robot. Many of the curvature calculations rely on 

this assumption making it unsuitable for non-circular shapes. In contrast, the 

developed reactive system can function on non-circular robots.   

 
The Vector Field Histogram (VFH) [58] directional method also assumes a circular-

shaped robot and is similar to the direction sensor component of the reactive system. 
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It does not account for the dynamics and kinematics of a robot. Enhanced versions of 

the VFH method (VFH+ [58] and VFH* [63]) are more complex and also assume 

circular shapes. This limits their use to circular robots unlike the reactive system 

developed in this chapter.  

 
In the Nearness Diagram (ND) navigation method [61], a robot’s kinematics, 

dynamics, and shape are accounted for. This method has three stages to achieve 

reactive navigation: a nearness diagram stage, a motion generator stage, and a shape 

corrector stage. Neither of these stages employs the DWA or a polar histogram. A 

combination of the ND method and DWA has been developed [41] but this adds more 

complexity to the existing ND method. In contrast, the developed reactive system 

employs only two stages thus reducing complexity for limited processing robots. 

Experiments are conducted in unknown, non-predictable, unstructured, cluttered, 

dense and complex environments. However, the robots employed in the experiments 

have sophisticated sensing such as 2D and 3D laser rangefinders and stereo cameras. 

This is unlike the developed reactive system that works with limited sensors such as 

infrared rangefinders albeit in less complex environments.  

 
The ego-kinodynamic space approach [62] can also function on robots with different 

shapes. A complex vehicle abstraction layer is employed to allow compatibility with a 

variety of obstacle avoidance techniques. Hence, there will still be at least two stages 

for reactive control using this method. Potentially, this offers no reduction in 

complexity when compared with the developed reactive system. The technique is 

tested using a potential field method [53] on a differential drive robot with a 2D laser 

sensor (wheelchair) in an office environment. Performance on other types of robots 

and in other environments is not evaluated. 

 
Difficult environments such as dense and cluttered are considered in the obstacle-

restriction method (ORM) [50]. This reactive control method also employs two stages 

to take into account a robot’s kinematics, dynamics, and shape. Free space is 

identified and sub-goals are selected in the first stage. The second stage computes 

motion towards the sub-goals while avoiding collisions. Identifying sub-goals requires 

sophisticated sensors with long range such as laser rangefinders.   
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There are many navigation systems that employ hybrid deliberative-reactive control. 

A convergent dynamic window approach [39] combines the dynamic window 

approach, artificial potential functions, model predictive control and control 

Lyapunov functions. This nonlinear method is designed and tested to work in known 

environments using a circular robot. On the other hand, the hybrid navigation system 

presented in this chapter also functions in unknown environments and performs on 

heterogeneous robots. Using non-linear control also adds computational complexity 

unlike the linear approach taken in this chapter. 

 
The global dynamic window approach [47] has been tested on a circular holonomic 

robot equipped with a laser rangefinder. An NF1 path planner is combined with the 

DWA to allow the robot to navigate in unknown environments. However, the method 

relies on periodic path planning (operates at 15 Hz). 

 
A hybrid of the NF1 path planner, DWA, and elastic band method [42] has been 

developed  to produce smooth and efficient obstacle avoidance for a differential drive 

tour guide robot with laser scanners. The robot is represented as a circular shape in the 

control algorithms and the method also relies on periodic path planning for successful 

navigation.  Hence, a computationally powerful robot (Power PC G3) is utilised for 

processing. Lookup tables are also utilised by the DWA which consumes additional 

memory.  

 
The A* path planner and DWA have been combined for navigation on a circular 

differential drive robot with a laser sensor [44]. This technique also relies on periodic 

path planning. Path planning is performed at every control cycle for navigation in 

unknown environments. Planning time has been improved by using the D* algorithm 

[46] with the DWA [45].   

 
In contrast to [42, 44, 45, 47] the hybrid navigation system developed in this chapter 

does not rely on periodic path planning or lookup tables and represents non-circular 

shapes. Periodic path planning can be problematic if a limited memory robot cannot 

store an entire map in its local memory (chapter 4). This makes the developed 

navigation system more suitable for heterogeneous limited capability robots.  
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A reduced dynamic window approach for polygonal robots [48] has been tested on 

differential drive robots equipped with laser rangefinders. In this method, the NF1 

planner in the planning stage provides a linear velocity for the model stage (a reduced 

dynamic window that selects an angular velocity). Hence, this method requires a 

model of the environment or requires replanning whenever an obstacle is discovered 

in unknown environments. In contrast, the navigation system presented in this chapter 

can avoid discovered obstacles without the need to replan and functions with limited 

range sensors.   

 
Another dynamic window based navigation system [49] has been tested on non-

circular, differential drive, and tricycle drive robots equipped with laser rangefinders. 

It uses lookup tables to store precalculated curvature related information. As 

mentioned previously, this can be memory expensive and is not utilised in the 

navigation system developed in this chapter. A wave front expansion algorithm 

generates intermediate way points for global navigation. This navigation system has 

only been tested in known environments. In contrast, the system presented in this 

chapter also functions in unknown environments. 

 
Unlike [42, 44, 47-49], the navigation system developed in this chapter  utilises a 

polar histogram with the DWA to allow robots with limited range sensors such as 

infrared rangefinders to achieve adequate goal directedness and obstacle avoidance. 

 
Lee-Johnson’s emotion based navigation system [52] is similar to the technique 

presented in this chapter. However, it is tailored for indoor navigation and is more 

complex utilising a computationally powerful circular shaped robot. The deliberative 

control component employs stimuli, moods, emotions, and several occupancy grid 

maps. In the reactive control component non-linear product objective functions are 

utilised rather than linear weighted sum objective functions. Complexity is further 

increased by utilising additional sub-components for directional and velocity control. 

In contrast, the hybrid navigation system presented in this chapter relies on a single 

occupancy grid map and has less complexity in the reactive control component. 

 
 



72                 Development of an Artificial Intelligence System for the Instruction 
and Control of Cooperating Mobile Robots 

 

3.9 Summary 
 

A hierarchical hybrid navigation system that can be employed on heterogeneous 

mobile robots with limited sensing (such as infrared rangefinders) has been developed 

and evaluated. It can be utilised on robots with limited memory, provided there is 

sufficient memory to store a global map locally on the limited memory robot. The 

presented navigation system is generic and can be employed when heterogeneity 

arises due to robot shape and drive type. 

 
It comprises both deliberative and reactive components for operation in known and 

unknown environments. The deliberative path planning component employs the A* 

algorithm to search an occupancy grid map. A two stage polar histogram and 

modified dynamic window method is utilized for the reactive system. This combines 

the benefits of directional methods and velocity space techniques for reactive 

navigation to produce a system that does not require periodic path planning.  

 
Simulation experiments demonstrate the navigation system’s effectiveness in known 

and unknown environments. The developed final reactive system (FRS) produces 

favourable results on the tested robot – obstacle density combinations. When the FRS 

is coupled with the deliberative system, navigation performance in known 

environments is improved by up to 14%. For navigation in unknown environments, 

the deliberative component does not affect performance significantly when compared 

with reactive navigation. This is a desirable result as it removes the dependence on 

periodic path planning for hybrid navigation in unexplored obstructed environments. 

Physical robot experiments using a tricycle drive robot demonstrate that the 

navigation system can function in the real world.  

 
A drawback of the system is that it utilises many empirically tuned parameters to 

achieve a reduced dependence on periodic path planning. The empirical tuning is also 

performed in several steps. However, a fixed set of empirically tuned parameters has 

been functional across the various robot and environment configurations in the 

simulation experiments. A method to automatically tune the various parameters could 

be explored as future work.  
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Employing the developed navigation system on limited memory robots requires an 

alternative path planning technique if the global map cannot be entirely stored locally. 

Chapter 4 presents a novel path planning strategy for limited memory robots that 

exploits the benefits of hierarchical heterogeneous multi-robot systems.   
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4 Memory Constrained Path Planning 
 

4.1 Overview 
 

In applications such as multi-robot exploration and mapping [1], storing an entire 

global map of a large environment at the required resolution on every robot can be 

memory and cost expensive when there are many robots.  In a hierarchical and 

heterogeneous multi-robot system [2] (chapter 1), computationally powerful robots 

(managers) can be employed for processor and memory intensive requirements. 

Limited computational ability robots (task executers or workers) can be employed 

primarily for tasks such as exploring within localised regions of a global environment.  

 
An essential part of exploration is the need for (task executer or worker) robots to 

navigate beyond locally discovered space.  Global path planning can be performed to 

enable navigation beyond local regions. Manager robots capable of storing the entire 

global map can apply standard search algorithms (section 2.2) to plan global paths for 

worker robots if they have sufficient processing resources available.  

 
However, due to limited processing ability or memory constraints, it may not be 

possible for a manager robot to perform global path planning and maintain full 

communication with all explorer robots. Additionally, the wireless communication 

bandwidth and range of the explorer robots themselves are limited. This means that a 

manager robot may be unable to maintain communication with a large number of 

worker robots continuously in real-time. 

 
Rather than rely on a single centralised path planning robot, global path planning can 

be forwarded to some of the worker robots.  However, this can be problematic since 

the memory constraints of the worker robots will likely not permit them to store the 

entire global map.    

 
Alternative global path planning strategies based on multi-tiered and memory efficient 

algorithms are discussed in section 2.5. However, these methods are not directly 

suitable for the hierarchical heterogeneous system comprising limited memory robots 

presented in this thesis. This chapter presents and evaluates an approach that is 
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significantly different from those reported in the literature. The technique involves 

initially dividing a large global map into smaller local maps based on the worker 

robot’s memory capacity. Following this, a two-tiered A* (memory constrained) 

algorithm that executes entirely on the worker robot, searches the local maps for a 

path to the destination.  

 

Lower-level A*
(Search local maps)

Global Map
(Set of local maps)

Global 
PathHigher-level A*

(Local map search 
sequence)

Local map 
path, cost

Two-tiered A*

Local map data

Local map 
indices

Start, 
Goal

 
 

Figure 4.1: Two-tiered A* algorithm overview. 
 
Lower-level and higher-level A* algorithms are combined to produce the two-tiered 

A* algorithm (Figure 4.1). The higher-level A* algorithm directs the lower-level A* 

algorithm to search the local maps. Pairs of neighbouring local maps are searched for 

a path using the lower-level A* algorithm. The path returned by the lower-level A* 

algorithm is stored in the robot’s local memory and is used by the higher-level A* 

algorithm as the cost of travelling through the local maps. A complete path from the 

start to the goal is obtained by combining the paths through the minimum cost local 

maps. 

  
The effect of varying the size and quantity of local maps for different global map 

sizes and obstacle densities is empirically investigated. Planning time, volume of data 

transmitted and path length are the performance metrics used in the experiments. 

While the approach is demonstrated on an occupancy grid environment 
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representation, it can be extended to other node based representations such as 

topological maps.  

 
Simulation experiments show that memory constrained path planning can achieve 

superior or comparable execution times to non-memory constrained planning if the 

global map size is significantly larger than the local map size. In other words, 

employing smaller local map sizes reduces memory constrained path planning time. 

Furthermore, employing multiple memories of smaller local map sizes potentially 

improves memory constrained planning time.   

4.2 Global and Local Map Representations 
 
Assume that a grid map representation of the global environment initially exists and 

has been constructed by taking the size of the robots into consideration. This global 

map has GMapRows  rows and GMapCols  columns. Thus, the total number of nodes in 

the global map is: 

 
 GMap GMap GMapNodes Rows Cols= ×  (4.1) 

 
The data stored for each node of the global map represents the probability that the 

region the node represents is occupied. Let the memory required to store the data for 

each node of the global map be MNodeMem  bytes. The value of MNodeMem  will vary 

depending on the precision of the data type used to store the probability information. 

 
To facilitate path planning, the two-tiered A* algorithm requires index and adjacency 

references for memory constrained portions of the global map. In the context of this 

chapter, a memory constrained portion of the global map is defined as a local map. 

Assume that each limited memory robot has LMapMaxTotMem  bytes available for local 

map storage. LMapMaxTotMem  is used to store to a total of (Q + 2) local map memories. 

A fixed quantity (or number) Q of local map memories is employed to store map data 

retrieved from the manager robot. An additional memory equivalent to the size of two 

local map memories is utilised by the lower-level A* algorithm (section 4.3) for 

storing a merged local map. Hence, the maximum available memory per local map 

LMapMaxMem  can be determined from (4.2). Each local map can store a maximum of 
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LMapMaxNodes  nodes derived from the maximum available local map memory 

LMapMaxMem as shown in (4.3).   

 
 ( 2)LMapMax LMapMaxTotMem Mem Q= +  (4.2) 
 
 LMapMax LMapMax MNodeNodes Mem Mem=  (4.3) 

 
Using LMapMaxNodes  and the dimensions of the global map, the local map index and 

adjacency references can be determined for the global map. The algorithm pseudo 

code is shown in Figure 4.2. Square-shaped local maps are generated although 

rectangular local maps can be produced if desired. 

 

 
 

Figure 4.2: Local map index and adjacency references algorithm pseudo code. 

 
The dimensions of each local map are stored as four variables in LMapDim . These 

variables correspond to the minimum and maximum row and column indices of the 

local map in the global map’s reference frame. Each local map also has between two 

and four neighbours and the indices representing these neighbours are stored in 

LMapNeighbours  as adjacency references. 

function partition_global_map( GMapRows , GMapCols , LMapMaxNodes ) 
1  % decompose maximum number of local map nodes into local 
     map row and column sizes 
2  ( ( ));LMap LMapMaxRowCol floor sqrt Nodes=  
3   % determine the number of row and column partitions of the 
     global map 
4  ( );P GMap LMapRows ceil Rows RowCol=  
5  ( );P GMap LMapCols ceil Cols RowCol=  
6   % generate the dimensions and neighbours of each local map 
7  1;LMapindex =  
8   for 1 to P PRow Rows=  and 1 to P PCol Cols=  
9  ( )  dimensions of the local map at ( , );LMap LMap P PDim index Row Col=  
10 ( )  neighbours of the local mapLMap LMapNeighbours index =  
     at ( , );P PRow Col  
11 1;LMap LMapindex index= +  
12 end; 
13 return LMapDim , ;LMapNeighbours  
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In Figure 4.3, nine local grid maps have been created by the partition_global_map 

function for a 40 nodes × 40 nodes global grid map with a maximum of 200 local map 

nodes. Cells with a dark blue colour represent obstacles and the bold black lines mark 

the boundaries of the local maps. Figure 4.4 details the corresponding index, 

dimensions and neighbours of each local map. The actual maximum number of nodes 

in the square local map after generating the local map index and adjacency references 

is given by: 

 
 LMap LMap LMapNodes RowCol RowCol= ×  (4.4) 

 
Thus, the actual maximum memory utilized to store the local map is given by: 

 
 LMap LMap MNodeMem Nodes Mem= ×  (4.5) 

 
The memory savings from using local maps for path planning is expected to vary 

depending on the size of the global and local maps as well as the structure of the 

environment. 

 
 
 
 
 

 
 

Figure 4.3: Global map divided into local maps. 
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Index: 1
Dimensions: 
[1 14 1 14]
Neighbours: [2 4]

Index: 2
Dimensions:
 [1 14 15 28]
Neighbours: [1 3 5]

Index: 3
Dimensions: 
[1 14 29 40]
Neighbours: [2 6]

Index: 4
Dimensions: 
[15 28 1 14]
Neighbours: [1 5 7]

Index: 5
Dimensions: 
[15 28 15 28]
Neighbours: [2 4 6 8]

Index: 6
Dimensions: 
[15 28 29 40]
Neighbours: [3 5 9]

Index: 7
Dimensions: 
[29 40 1 14]
Neighbours: [4 8]

Index: 8
Dimensions: 
[29 40 15 28]
Neighbours: [5 7 9]

Index: 9
Dimensions: 
[29 40 29 40]
Neighbours: [6 8]

 
 

Figure 4.4: Local map indices, dimensions and neighbours. 
 

4.3 Lower-Level A* Algorithm 
 

The lower-level A* algorithm is a modification of the standard A* algorithm [3] that 

includes node occupancy probabilities in cost calculations and is similar to the path 

planning method presented in section 3.2.2. The algorithm searches for a path within a 

merged local map that is created from two adjacent local maps. One of these maps is 

the minimum cost local map (section 4.5), while the other adjacent map is one of four 

neighbouring local maps (section 4.2 and section 4.4). 

 
A merged local map is searched to ensure that a robot can traverse between local 

maps. The start location, goal location and merged local map are provided by the 

higher-level A* as inputs to the algorithm. Similar to the standard A* algorithm, an 

eight-direction search is performed within the merged local map to find a path to the 

goal. The four adjacent and four diagonal nodes to the node under evaluation are the 

eight-directions that are searched. 

 
Inspired by frontier-based exploration [4], the g(x) and h(x) costs of the A* algorithm 

have been modified to account for a varying degree of occupancy probability pi 

ranging from 0.05 to 0.95. Nodes whose occupancy probabilities exceed a threshold 

PT are eliminated from the cost calculation. The cost of all other nodes is linearly 
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dependent on a cost multiplier cm. The reference index of the local map adjacent to the 

minimum cost map, indexLMap, corresponds to node x’. Generally, a path is previously 

obtained to an exit point (section 4.5) in the minimum cost local map. Hence, the 

adjacent node x’ tends to dominate the search cost within the merged local map. Thus 

the g(x) and h(x) costs are expressed as g(x,x’) and h(x,x’) respectively for the merged 

local map (or neighbour local map).  

 

 
( , ') ( , , '). ( , ') if ( , ')

( , ')
otherwise

par n par m i Tg x x d x x x c x x p x x P
g x x

+ <
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 (4.6) 

 

 
( , , '). ( , ') if ( , ')

( , ')
otherwise

n goal m i Td x x x c x x p x x P
h x x

<
= ∞

 (4.7) 

 

The unit interval cost multiplier cm(x,x’) takes into account the occupancy probability 

pi(x,x’) of node x inside local map x’. It also includes a mean occupancy probability 

cost cprc(x,x’) representing a robot clearance of r nodes around node x within local 

map x’. Weights wpi and wprc control the balance between the two inputs and are set to 

0.5 for equal preference. 

 
 ( , ') 1 ( , ') ( , ')m pi i prc prcc x x w p x x w c x x= + +  (4.8) 

 1( , ') ( , ')
r

prc i i
i

c x x p x x
r

= ∑  (4.9) 

 
The overall cost f(x,x’) is the sum of the g(x,x’) and h(x,x’) costs. 

4.4 Higher-Level A* Algorithm 
 

The higher-level A* algorithm is based on the standard A* algorithm [3]. It 

determines the order in which the local maps are searched. Each local map’s  

reference index indexLMap (section 4.2) represents its node x’. An initial start location 

and a final goal location, LMapDim  and LMapNeighbours  are input to the higher-level 

A* algorithm. The initial start and final goal locations are converted to their 

equivalent initial and final local map nodes. Local map data are retrieved from the 

high memory capacity task manager robots and stored in a fixed number of local map 

memories during the path planning process. 

 



82                 Development of an Artificial Intelligence System for the Instruction 
and Control of Cooperating Mobile Robots 

 

 

The higher-level A* algorithm performs a four-direction search where each of the 

neighbouring local maps around the minimum cost local map is merged with the 

minimum cost local map to produce a merged local map. The merged local map, the 

end point of the path through the minimum cost local map (start location), and a 

desired exit point from the merged local map (goal location) is passed into the lower-

level A* algorithm. The path returned by the lower-level A* algorithm, *( ')LLAPath x , 

is stored with reference to the corresponding neighbour of the minimum cost local 

map. Additionally, the total cost of travel through the neighbour local map f(x,x’) is 

retained with the path. 

 
Two cost methods (f1’(x’) and f2’(x’)) have been employed to search the local maps 

for a global path. The two methods arise since cost of travelling through the 

neighbour of the minimum cost local map can be evaluated in two ways, g1’(x’) and 

g2’(x’). In cost method 1 (g1’(x’)), the length of *( ')LLAPath x , *( ( '))LLAlength Path x , 

determines the cost of travelling through the neighbouring local map. Alternatively, 

cost method 2 (g2’(x’)) retains the total cost of travel through the neighbour local map 

f(x,x’) as the cost of travel. The planning times, volume of data transmitted and path 

lengths of the two cost methods can differ and are compared in section 4.6.  

 
The overall cost of travelling across the neighbour local map (g1’(x’) or g2’(x’)) 

depends on the cost of travel within the neighbour local map ( *( ( '))LLAlength Path x  or 

f(x,x’)) and the lowest cost path from the starting local map to the parent local map 

(g1’(x’par) or g2’(x’par)) (4.10),(4.11). The cost of travelling to the final goal from each 

local map, h’(x’) or dn(x’,x’goal), is estimated as the Euclidean distance between the 

last node of the path through the local map and the final goal (4.12). Total costs f1’(x’) 

and f2’(x’) are shown in (4.13),(4.14). Hence, (4.10), (4.12) and (4.13) are employed 

in cost method 1, while (4.11), (4.12) and (4.14) are utilised in cost method 2. 

 
 1 1 *'( ') '( ' ) ( ( '))par LLAg x g x length Path x= +  (4.10) 
 
 2 2'( ') '( ' ) ( , ')parg x g x f x x= +  (4.11) 

 
 '( ') ( ', ' )n goalh x d x x=  (4.12) 
 
 1 1'( ') '( ') '( ')f x g x h x= +  (4.13) 
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 2 2'( ') '( ') '( ')f x g x h x= +  (4.14) 

 

4.5 Two-Tiered A* Algorithm 
 

Combining the lower-level and higher-level A* algorithm’s yields the two-tiered A* 

algorithm. A flowchart of the main steps of the two-tiered A* algorithm is presented 

in Figure 4.5. Figure 4.6 is a more detailed description of the planning algorithm. The 

complete path is reconstructed in a similar manner to that of the standard A* 

algorithm. The main difference is that paths through local maps are combined to form 

a complete path from the initial start to the final goal instead of combining nodes to 

produce a path from the start to the goal. There is a small amount of overlap between 

the paths during reconstruction that is easily removed by comparing the start and end 

of adjacent partial paths. 

 
To determine a set of exit points for each local map, the perimeter of the local map is 

scanned to identify free space clusters. If a free space cluster is larger than the robot’s 

diameter (or length or width), then three safe exit points are determined for the 

cluster: one at either end of the cluster and one at the centre of the cluster. The exit 

points at either extreme of the cluster have a clearance equivalent to the robot’s 

radius. For example, in Figure 4.7 each node is equivalent to the robot’s radius. 

Hence, a minimum of three unoccupied cells (nodes) is required to produce a free 

space cluster. The red dots represent exit points within each free space cluster. It is 

possible for all three exit points to correspond to the same point (single red dot in the 

lower side free space cluster of Figure 4.7). In such a case, only the single unique exit 

point is retained for evaluation. Similarly, the three exit points can be mapped to two 

unique exit points (two red dots in upper left free space cluster of Figure 4.7) and, 

only two exit points are retained for evaluation. 

 
Each exit point’s utility is determined as a weighted sum of its distance to the final 

goal, EP GoalDist − , and its distance from last node of the path through the parent local 

map, EP ParDist −  (4.15). The weights k3 and k4 are set to 0.5 for equal preference. The 

exit points are then ranked in ascending order of utility. These ranked exit points are 
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converted to the merged local map’s reference frame to be used by the lower-level A* 

algorithm. 

Input Start & Goal

Goal reached?
Yes

Yes

No

No

Retrieve a neighbour of the 
minimum cost local map from local 

memory or task manager

Find index of minimum cost local 
map

Retrieve minimum cost local map 
data from local memory or task 

manager

Create a merged local map

Find a set of exit points from the 
merged local map

Find a path to an exit point

Store/update the f’, g’ & h’ costs of 
the neighbour local map

Store/update the path through the 
neighbour local map

No Path exists?

Back tracking algorithm

Reconstruct global path from start to 
goal

Output global path

Back track?

Exit

Yes

No

A

B

 
 

Figure 4.5: Flowchart of the two-tiered A* algorithm. 
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Figure 4.6: Two-tiered A* algorithm description.

Input initial start location, final goal location, LMapDim ,and LMapNeighbours . 
Determine the initial and final local map references. 
Set initial local map cost g’(x’) to 0. 
Determine the initial local map h’(x’) and f’(x’) costs. 
Store initial local map reference in the open list. 
While the open list is not empty and a path to the final goal is not found 
Find the minimum cost local map reference on the open list, remove it from the open 
list and add it to the closed list. 
    If the minimum cost local map data does not exist locally 
        If there is at least one local map memory free  
            Retrieve data from the task manager robot(s).  
        Else  
            Remove the local map with the highest cost from local memory.  
            Retrieve data from the task manager robot(s). 
    For all neighbours of the minimum cost local map not on the closed list 
        If the neighbour local map data does not exist locally 
            If there is at least one local map memory free  
                Retrieve data from the task manager robot(s).  
            Else  
                Remove the local map with the highest cost from local  
                memory. 
                Retrieve data from the task manager robot(s). 
        If exit points have not been determined for the neighbour local map 
            Find a set of safe exit points on the boundaries of the neighbour  
            local map and rank them.  
        If the neighbour local map exit points set is not empty and the boundary 
    between the two local maps is safe to pass 
            Create a merged local map from the minimum cost local map  
            and the neighbour local map data. 
            Set start location to last node of path through minimum cost local map. 
            Set goal location to first exit point. 
            While a path is not found and all exit points haven’t been checked 
                Find a path in the merged local map from the start location to  
                the goal location using the lower-level A* algorithm. 
                Set goal location to next unchecked exit point. 
            If a path is found 
                Determine/Update the g’(x’), h’(x’), and f’(x’) costs of the neighbour local 
         map.  
                Determine/Update the parent of the neighbour local map.  
                Store/Update the path as the path through the neighbour local map. 
                Add the neighbour local map reference to the open list. 
If a path to the final goal is found 
    Reconstruct and return a complete path from the initial start to the final goal. 
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minimum cost local map from local 
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Create a merged local map
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merged local map

Exit

Exit Point

Free Space 
Cluster 

 
Figure 4.7: Free space clusters and exit points. 

 
 3 4EP EP Goal EP ParUtility k Dist k Dist− −= × + ×  (4.15) 

 
The boundary between the minimum cost local map and each of its neighbours needs 

to be checked for safe traversal. To determine the boundary (or border) row or column 

of neighbouring local maps, their dimensions are compared. The boundary rows or 

columns of the minimum cost map and its neighbour are then checked incrementally 

to determine if a passage greater than the robot’s diameter exists. If such a passage 

exists then checking is terminated and the boundary is deemed safe to pass. The 

merged local map is created by comparing the dimensions of the neighbour local map 

with the minimum cost map for correct positioning (i.e. top, bottom, left or right). 

 
In some initial tests, especially when an entire subsection of a local map is blocked 

due to large obstacles, the higher-level algorithm failed to find a path that existed. 

This is due to the nature of the A* algorithm as it does not re-evaluate local maps 

stored in the closed list. To deal with this situation a back tracking method has been 

added to the algorithm.  

 
Figure 4.8 details the back tracking procedure. When the open list becomes empty and 

a complete path to the final goal has not been found (Figure 4.5), the partial path to 

the final goal is stored in memory. Then, all the local map references which are in the 

closed list but not in the partial path are removed from the closed list. Following this, 
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the algorithm back tracks to the parent local map of the last local map on the optimal 

partial path. This parent local map is removed from the closed list and placed in the 

open list. Finally, the last local map in the optimal partial path is removed from the 

parent local map’s neighbour list and also from the closed list. If the algorithm back 

tracks to the very first local map that was searched then this means that a path to the 

final goal does not exist and the search is terminated. 

Yes

No

Remove all local map indices not on 
the partial path from the closed list

Reconstruct new partial path

Overwrite closest partial path data 
with new partial path data

Remove from the closed list, the 
local map index (in partial path) with 

minimum cost to the goal 

Get parent local map index of the 
minimum cost local map

Set parent local map index to be the 
new current local map index for 

evaluation

Put the parent local map index on 
the open list and remove it from the 

closed list

Remove the minimum cost local 
map index from its parent’s list of 

neighbours

A

B

New partial path closer 
to goal?

 
Figure 4.8: Back tracking algorithm flowchart. 
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4.6 Simulation Experiments 
 
The two-tiered (memory constrained) A* path planner has been implemented and 

evaluated with Matlab 2007a. Randomly positioned obstacles at 5%, 10%, 15%, 20% 

and 25% densities have been populated in rectilinear global worlds of six different 

sizes. A grid map representation of these global worlds at 10 cm resolution resulted in 

global maps ranging from 104 nodes to 5×106 nodes. Assuming eight bytes per node, 

the global maps require 78 KB to 38.15 MB of memory. It is arbitrarily assumed that 

a 15 cm radius circular worker robot is required to travel inside each world. Eight 

local map sizes (64 KB, 128 KB, 256 KB, 512 KB, 1 MB, 2 MB, 4 MB, 8 MB) have 

been tested for each global map size. A wireless communication link is assumed to be 

present between the task manager and worker robots.  

 
Thirty worlds have been generated and tested for the 5% to 20% obstacle density 

global worlds. At 25% obstacle density, thirty global worlds have been evaluated for 

the smaller global map sizes (78 KB, 390 KB, 781 KB, 3.81 MB). Ten worlds are 

evaluated at 25% obstacle density for the larger global map sizes (7.63 MB and 38.15 

MB) due to lengthy planning times. Experiments in each world have been repeated 

ten times. For each test, a path is planned from a start location (S) near the top left 

corner of the global map to a goal location (G) near the bottom right corner of the 

map. Planning time, volume of map data received and path length have been 

evaluated in the experiments. Three quantities of local map memories (one, five and 

fifteen) have been evaluated for the worker robots. Additionally, the two cost methods 

presented in section 4.4 have been tested. 

 
In the results figures, each bar represents the average value and the corresponding 

error bar illustrates standard deviation. A paired sample t-test with two-sided p-values 

is used to compare the results of employing the various approaches. Comparisons are 

statistically significant if p-values are less than or equal to 0.05 (5% statistical 

significance level). Performance ratios are computed to determine superiority or 

inferiority by dividing the results obtained from one method by the results obtained 

from another method. 
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4.6.1 General Trends of Local Map Size and Global Map Size 
Variation 

 
Figure 4.9 – Figure 4.14 illustrate the results of employing only path length for cost 

calculations (cost method 1) in the higher-level A* component of the memory 

constrained A* algorithm. The local map memory quantity was set to one for the 

results of Figure 4.9 – Figure 4.14. In Figure 4.9 – Figure 4.14, the last set of bars in 

each graph (Inf) illustrates non-memory constrained A* planning data. Note that the 

vertical scale of planning time changes as the global map size is varied in Figure 4.9 – 

Figure 4.14.  
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Figure 4.9: Results for planning in a 78 KB global map with 1 local map memory 
using cost method 1. 

 
As expected, planning time is generally proportional to obstacle density for all global 

map sizes (Figure 4.9(a) – Figure 4.14(a)). Figure 4.12(a) – Figure 4.14(a) depict that 

this trend is particularly evident when the local map size (64 KB, 128 KB) is much 

smaller than the global map size (3.81 MB, 7.63 MB, 38.15 MB). This trend is also 

evident as the quantity of local map memories is varied to five or fifteen. 
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Smaller local map sizes (64 KB, 128 KB) tend to produce lower planning times than 

larger local map sizes if the global map is at least 3.81 MB and cannot be entirely 

stored in local memory (Figure 4.12(a) – Figure 4.14(a)). This suggests that using 

smaller local map sizes can be more efficient if the entire global map cannot be stored 

locally (i.e. when the memory available for local map storage is smaller than the 

global map size). This validates the approach.  

 

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

0.5

1

1.5

2

2.5
Planning Time

Ti
m

e 
(s

ec
)

Local Map Size

 

 

5%
10%
15%
20%
25%

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

100

200

300

400

500

600

700
Map Data Received

D
at

a 
(K

B
)

Local Map Size

 

 

5%
10%
15%
20%
25%

 
(a)              (b) 

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB Inf
0

50

100

150

200

250

300

350

400
Path Length

N
od

es

Local Map Size

 

 

5%
10%
15%
20%
25%

 
      (c) 

Figure 4.10: Results for planning in a 390 KB global map with 1 local map 
memory using cost method 1. 

 
As the global map size is increased, smaller local map sizes (64 KB, 128 KB) receive 

a lower volume of map data than larger local map sizes if the global map is at least 

3.81 MB and cannot be entirely stored in local memory (Figure 4.12(b) – Figure 

4.14(b)). This indicates that a reduced search space may have contributed towards 

planning time reduction. The reduced search space may affect the obstacle clearance 

quality of path planning, particularly in higher obstacle density (20%, 25%) 

environments. 
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Figure 4.11: Results for planning in a 781 KB global map with 1 local map 
memory using cost method 1. 
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Figure 4.12: Results for planning in a 3.81 MB global map with 1 local map 
memory using cost method 1. 
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Figure 4.13: Results for planning in a 7.63 MB global map with 1 local map 
memory using cost method 1. 
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Figure 4.14: Results for planning in a 38.15 MB global map with 1 local map 
memory using cost method 1. 
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While Figure 4.11(c) – Figure 4.14(c) show shorter memory constrained paths at 

higher obstacle densities when smaller local map sizes are employed, this does not 

necessarily indicate superiority. On the other hand, a reduction in the volume of map 

data received can minimise communication latency (which is excluded in the planning 

time graphs). The trends present in the one local map memory experiments are also 

evident if the quantity of local map memories is changed to five or fifteen. 

 
All of the trends discussed above for cost method 1 are also present when the total 

cost of travel through a local map (f(x,x’)) is employed for cost calculations in the 

higher-level A* algorithm (cost method 2).  

 

4.6.2 Comparison of Cost Method 1 and Cost Method 2 
 
The goal of the memory constrained planning method is to be efficient when the 

global map size is much larger than the local map size. Hence, performance in the 

larger global maps is statistically compared for both cost methods (Figure 4.15 – 

Figure 4.17). Cost method 2 data is divided by cost method 1 data to calculate 

planning time, map data received and path length ratios. For all data types, a ratio less 

than unity indicates superiority of cost method 2. A statistically significant 

comparison has a p-value threshold of 0.05 (5%). 

  
Figure 4.15(a),(d), Figure 4.16(a),(d) and Figure 4.17(a),(d) reveal that planning time 

increases by 16% – 65%, 25% – 160%, and 40% – 280% respectively when cost 

method 2 is employed for smaller local map sizes (64 KB, 128 KB, 256 KB). There is 

also a statistically significant increase in planning time when 512 KB and 1 MB local 

maps are employed in 38.15 MB global worlds (Figure 4.17(a),(d)). The volume of 

map data received for smaller local map sizes (64 KB, 128 KB, 256 KB, 512 KB) 

increases by 5% – 90%, 20% – 70% and 40% – 360% when cost method 2 is 

employed in 3.81 MB (Figure 4.15(b),(d)), 7.63 MB (Figure 4.16(b),(d)) and 38.15 

MB (Figure 4.17(b),(d)) global worlds respectively. This suggests that the second cost 

method has an increased search space when smaller local map sizes are used. It also 

means that the second cost method has greater data communication delay costs if the 

global map size is larger than the local map size. 
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Figure 4.15: Comparison of the two cost methods in 3.81 MB worlds. 
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Figure 4.16: Comparison of the two cost methods in 7.63 MB worlds. 
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Figure 4.17: Comparison of the two cost methods in 38.15 MB worlds. 

 
There is no statistically significant difference in the path lengths of the two cost 

methods for majority of the tested configurations (Figure 4.15(c),(d), Figure 
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4.16(c),(d) and Figure 4.17(c),(d)). This indicates that cost method 1 is preferred if 

communication delay and planning time is to be minimised. 

4.6.3 Comparison of Overall Execution Time in the Three Largest 
Global Worlds 

 
Figure 4.18 – Figure 4.20 shows a comparison of the ratios of memory constrained 

and non-memory constrained overall planning times (inclusive of data communication 

delay) for the three largest global map sizes. Cost method 1 is employed in these 

experiments. Again, the larger global map sizes are selected as they demonstrate the 

purpose of memory constrained planning more appropriately. Data communication 

delay consists of a number of factors such as processing delay, queuing delay, 

transmission delay and propagation delay [5]. While processing delay and 

propagation delay are generally negligible, queuing delay can be ignored if the traffic 

intensity [5] is minimal.  

 
A 54 MBit/sec 802.11g wireless communication is arbitrarily assumed to exist on the 

high powered manager robot for map data transmission [6]. The low powered worker 

robots are assumed to have 802.11b devices (maximum transmission rate of 

11 Mbit/sec) as these are now low cost and easily available.  However, as the worker 

robots have limited processing capabilities and may encounter periods of inability to 

communicate with the managers, or face other errors, it is assumed that the effective 

data transmission rate is halved to approximately 5.5 MBit/sec.  

 
Assuming there are only few mother nodes (approximately 2–3) for memory 

constrained planning, queuing delay is expected to be negligible if the local map size 

is small (64 KB to 256 KB). Moreover, Figure 4.9(a) – Figure 4.14(a) indicate that 

using smaller local map sizes reduces planning time if the entire global map cannot be 

stored locally. If larger local map sizes (512 KB to 8 MB) are employed, queuing 

delay will become significant thus further increasing the overall planning time. 

Hence, data communication delay is represented solely as transmission delay in 

Figure 4.18 – Figure 4.20 where only smaller local map sizes (64 KB to 256 KB) are 

analysed. The ratio of memory constrained and non-memory constrained overall 

planning time (Figure 4.18 – Figure 4.20) is calculated by dividing memory 

constrained data by non-memory constrained data. Superiority is denoted by a ratio 
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less than unity. A statistically significant comparison has a p-value less than 0.05 

(5%). 
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Figure 4.18: Overall execution time comparison in 3.81 MB global worlds 
employing one (a), five (b) and fifteen (c) local map memories. 

 
In 3.81 MB worlds (Figure 4.18), memory constrained path planning yields inferior 

performance at lower obstacle densities (≤ 15%). At higher obstacle densities 

(≥ 20%), memory constrained planning is generally superior or comparable to non-

memory constrained planning (Figure 4.18). The use of exit points in memory 

constrained planning is likely to reduce its search space at higher obstacle densities 

(≥ 20%) resulting in superior or comparable performance. On the other hand, 
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inferiority at lower obstacle densities (≤ 15%) can be attributed to a larger overall 

search space in comparison to non-memory constrained planning. Similar results are 

obtained in 7.63 MB worlds (Figure 4.19). The key difference is that the ratio of 

memory constrained to non-memory constrained data is lower. 
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Figure 4.19: Overall execution time comparison in 7.63 MB global worlds 
employing one (a), five (b) and fifteen (c) local map memories. 

 
The memory constrained algorithm achieves superior or comparable execution times 

to the non-memory constrained method in 38.15 MB worlds for 64 KB and 128 KB 

local map sizes (Figure 4.20). For a local map size of 256 KB, the memory 

constrained algorithm is inferior at lower obstacle densities (≤ 15%). This inferiority 
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is likely to be due to the overall search space for memory constrained planning being 

greater than the non-memory constrained search space. On the other hand, the use of 

exit points in memory constrained planning is likely to reduce its search space at 

higher obstacle densities (≥ 20%) resulting in superior performance. 
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Figure 4.20: Overall execution time comparison in 38.15 MB global worlds 
employing one (a), five (b) and fifteen (c) local map memories. 

 
From the analysis of Figure 4.18 – Figure 4.20, memory constrained path planning is 

capable of achieving superior or comparable execution times to non-memory 

constrained planning if the global map size much larger than the local map size. 
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4.6.4 Comparison of Overall Execution Time Using the Three 
Smallest Local Map Sizes 
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Figure 4.21: Overall execution time of memory constrained planning relative to 
equivalent quantities of 64 KB local maps in 3.81 MB (a), 7.63 MB (b) and 

38.15 MB (c) global worlds. 
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Figure 4.21 illustrates the overall execution time of memory constrained planning 

relative to equivalent quantities of 64 KB local maps for the three largest global map 

sizes (3.81 MB, 7.63 MB and 38.15 MB). In the comparison, the larger local map 

(128 KB and 256 KB) data are divided by the 64 KB local map data. Superiority of 

the 64 KB data is denoted by a ratio greater than unity. A statistically significant 

comparison has a p-value threshold of 0.05 (5%). It is clearly evident that the 64 KB 

local map size achieves a superior overall execution time regardless of global map 

size or local map quantity. Hence, a smaller local map size reduces the overall 

execution time of memory constrained path planning. 

 

4.6.5 Comparison of Overall Execution Time Using Various Local 
Map Quantities 

 
A comparison of the ratios of overall memory constrained planning times (inclusive 

of communication latency) in 38.15 MB worlds as the quantity of local map memories 

is varied is shown in Figure 4.22. The largest global map size is selected since it 

demonstrates the purpose of memory constrained planning most appropriately.  

 
In all comparisons, the ratio is computed by dividing the larger local map quantity 

data by the smaller local map quantity data. Superiority is denoted by a ratio less than 

unity. A statistically significant comparison has a p-value threshold of 0.05 (5%). 

Figure 4.22 (a),(d) reveals no statistically significant difference in overall planning 

time when five local map memories are employed instead of one. There is also no 

statistically significant difference in overall planning time when fifteen local map 

memories are employed instead of five (Figure 4.22 (b),(d)). When fifteen local map 

memories are employed instead of one a statistically significant difference exists at 

5% obstacle density when 64 KB local maps are employed (Figure 4.22 (c),(d)). 

Figure 4.22(d) illustrates that as the local map quantity is increased, the overall 

execution time ratios and corresponding p-values are lowered for 64 KB local map 

sizes. This is a desirable result as it indicates that maintaining multiple smaller sized 

local map memories potentially improves memory constrained planning time. The 

potential improvement is due to a lower volume of map data being transmitted when 

multiple local map memories are employed. 
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Figure 4.22: Overall execution time comparison of memory constrained planning 

in 38.15 MB global worlds with 1 and 5 local map memories (a), 5 and 15 local 
map memories (b), and 1 and 15 local map memories (c). 

 

4.6.6 Sample Paths 
 
Figure 4.23 and Figure 4.24 illustrate sample paths obtained when a 64 KB local map 

is employed in memory constrained path planning. Note that these figures have 

varying magnification due to differing global map sizes. Generally, the memory 

constrained paths are similar for either cost method. Figure 4.24 has a closely 

matching path for both cost methods when memory constrained planning is employed. 



104                 Development of an Artificial Intelligence System for the Instruction 
and Control of Cooperating Mobile Robots 

 

 

The increase in volume of map data received when cost method 2 is employed (Figure 

4.15(b),(d), Figure 4.16(b),(d) and Figure 4.17(b),(d)) does not justify its use if 

minimising communication delay is important.  

 

 
Figure 4.23: Path comparison in a 5% obstacle density 38.15 MB global world 

employing 64 KB local maps. 
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Figure 4.24: Path comparison in a 15% obstacle density 7.63 MB global world 

employing 64 KB local maps. 
 

4.7 Alternative Techniques 
 
The main purpose of the work presented in this chapter has been to devise a strategy 

that allows limited memory robots to plan paths in large environments. A regular grid 

map representation is utilised as an example because of its simplicity and usability in 

a range of environments. Additionally, it is possible to maintain a single grid map that 

can be utilised by multiple heterogeneous robots. In section 4.6, the aim is to compare 

memory constrained and non-memory constrained path planning based on adaptations 

of the A* algorithm. Planning time and the volume of data transmitted (which can be 

translated to a component of the overall planning time) are the main performance 

metrics. 

 

Non-memory constrained
Memory constrained cost method 1
Memory constrained cost method 2
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In this chapter, the heuristic cost dn(x,xgoal,x’) (4.7) is represented by Manhattan 

distance. Alternatively, this could be represented using Euclidean distance. Manhattan 

distance is less computationally complex than Euclidean as is does not rely on square 

and square root calculations. A disadvantage of using Manhattan distance is visible in 

Figure 4.23, where the non-memory constrained path approaches the bottom of the 

global map and then travels right to reach the goal locations. A closer path to the 

diagonal of the global map can be achieved using Euclidean distance. This 

disadvantage of using Manhattan distance is less visible in the memory constrained 

methods due to division of the global environment. Regardless of using Manhattan or 

Euclidean distance, the ratios of memory constrained planning to non-memory 

constrained planning times are expected to be similar. 

 
The use of the developed two-tiered approach is not limited to regular grid map 

environments or the A* search algorithm. Other node based map representations such 

as topological and quadtree maps [7] do not have fixed memory requirements (albeit 

consume less memory than a grid map in equivalent environments). They may also 

become large when compared with the available memory on a limited robot and can 

utilise a method similar to that presented in this chapter.  By using equivalent 

replacements to the A* algorithm cost functions, alternative path planning algorithms 

such as Dijkstra’s algorithm [8], wave propagation (such as NF1) [9], or spreading 

activation [10] can be used with the grid map node based representation employed in 

this chapter.  

 
Dijkstra’s algorithm has a greater search space than A* algorithm.  Hence, the 

planning time of the A* algorithm will generally be less than Dijkstra’s algorithm. 

However, Dijkstra’s algorithm can compute the optimal path from all grid elements to 

the goal in a single run. This enables it to find the optimal path to all exit points in a 

single iteration although utilising more memory than the A* algorithm for storing this 

information. The ratios of memory constrained planning to non-memory constrained 

planning times are expected to be similar to or better than an A* version. This is due 

to the memory constrained and non-memory constrained versions of Dijkstra’s 

algorithm having similar search spaces. The path lengths of A* and Dijkstra’s 

algorithms are expected to be the same with the selection of appropriate (monotone) 

heuristics.  
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Similar to Dijkstra’s algorithm, wave propagation and spreading activation methods 

can find the optimal path to all exit points in a single iteration. These methods 

generally have a greater search space than the A* algorithm resulting in greater 

planning time. It is expected that the ratios of memory constrained planning to non-

memory constrained planning for these methods will be similar to or less than the 

results presented in this chapter. This is due to the memory constrained and non-

memory constrained versions of the algorithms having similar search spaces and the 

computing of paths to exit points in a single iteration. Similar path lengths to the A* 

algorithm are expected using the wave propagation and spreading activation methods. 

 
The D* algorithm [11] is a variant of the A* algorithm. It computes the optimal path 

from every location to the goal. Hence, the D* algorithm converts the A* algorithm 

from a single-source shortest path algorithm into an all-paths algorithm. The D* 

algorithm is designed for continuous replanning. However, this is computationally 

expensive and time consuming. It is not practical for robots with processing and 

memory limitations. It is also impractical to use the D* algorithm with the two-tiered 

strategy presented in this chapter since local memories are continuously overwritten 

with new data from other parts of the global world. 

 
None of the methods reviewed in section 2.5 have addressed the problem of global 

path planning utilising limited memory robots that cannot store an entire global map 

locally (on the robot). These methods cannot be used to plan paths on limited memory 

robots unlike the method presented in this chapter which takes advantage of 

hierarchical heterogeneous multi-robot systems. The general approach taken in 

robotics has been to use a more computationally powerful robot when the need arises. 

However, this may not be ideal in a heterogeneous system that comprises many 

limited robots. 

 
An alternative to the decentralised path planning method proposed in this chapter is to 

rely on a computationally powerful robot (manager) for centralised planning. Such a 

technique will outperform the memory constrained method developed in this chapter. 

However, as highlighted in section 4.1, it may not be possible for the computationally 

powerful robot to perform global path planning and maintain full communication with 

all limited memory robots. An additional computationally powerful robot dedicated to 
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path planning could be employed. However, this costs more money and this additional 

robot could malfunction. In such scenarios, the memory constrained technique 

developed in this chapter can be utilised to enable limited memory robots to plan 

global paths. 

 

4.8 Summary 
 

This chapter has presented and evaluated a novel method for path planning that 

utilises memory constrained robots in hierarchical heterogeneous multi-robot systems. 

Rather than relying on a single computationally powerful robot, global path planning 

can be decentralised by allowing memory restricted robots to utilise the memory of a 

computationally powerful robot. Since the global map cannot be completely stored in 

a memory constrained robot, it is divided into smaller local maps based on the 

memory constrained robot’s memory capacity. The local maps are sequentially 

searched using a two-tiered A* algorithm that executes entirely on the memory 

constrained robot. However, if a limited memory robot is capable of storing the entire 

global map locally, the path planner becomes identical to a non-memory constrained 

approach. This decentralised global path planning approach relies on communication. 

Thus it incurs data transmission delays and has a finite range of operation.  

 
Utilising 802.11g wireless communication devices for managers and 802.11b devices 

for workers, memory constrained path planning is capable of achieving superior or 

comparable execution times to non-memory constrained planning if the local map size 

is much smaller than the global map size. Employing 64 KB or 128 KB local maps in 

a 38.15 MB global map produced superior or comparable execution times to non-

memory constrained planning. At a resolution of 10 cm, a 38.15 MB grid map 

corresponds to an area of approximately 225 m × 225 m. This would require 

additional communication relay nodes or the computationally powerful robot storing 

the global map to be mobile and relocate if path replanning is needed. By utilising 

802.11n devices, communication range and latency can be improved. 

 
 Regardless of the global map size, memory constrained path planning time can be 

reduced if smaller sized local maps are utilised. This can be attributed to a reduction 

in search space for planning under the guidance of exit points. Employing multiple 
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smaller sized local map memories potentially improves memory constrained planning. 

This means that a memory constrained robot can segment its available memory into 

smaller portions to facilitate improved planning time.  

 
At higher obstacle densities (≥ 20%), memory constrained path planning yields 

significantly lower execution times than non-memory constrained planning. This 

indicates a reduced search space and can affect obstacle clearance. However, path 

length is not adversely affected at these higher obstacle densities. Most real 

environments generally have overall obstacle densities less than 5% depending on 

obstacle arrangement. Hence, smaller regions of higher obstacle densities may be 

confined to a few local maps reducing obstacle clearance issues in memory 

constrained planning. If obstacles are sufficiently large or the obstacle density is 

sufficiently high to block some local map boundaries, the back tracking algorithm can 

find a path through alternative local maps as long as exit points exist in them. 
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5 Task Allocation and Feedback 
Coordination Mechanism 

 

5.1 Overview 
 
In some multi-robot applications, predefined task allocation and coordination can fail 

to function adequately. This failure is attributed to the inability to completely and 

accurately predict a robot’s interactions with the environment before task execution. 

Robots with limited capabilities (such as restricted processing, sensing and actuation 

abilities) can also fail to fulfil the requirements of a group task if they do not use their 

resources effectively. In some applications the system may also want to minimise 

losses by restricting the quantity of robots committed towards a group task if multiple 

and/or hazardous group tasks are present.  

 
This chapter presents a task allocation and coordination approach for limited 

capability mobile robots that can address the shortfalls of predefined task allocation 

and coordination. To illustrate this approach, an exploration task (fully defined in 

Chapter 6) is used as a specific example.  The algorithm proposed is generic and not 

limited purely to exploration, but such an example serves to demonstrate how this 

algorithm functions on a real task.  An overview of the proposed system is presented 

in Figure 5.1.  

 
A global task is specified by a human user in terms of the resources required 

(section 5.2). These resource requirements are represented using vector of task 

requirements (VOTR) data. The robots available for task assignment are specified 

using vector of merit (VOM) data that encodes their capabilities (section 5.3). Fuzzy 

Inference Systems (FISs) are employed to simplify detailed robot capability 

information for comparison with the human user’s simplified task specification. An 

example of global task and robot specifications for a multi-robot exploration task is 

presented in section 5.4. 

 
A team of robots comprising managers and workers is selected during an initial task 

allocation (or task devolution) process (section 5.5). The managers generally comprise 
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the most computationally powerful robots while the workers usually have limited 

computing abilities. A hierarchy can exist within the workers depending on the 

specified global task. For example, in a multi-robot exploration and mapping task 

(chapter 6) the worker robots can consist of planners and explorers (Figure 6.2). 

Numerical vector of task suitability (VOTS) data are employed by the task allocation 

algorithm to represent a robot’s task eligibility. VOTS data are determined from a 

robot’s VOM data and a task’s VOTR data.  

 
After initial task allocation a feedback coordination mechanism executes periodically 

on the manager robot(s) (section 5.6). This feedback mechanism monitors the 

individual and group performance of the worker robots. If the performance of a 

worker robot is unsatisfactory, a task reallocation algorithm adjusts the task-robot 

combinations of the team. Three cases of unsatisfactory robot performance that can be 

detected by the feedback mechanism include: complete failure, partial failure, and 

poor performance.  

 

Task Specification

• VOTR data
• manager task requirements
• worker task requirements

Task Devolution

• select managers
• select workers

Task Management

• managers
• monitor performance
• maintain global data

Task Execution

• workers
• perform assigned tasks

Task reassignment

performance 
feedback

Robot Specification

• VOM data
• Fuzzy (FIS) simplified 

capability data 

 
Figure 5.1: Overview of task allocation and coordination mechanism. 
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5.2 Task Specification 
 

A global task is partially or fully specified by a human user via a remote base station 

(computer). This global task consists of a set of n tasks that are represented by a 

number of criteria specifying the resources required and conditions for that particular 

task. Figure 5.2 illustrates the criteria. A task can be partially specified by a basic user 

with a minimal set of criteria (marked with # in Figure 5.2). In such a case, default 

values are employed for all other criteria. On the other hand, an advanced user can 

specify all the task criteria of Figure 5.2 if necessary.  

 
Two categories of tasks are specified: n1 management tasks and n2 worker tasks. 

Management and worker tasks are assigned to appropriate task manager and task 

worker robots respectively. Each task type can either be one-off or continuous.  

 
Task

Sensing Resource Capability #
Communication Resource Capability #
Processing Resource Capability #
Type

ID

Name #

Acting Resource Capability #

Group Task Name *

Robot Quantity Criteria * #

Concurrent Tasks *

Initial Resource Utilisation *

Resource Utilisation Mapping *

Feedback Coordination Weights *

VOTS Summation Weights

 
Figure 5.2: Summary of task specification criteria. 

 
There are four divisions of resources: processing, communication, sensing, and 

actuation. For each task ti, a minimum capability requirement score tiRCStype is 

specified for each resource type. To simplify user input, these scores are  specified as 

‘low’, ‘medium’ or ‘high’ These values are converted to unit interval data where 

‘low’ corresponds to zero, ‘medium’ corresponds to 0.35 and ‘high’ corresponds to 

0.65, respectively. This enables comparison with the outputs of Fuzzy Inference 
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Systems (FISs) [136] employed to combine robot resource capability data (section 

5.3).   

 
Worker robot tasks employ additional criteria marked with an asterisk in Figure 5.2. 

The robot quantity criteria is employed to determine initial, minimum, and maximum 

number of worker robots required for the task. For example, in a multi-robot map-

building task (chapter 6) the robot quantity criteria can include exploration area size 

and an explorer-planner task quantity ratio. A worker robot that executes a planner 

task is called a planner. Similarly, a worker robot executing an explorer task is 

denoted as an explorer. An FIS (section 5.4) can be employed to map the quantity 

criteria data to appropriate planner and explorer task quantities. In an object pushing 

task, robot quantity criteria data can include the mass and size of an object. Using an 

FIS, this can be mapped to a desired size (or type) and number of robots to move the 

object.  

 
Tasks that can be simultaneously executed with the current task are listed in the 

concurrent tasks field. For example, a robot executing a planner task can also execute 

an explorer task simultaneously if it has sufficient resources. Since there can be 

multiple identical tasks, there are m1 management and m2 worker tasks that are 

unique. 

 
All tasks require control algorithms that are executed by the robot’s processor. Thus, 

resource utilisation is represented by the control algorithm execution rate toward each 

physical resource type for a particular task. There are four resource utilisation 

categories representative of each resource type: planning, communication, sensing, 

and actuation. Hence, a resource utilisation mapping vector (generally not specified 

or modified by a normal user) is employed to encode each task-robot combination 

(5.1). A default initial resource utilisation is applied for each task-robot combination 

if a human user has not specified it.  

 
The resource utilisation of each category for each task-robot combination RUijcat is 

denoted as: 

 
 1 2, , , , ,ijcat ijcat ijcat ijcats ijcatzRU ru ru ru ru =     (5.1) 
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where: 

[ ], , ,cat plan comm sense act∈ , 

ijcatsru  is the sth task dependent resource utilisation sub-category, and 

z is the number of sub-categories for resource utilisation RUijcat. 

 
For the map-building and exploration task of chapter 6, resource utilisation can be 

represented by the following control algorithms: 

• Planning (Processing): global (path planning between local environments 

and local environment assignment) and local (path planning within local 

environment and waypoint generation). 

• Communication: no sub-categories required. 

• Sensing: local map update and obstacle and pose detection. 

• Actuation: motion control and motor commands. 

 
Motion control is included in actuation since its output directs the movement of a 

robot’s actuators. Note that motion control includes obstacle avoidance and path 

tracking but not path planning. Resource utilisation for planning and communication 

tasks can be expressed as either enabled or disabled since they are generally event-

based and non-periodic. On the other hand, sensing and actuation tasks tend to be 

periodic and can be represented by execution rates. 

 
As the global task progresses, a set of feedback coordination weights (section 5.6.1) is 

employed to monitor the performance of each task-robot combination. If the 

performance of a task-robot combination is unsatisfactory (section 5.6.1), the resource 

utilisation parameters are adjusted to enable or disable certain task-robot 

combinations. A set of rules RL (section 5.6.2) is employed by the feedback 

coordination mechanism to adjust resource utilisation. The feedback coordination 

weights and rules RL can be modified by advanced users if needed. 

 
In this thesis, task reallocation (i.e. enabling or disabling task-robot combinations) is 

considered equivalent to adjusting a robot’s resource utilisation. However, resource 

utilisation adjustment can also optimise the current task that a robot executes. This 

can be achieved if the task-resource utilisation mapping vector data are gradually 

adjusted by the feedback coordination mechanism.  
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During task devolution (section 5.5), a set of VOTS summation weights VSWi for task 

i is employed to convert VOTS data to a single number (5.2). 

 
 , , ,i iproc icomm isense iactVSW vsw vsw vsw vsw =    (5.2) 

5.3 Robot Specification Description 
 

Similar to the global task specifications, the p robots available for the global task are 

specified with a number of criteria that represent the resources they possess as shown 

in Figure 5.3. 

 
Robot

Acting Resource Capability

Sensing Resource Capability

Communication Resource Capability

Processing Resource Capability

Type

ID

Name

 
Figure 5.3: Brief description of robot specification criteria. 

 
Numerical VOM data represent the capabilities of robots. For each robot rj the 

capability of resource type RCtype is specified as: 

  
 1 2, , , , ,type type type typek typeqRC rc rc rc rc =     (5.3) 

 
where: 

[ ], , ,type proc comm sense act∈ , 

typekrc  is the kth sub-resource type, and 

q is the number of sub-resources for resource RCtype. 

 
The sub-resources for each resource type are: 

• Processing: processor benchmark and memory. 

• Communication: bandwidth and range. 

• Sensing: quantity, range and distribution for each type of sensor present on 
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the robot. 

• Actuation: operation time, base size, base performance (speed and terrain 

traversability) and manipulator. 

 
At the task specification stage, a human user provides simplified inputs representing 

the minimum processing, communication, sensing and actuation resource 

requirements for a task. As mentioned, the minimum requirements are specified as 

‘low’, ‘medium’, or ‘high’ for each resource type.  An additional input is provided by 

the user for the processing resource to select robots with microcontroller based 

processing (‘mc’) or desktop PC equivalent based processing (‘pc’). Similarly, a robot 

size input is also supplied by the user for the actuation resource if robots of a 

particular size are required (‘small’, ‘medium’ or ‘large’). If robot size is irrelevant, 

the default value of ‘any’ is employed.  

 
Unlike the simplified human user inputs, the robots are specified with detailed 

information. This information has a variety of data values and measurement units for 

each resource and sub-resource type. In this chapter, the robot resource data values 

are based on real robots such as those in the VUW fleet and other robot types in the 

literature (chapter 2). A mechanism is required to combine the variety of robot 

information into a single value for each resource type for comparison with the 

simplified human user input. Fuzzy systems [136] are favoured as they employ fuzzy 

sets and rules to permit graded (such as ‘low’, ‘medium’ and ‘high’) outputs. This 

provides a convenient way to map the detailed robot specification to a simplified 

form. Hence, FISs are employed to produce a simplified unit interval value for each 

resource type. 

 
MATLAB® 2007a Fuzzy Logic Toolbox has been used to develop the FISs. All FISs 

described in this section are Mamdani type [136] (MATLAB’s default FIS type). Two 

basic types of membership functions are used for simplicity. These are triangular 

membership functions and trapezoidal membership functions. Other membership 

function types such as Gaussian or sigma can be utilised. During initial experiments, 

the triangular and trapezoidal functions were able to produce results similar to 

Gaussian or sigma types.  
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A maximum of three membership functions are employed for all inputs and outputs to 

reduce the complexity of the fuzzy systems. All membership function ranges, fuzzy 

rules and their corresponding weights have been empirically tuned to select “good” 

parameter values. The outputs of the various input combinations (produced using 

membership functions, fuzzy rules and weights) have been viewed with MATLAB’s 

surface viewer during empirical tuning. With three membership functions a 

reasonably smooth transitioning surface has been generated for the various input 

combinations. Incorporating more than three membership functions results in more 

rules and combinations to consider. The surface generated with a five membership 

function system was found to be similar to that of a three membership function system 

during initial testing. 

 
Triangular membership functions are specified with three parameters [tri1 tri2 tri3].  

tri1 is the minimum data value at which the degree of membership is zero, tri2 is the 

data value at which the degree of membership is unity and tri3 is the maximum data 

value at which the degree of membership is zero. For example, in Figure 5.4 the 

‘medium’ membership function (in green) is specified as [0.3 0.5 0.7]. The ‘low’ 

membership function is a half triangle in Figure 5.4. This is achieved by setting tri1 to 

a value less than the global minimum data value (i.e. less than zero in Figure 5.4). 

Similarly, a half triangle is obtained for the ‘high’ membership function by setting tri3 

to a value greater than the global maximum data value (i.e. greater than one in Figure 

5.4) 

 
Trapezoidal membership functions are specified with four parameters [trap1 trap2 

trap3 trap4]. trap1 and trap4 are similar to tri1 and tri3. They represent the minimum 

and maximum data values at which the degree of membership is zero. trap2 is the 

minimum data value at which the degree of membership is unity, while trap3 is the 

maximum data value at which the degree of membership is unity. An example of 

trapezoidal membership functions is illustrated in Figure 5.5. The ‘medium’ 

membership function (in green) is specified as [0.2 0.4 0.6 0.8]. A partial trapezoid is 

obtained for the ‘low’ membership function by placing parameters trap1 and trap2 

below the global minimum data value. Similarly, by setting trap3 and trap4 above the 

global maximum data value, a partial trapezoid is obtained for the ‘high’ membership 

function.  
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The empirically selected three output membership functions employed by each FIS 

are illustrated in Figure 5.4. The ranges for ‘low’, ‘medium’ and ‘high’ are [0 0.4], 

[0.3 0.7] and [0.6 1], respectively. Consequently, the numerical threshold values for 

‘low’, ‘medium’ and ‘high’ in the task specification are intuitively selected as 0, 0.35 

and 0.65, respectively.  
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Figure 5.4: FIS output membership functions. 
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Figure 5.5: Trapezoidal membership functions. 

 
Table 5.1 shows the parameter settings for the fuzzy inference functions of all 

implemented FISs. MATLAB default settings are employed for the ‘And’, ‘Or’, 

‘Implication’ and ‘Defuzzification’ functions. The ‘sum’ method has been selected as 

the ‘Aggregation’ function to produce a gradual change in output as the inputs are 

varied.  

 
Table 5.1: Fuzzy inference function settings. 

 
Function Method 

And min 
Or max 

Implication min 
Aggregation sum 

Defuzzification centroid 
 

The input details for each resource type’s FIS span a variety of robots and values are 

consistent with other robot types in the literature. 
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5.3.1 Processing Fuzzy Inference System 
 

Two FISs are employed to combine the processing resources. One is used to combine 

the processing resources of a robot with microcontroller based processing. The other 

is employed for combining desktop PC based equivalent processing resources. 

 
Figure 5.6(a) illustrates the microcontroller (MC) processing FIS. It has two inputs: 

MC processor benchmark and MC memory (Table 5.2). The Embedded 

Microprocessor Benchmark Consortium (EMBC) (http://eembc.org) produces 

performance benchmarks for embedded systems. It employs a CoreMark 1.0 test to 

evaluate a processor’s benchmark. A selected range of microcontrollers have been 

tested. It is possible to obtain additional benchmark data by testing a wider range of 

microcontrollers.  

 
Benchmark data can be scaled to the range of [0 10] where 10 corresponds to the most 

powerful microcontroller. Generally, 8-bit microcontrollers fall into the ‘low’ 

benchmark category. The ‘medium’ and ‘high’ benchmark categories generally 

comprise of 16-bit and 32-bit microcontrollers, respectively. For MC memory, the 

‘low’, ‘medium’ and ‘high’ divisions have been arbitrarily selected. The upper limit 

for the memory input has been determined based on powerful microcontrollers such 

as the ARM7 which can typically support at least 16 MB external memory. Some of 

the latest ARM7 microcontrollers (such as STR750XX) can support up to 64 MB of 

flash memory.  

 
Table 5.3 details the fuzzy rules employed to combine the MC processing benchmark 

and MC memory inputs into the processing score RCSproc. So for example, if 

Processor Benchmark is low then Processing Score will be low. 
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      (a)          (b) 

Figure 5.6: Diagrams of Microcontroller (MC) and PC Processing FISs. 
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Table 5.2: Microcontroller processing FIS inputs. 

 
Input 1 Name Processor Benchmark 

Data Range [0 10] 
Membership Function Details  Name low medium high 

Type triangular triangular triangular 
Parameters [–4 0 4] [2.5 5 7.5] [6 10 14] 

Input 2 Name Memory  
Data Range (MB) [0 16] 
Membership Function Details  Name low medium high 

Type triangular triangular triangular 
Parameters [–6 0 6] [4 8 12] [10 16 32] 

 
The desktop PC based equivalent processing FIS is illustrated in Figure 5.6(b). A PC 

processor benchmark and memory (RAM) are input to the FIS (Table 5.4). 

MATLAB’s ‘bench’ function data has been utilised to estimate a processor’s 

benchmark. Several MATLAB users have posted benchmark test results of their 

computers on MATLAB Central (http://www.mathworks.com/matlabcentral/). 

 
Table 5.3: Rule table for MC and PC processing FISs. 

 
Rule No. Processor 

Benchmark 
Memory Inputs 

Connection 
Processing 
Score 

Rule Weight 

1 low – – low 1 
2 medium – – medium 1 
3 high – – high 1 
4 – low – low 1 
5 – medium – medium 1 
6 – high – high 1 
 

Table 5.4: Desktop PC based equivalent processing FIS inputs. 

 
Input 1 Name Processor Benchmark 

Data Range [0 5] 
Membership Function Details  Name low medium high 

Type triangular triangular triangular 
Parameters [–2 0 2] [1.25 2.5 3.75] [3 5 7] 

Input 2 Name Memory  
Data Range (GB) [0 2] 
Membership Function Details  Name low medium high 

Type triangular triangular trapezoidal 
Parameters [–0.6 0 0.6] [0.2 0.75 1.3] [0.9 1.75 2.08 2.72] 

 
Based on these data, it is estimated that the processor benchmark of a computer 

employed for mobile robot applications can vary from zero to five. ‘Low’ benchmark 

processors generally include Pentium III, Atom, Celeron and Pentium M. Pentium M, 

Pentium IV, Core Solo and Core Duo processors are likely to have a ‘medium’ 

benchmark. ‘High’ benchmark processors generally include Pentium D and Core 2 

http://www.mathworks.com/matlabcentral/
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Duo. For memory (RAM) the ‘low’ category generally includes 128 MB and 256 MB 

RAM. The ‘medium’ classification can include 512 MB and 1 GB RAM. A computer 

with at least 1.5 GB memory has a ‘high’ memory rating.  

 
Similar to the MC processing FIS, Table 5.3 details the fuzzy rules used to determine 

the processing score RCSproc for PC processing. 

5.3.2 Communication Fuzzy Inference System 
 
Figure 5.7 illustrates the communication FIS. It has two inputs: bandwidth and range 

(Table 5.5). ‘High’ bandwidth communication is typically 802.11a or 802.11g 

wireless communication (54 MBits/sec). ‘Medium’ bandwidth communication 

corresponds to 802.11b wireless communication (11 MBits/sec) or enhanced versions 

of the 802.11b capable of 22 MBits/sec data rates. ‘Low’ bandwidth communication 

includes Bluetooth communication (1–3 MBits/sec) and infrared (IrDA) 

communication (2.4 Kbits/sec to 4 MBits/sec).  
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Figure 5.7: Diagram of Communication FIS. 

 
 

Table 5.5: Communication FIS inputs. 

 
Input 1 Name Bandwidth 

Data Range (MBits/sec) [0 54] 
Membership Function Details  Name low medium high 

Type triangular triangular triangular 
Parameters [–8.5 0 8.5] [3.5 11 36] [16.5 54 75.6] 

Input 2 Name Range 
Data Range (m) [0 100] 
Membership Function Details  Name low medium high 

Type triangular triangular triangular 
Parameters [–40 0 40] [25 50 75] [60 100 140] 

 
The communication range input corresponds to the typical maximum range at which 

maximum bandwidth is possible. High range (~100 m) communication is possible 

with 802.11b and 802.11g devices. Medium range communication of approximately 
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30 m is possible with 802.11a. Bluetooth and infrared are low range communication 

devices with typical ranges of 10 m and 1–2 m, respectively. Table 5.6 details the 

fuzzy rules to combine communication bandwidth and range into a communication 

score RCScomm. 

 
Table 5.6: Communication FIS fuzzy rules. 

 
Rule No. Bandwidth Range Inputs 

Connection 
Communication 
Score 

Rule Weight 

1 low – – low 1 
2 medium – – medium 1 
3 high – – high 1 
4 – low – low 1 
5 – medium – medium 1 
6 – high – high 1 
 

5.3.3 Sensing Fuzzy Inference System 
 
A general overview of an FIS that can be employed to combine the capabilities of 

multiple sensors is illustrated in Figure 5.8. The inputs to the multi-sensor FIS are the 

overall scores for each type of sensor present on the robot RCSsensek. Overall scores for 

each sensor type are computed from individual FISs. Depending on the type of task, 

the fuzzy rules and corresponding weights of the multi-sensor FIS can be empirically 

selected. The output of the FIS is an overall multi-sensing score RCSsense representing 

the combined sensing ability of the robot. 
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Figure 5.8: Diagram of Multi-sensor FIS. 

 
This section only describes the FIS implementation for IR sensors as they are the 

primary sensors employed by the map-building and exploration task presented in this 

thesis. Thus, the multi-sensor FIS only gives weighting to the IR sensors. By altering 
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the data ranges and fuzzy rules, similar FISs can be produced for other types of 

sensors such as ultrasonic and laser. Sensor distribution and range inputs can be 

substituted with field of vision (FOV) and depth data for cameras.   

 
A block diagram of the IR sensing FIS is shown in Figure 5.9. It consists of four FISs 

that determine a sensor score, an obstacle avoidance score, a mapping/exploration 

score and an overall sensor score, respectively. The inputs to the IR sensing FIS are 

the IR sensing sub-capabilities of sensor distribution, sensor quantity and sensing 

range. A sensor score FIS takes the sensor quantity and sensing range as input to 

determine a sensor score for the IR sensors. Next, the sensor score and sensor 

distribution data are input to two FISs that determine obstacle avoidance and 

mapping/exploration scores. Finally, the obstacle avoidance and mapping/exploration 

scores are combined in an overall sensor score FIS to calculate an overall score for the 

IR sensors.  

 
Table 5.7 and Table 5.8 detail the sensor score FIS inputs and fuzzy rules, 

respectively. Sensor quantity data range and divisions have been selected based on 

experience with robots in the VUW fleet. Commercially available IR sensors from 

manufacturers such as Sharp presently have a maximum sensing (‘high’) range of 

approximately three metres. Sharp also manufactures ‘medium’ range (1.5 m) and 

‘low’ range (0.3–0.8 m) sensors.  
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Figure 5.9: Block Diagram of IR Sensing FIS. 
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Table 5.7: Sensor score FIS inputs. 

 
Input 1 Name Sensor Quantity 

Data Range  [0 15] 
Membership Function Details  Name low medium high 

Type Triangular triangular triangular 
Parameters [–7.5 0 7.5] [0 7.5 15] [7.5 15 21] 

Input 2 Name Range 
Data Range (m) [0 3] 
Membership Function Details  Name low medium high 

Type Triangular triangular triangular 
Parameters [–1.5 0 1.5] [0 1.5 3] [1.5 3 4.5] 

 
 

Table 5.8: Sensor score FIS fuzzy rules. 

 
Rule No. Sensor Quantity Range Inputs 

Connection 
Sensor Score Rule Weight 

1 low – – low 1 
2 medium – – medium 1 
3 high – – high 1 
4 – low – low 1 
5 – medium – medium 1 
6 – high – high 1 
 
The obstacle avoidance FIS sensor distribution and sensor score inputs are detailed in 

Table 5.9. Sensor distribution is classified into three categories: ‘low’, ‘medium’ and 

‘high’. The range of each category has been selected based on experience with robots 

in the VUW fleet.  

 
Table 5.9: Obstacle avoidance FIS inputs. 

 
Input 1 Name Sensor Distribution 

Data Range (degrees) [0 360] 
Membership Function Details  Name low medium high 

Type triangular triangular triangular 
Parameters [–90 0 90] [45 135 280] [180 360 540] 

Input 2 Name Sensor Score 
Data Range  [0 1] 
Membership Function Details  Name low medium high 

Type triangular triangular triangular 
Parameters [–0.5 0 0.5] [0 0.5 1] [0.5 1 1.5] 

 
Sensors covering less than a quarter of a robot’s circumference (< 45°) have ‘low’ 

distribution and will generally be poor (‘low’) at obstacle avoidance. If approximately 

half (usually front half) of the robot’s circumference is covered (~180° distribution), 

obstacle avoidance is usually good (‘high’). Full coverage of a robot’s perimeter 

(~360° distribution) generally yields average (‘medium’) obstacle avoidance for IR 

sensing. An average grading is given to full coverage since there is likely to be a less 



126                Development of an Artificial Intelligence System for the Instruction and 
Control of Cooperating Mobile Robots 

 

dense sensor distribution than half coverage for an identical number of sensors. The 

sensor score input incorporates sensor quantity information from the sensor score FIS. 

Table 5.10 details the six fuzzy rules employed to calculate the obstacle avoidance 

score. 

Table 5.10: Obstacle avoidance FIS rules. 

 
Rule No. Sensor 

Distribution 
Sensor Score Inputs 

Connection 
Obstacle 
Avoidance Score 

Rule Weight 

1 low – – low 1 
2 medium – – high 1 
3 high – – medium 1 
4 – low – low 1 
5 – medium – medium 1 
6 – high – high 1 
 
Table 5.11 details the inputs to the mapping/exploration FIS. For simplicity, only two 

classifications (‘low’ and ‘high’) are made for sensor distribution. Based on 

experience with the VUW robot fleet, a robot should have at least one quarter of its 

perimeter covered with sensors to qualify for membership into the ‘high’ category. 

Table 5.12 lists the seven fuzzy rules employed by the mapping/exploration FIS. The 

sensor distribution input biases the sensor score input data in the mapping/exploration 

score calculation. A robot that does not have a ‘high’ sensor distribution will have a 

reduced mapping/exploration score. 

 
Table 5.11: Mapping/exploration FIS inputs. 

 
Input 1 Name Sensor Distribution 

Data Range (degrees) [0 360] 
Membership Function Details  Name low high 

Type triangular triangular 
Parameters [–270 0 270] [90 360 540] 

Input 2 Name Sensor Score 
Data Range  [0 1] 
Membership Function Details  Name low medium high 

Type triangular triangular triangular 
Parameters [–0.5 0 0.5] [0 0.5 1] [0.5 1 1.5] 

 
Table 5.12: Mapping/exploration FIS fuzzy rules. 

 
Rule No. Sensor 

Distribution 
Sensor Score Inputs 

Connection 
Mapping/Exploration 
Score 

Rule 
Weight 

1 – low – low 1 
2 high medium and medium 1 
3 high high and high 1 
4 not high – – low 1 
5 not high medium and low 0.6 
6 not high high and medium 0.25 
7 high low and medium 0.1 
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The obstacle avoidance and mapping/exploration scores are combined by the overall 

sensor score FIS. Since the obstacle avoidance and mapping/exploration scores are 

both outputs of other FISs, their membership functions are as illustrated in Figure 5.4 

(p.119). Table 5.13 lists the seven fuzzy rules utilised to determine the overall sensor 

score RCSsense1 for the IR sensors. Rule 1 has full weighting (unity) since poor (‘low’) 

obstacle avoidance can adversely affect a robot’s movement. Rules 2–4 have low 

weights (0.1) because the global task example in this thesis is multi-robot exploration 

and map building. The overall multi-sensor score  RCSsense is represented by the 

individual sensor score RCSsense1 since the robots in this thesis employ only IR 

sensors.   

Table 5.13: Overall sensor score FIS fuzzy rules. 

 
Rule No. Obstacle 

Avoidance 
Score 

Mapping/ 
Exploration 
Score 

Inputs 
Connection 

Overall Sensor 
Score 

Rule Weight 

1 low – – low 1 
2 medium – – low 0.1 
3 medium – – medium 0.1 
4 high – – high 0.1 
5 – low  low 1 
6 – medium – medium 1 
7 – high – high 1 

5.3.4 Actuation Fuzzy Inference System 
 
Figure 5.10 illustrates the actuation FIS. It comprises three FISs that determine a base 

performance score, a base size score and an overall actuation score, respectively. The 

inputs to the actuation FIS are four actuation sub-capabilities. These are operation 

time, speed, difficult terrain traversability and base size. The base performance FIS 

takes speed and difficult terrain traversability as inputs to calculate a base 

performance score for a robot. A base size FIS maps the size of a robot into a 

preference score. Next, the base performance score, base size score and robot 

operation time are input to the overall actuation FIS to compute an overall actuation 

score.  

 
Base performance score FIS inputs are presented in Table 5.14. The range and 

divisions for the speed input have been selected based on robots in the VUW fleet. A 

safe autonomous navigation speed near or above 1 m/sec is considered to be ‘high’. 

Robots with safe navigation speeds of approximately 0.5 m/sec have ‘medium’ speed. 
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A robot with a safe navigation speed of below 0.3 m/sec is likely to be regarded as a 

slow (‘low’ speed) robot. 

 

Overall 
Actuation 

Score 

RCSactBase 
Size

B
as

e 
S

iz
e 

FI
S

B
as

e 
P

er
fo

rm
an

ce
 

FI
S

O
ve

ra
ll 

A
ct

ua
tio

n 
S

co
re

 F
IS

Base 
Performance 

Score

Base Size 
Score

Speed

Difficult 
Terrain 

Traversability

Operation 
Time

 
Figure 5.10: Block Diagram of Actuation FIS. 

 
The difficult terrain traversability input is unit interval. At the very basic level terrain 

traversability can be represented with binary data. A value of zero can represent poor 

(‘low’) traversability while a value of one represents good (‘high’) traversability. It is 

possible to represent difficult terrain traversability with better precision by evaluating 

the movement of a robot in difficult terrain, such as uneven or boggy surfaces. The 

latter representation is employed for robots in this thesis but reasonable terrain 

traversability approximations are made for each robot drive type. Movement is not 

evaluated for real robots. 

 
Table 5.14: Base performance FIS inputs. 

 
Input 1 Name Speed 

Data Range (m/sec) [0 1] 
Membership Function Details  Name low medium high 

Type triangular triangular triangular 
Parameters [–0.5 0 0.5] [0.3 0.5 0.65] [0.5 1 1.5] 

Input 2 Name Difficult Terrain Traversability 
Data Range  [0 1] 
Membership Function Details  Name low high 

Type triangular triangular 
Parameters [–0.4 0 1] [0 1 1.4] 

 
Table 5.15 lists the fuzzy rules employed to compute the base performance score. 

Lower weightings are given to the difficult terrain traversability input rules since 

terrain acts as a modifier to the speed input. 
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Table 5.15: Base performance FIS fuzzy rules. 

 
Rule No. Speed Difficult 

Terrain 
Traversability 

Inputs 
Connection 

Base 
Performance 
Score 

Rule Weight 

1 low – – low 1 
2 medium – – medium 1 
3 high – – high 1 
4 – low – low 0.1 
5 – high – high 0.3 
 
Base size score FIS inputs and outputs are listed in Table 5.16. The base size input 

represents the robot’s radius (when a circle is prescribed from the robot’s centre to 

encompass the robot). ‘Small’, ‘medium’ and ‘large’ divisions have been arbitrarily 

selected assuming a maximum robot radius of one metre. The base size score output is 

unit interval and is employed by the overall actuation score FIS as a modifier. Table 

5.17 lists three rules that can be employed to give high preference to a robot of any 

size. These rules can be altered if a particular sized robot is desired. 

 
Table 5.16: Base size FIS input and output. 

 
Input 1 Name Size 

Data Range (m) [0 1] 
Membership Function Details  Name small medium large 

Type triangular triangular triangular 
Parameters [–0.5 0 0.5] [0 0.5 1] [0.5 1 1.5] 

Output 1 Name Size Score 
Data Range  [0 1] 
Membership Function Details  Name low high 

Type trapezoidal trapezoidal 
Parameters [–0.36 -0.04 0.35 0.55] [0.45 0.65 1.04 1.36] 

 
 

Table 5.17: Base size FIS fuzzy rules. 

 
Rule No. Size Base Size Score Rule Weight 
1 not low high 1 
2 not medium high 1 
3 not high high 1 

 

Table 5.18 lists the three inputs to the overall actuation FIS. Operation time input 

details are based on the variety of robot types found in the literature (chapter 2) and 

reasonable estimates for different types of tasks. A robot with less than one hour of 

operation has ‘low’ operation time. Robots with one to two hours of operation time 

are considered to be ‘medium’. A robot that can operate for longer than two hours has 

a ‘high’ operation time. The base performance score input is a standard FIS output 
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(Figure 5.4, p.119). Similar to the base size FIS output, the base size score input uses 

two trapezoidal rules. 

 
Table 5.18: Overall actuation score FIS inputs. 

 
Input 1 Name Operation Time 

Data Range (hours) [0 3] 
Membership Function Details  Name low medium high 

Type triangular triangular triangular 
Parameters [–1.2 0 1.2] [0.9 1.5 2.1] [1.8 3 4.2] 

Input 2 Name Base Performance Score 
Data Range  [0 1] 
Membership Function Details  Name low medium high 

Type triangular triangular triangular 
Parameters [–0.4 0 0.4] [0.3 0.5 0.7] [0.6 1 1.4] 

Input 3 Name Base Size Score 
Data Range  [0 1] 
Membership Function Details  Name low high 

Type trapezoidal trapezoidal 
Parameters [–0.36 -0.04 0.35 0.55] [0.45 0.65 1.04 1.36] 

 
The set of fuzzy rules employed by the overall actuation score FIS to compute the 

overall actuation score RCSsense is listed in Table 5.19. These rules were empirically 

formulated. Rule 3 is employed to give low overall actuation scores to robots that do 

not meet the base size requirement. If the base size score is good (‘high’), rules 4 to 7 

permit medium and high overall actuation scores. 

 
Table 5.19: Overall actuation score FIS fuzzy rules. 

 
Rule No. Operation 

Time 
Base 
Performance 
Score 

Base Size 
Score 

Inputs 
Connection 

Overall 
Actuation 
Score 

Rule 
Weight 

1 low – – – low 1 
2 – low – – low 1 
3 – – low – low 1 
4 medium – high and medium 1 
5 – medium high and medium 1 
6 high – high and high 1 
7 – high high and high 1 
 

5.4 Task and Robot Specifications for a Multi-Robot 
Map Building and Exploration Task 

 
As an example, the manager and worker task requirements for a multi-robot map 

building and exploration task are shown in Table 5.20 and Table 5.21 respectively. 

Similarly, the capabilities of eight candidate robots for the multi-robot map building 

task are shown in Table 5.22. The capability data of the robots are based on mobile 
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robots in the VUW fleet (Figure 5.11, p.136). Some of the robots in the fleet have 

obsolete processing hardware and are in the process of being upgraded. 

 
Table 5.20: Manager task specifications. 

 
Task ID Criteria  Value 

M1 

Name maintain global info 
Type continuous 

Processing Capabilities tM1RCSproc [pc,low] 
Communication Capabilities tM1RCScomm. [medium] 

Sensing Capabilities tM1RCSsense [low] 
Actuation Capabilities tM1RCSact [medium,any] 

VOTS Summation Weights [0.5,0.5,0,0] [proc,comm,sense,act] VSWM1 

M2 

Name secondary task devolution 
& feedback system 

Type Continuous 
Processing Capabilities tM2RCSproc [pc,medium] 

Communication Capabilities tM2RCScomm. [high] 
Sensing Capabilities tM2RCSsense [low] 
Actuation Capabilities tM2RCSact [medium,any] 

VOTS Summation Weights [0.5,0.5,0,0] [proc,comm,sense,act] VSWM2 
 
Processing capability data represents the processor benchmark and the available 

memory. A manager robot executing task M1 (Table 5.20) needs to have at least ‘low’ 

PC based processing . In Table 5.22, Robot1 has PC based processing with an overall 

score of 0.48 (‘medium’). 

 
Communication capability data comprises bandwidth and range. For example, in 

Table 5.21 worker task W1 requires an overall communication capability of 

‘medium’. A communication bandwidth of 11 MBit/sec and range of 100 m is 

available on Robot2 (Table 5.22). Thus, Robot 2 has an overall communication score 

of 0.62 (‘medium’). 

 
The sensing capability data represents infrared sensing ability as infrared sensors are 

primarily employed for the map-building and exploration task presented in this thesis. 

Worker task W2 (Table 5.21) requires a robot with at least ‘medium’ sensing 

capabilities. Robot5 (Table 5.22) has ten 1.5 m range infrared sensors that are evenly 

distributed (360°) around the robot. The overall sensing score for Robot5 is 0.49 

(‘medium’). 
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Table 5.21: Worker task specifications. 

 
 

Task ID Criteria  Value 

W1 

Name planner 
Type continuous 

Processing Capabilities tW1RCproc [mc,medium] 
Communication Capabilities tW1RCcomm. [medium] 

Sensing Capabilities tW1RCsense [low] 
Actuation Capabilities tW1RCact  [low,any] 

Group Task Name multi-robot map-building 
VOTS Summation Weights [0.4,0.4,0.1,0.1] [proc,comm,sense,act] VSWW1 

Robot Quantity Criteria [1600,medium] → [1,1,4] 
Concurrent Tasks [W2] 

Initial Resource Utilisation [on] 
Resource Utilisation Mapping   

[on]   
Planning [-1,0] 

Communication [-1] 
Sensing [0,0] 

Actuation [0,0] 
[off]   

Planning [0,0] 
Communication [-1] 

Sensing [0,0] 
Actuation [0,0] 

W2 

Name explorer 
Type continuous 

Processing Capabilities tW2RCproc [mc,low] 
Communication Capabilities tW2RCcomm [low] 

Sensing Capabilities tW2RCsense [medium] 
Actuation Capabilities tW2RCact [medium,any] 

Group Task Name multi-robot map-building 
VOTS Summation Weights [0.05,0.05,0.45,0.45] [proc,comm,sense,act] VSWW2 

Robot Quantity Criteria [1600,medium] → [4,1,4] 
Concurrent Tasks [W1] 

Initial Resource Utilisation [on] 
Resource Utilisation Mapping   

[on]   
Planning [0,-1] 

Communication [-1] 
Sensing [10,10] 

Actuation [10,10] 
[off]   

Planning [0,0] 
Communication [-1] 

Sensing [0,0] 
Actuation [0,0] 
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Table 5.22: Capability data of eight heterogeneous robots. 

 
Robot ID Criteria  Value Score (rjRCStype) 

1 

Name Robot1 – 
Type tricycle-pentagon – 

Processing Capabilities RCproc [3.2,0.5,pc] [pc,0.48] 
Communication Capabilities RCcomm. [54,100] [0.87] 

Sensing Capabilities RCsense [11,1.5,360] [0.51] 
Actuation Capabilities RCact [2.04,0.50,0.50,0.30] [0.60] 

2 

Name Robot2 – 
Type tricycle-pentagon – 

Processing Capabilities RCproc [6,10,mc] [mc,0.52] 
Communication Capabilities RCcomm.. [11,100] [0.62] 

Sensing Capabilities RCsense [11,1.5,360] [0.51] 
Actuation Capabilities RCact [2.14,0.50,0.50,0.30] [0.65] 

3 

Name Robot3 – 
Type differential-circular – 

Processing Capabilities RCproc [2.1,0.25,pc] [pc,0.45] 
Communication Capabilities RCcomm. [54,100] [0.87] 

Sensing Capabilities RCsense [10,1.5,360] [0.49] 
Actuation Capabilities RCact [2.15,0.40,0.50,0.1] [0.66] 

4 

Name Robot4 – 

Type 
differential-
rectangular 

– 

Processing Capabilities RCproc [10,16,mc] [mc,0.87] 
Communication Capabilities RCcomm. [11,100] [0.62] 

Sensing Capabilities RCsense [14,1.5,360] [0.55] 
Actuation Capabilities RCact [2.53,0.60,0.40,1] [0.67] 

5 

Name Robot5 – 
Type differential-circular – 

Processing Capabilities RCproc [6,4,mc] [mc,0.37] 
Communication Capabilities [11,100] [0.62] 
Sensing Capabilities RCsense [10,1.5,360] [0.49] 
Actuation Capabilities RCact [1.25,0.40,0.50,0.1] [0.5] 

6 

Name Robot6 – 
Type differential-circular – 

Processing Capabilities RCproc [6,2,mc] [mc,0.33] 
Communication Capabilities RCcomm. [11,100] [0.62] 

Sensing Capabilities RCsense [10,1.5,360] [0.49] 
Actuation Capabilities RCact [1.40,0.40,0.50,0.1] [0.5] 

7 

Name Robot7 – 
Type differential-circular – 

Processing Capabilities RCproc [6,4,mc] [mc,0.37] 
Communication Capabilities RCcomm. [11,100] [0.62] 

Sensing Capabilities RCsense [10,1.5,360] [0.49] 
Actuation Capabilities RCact [1.19,0.40,0.50,0.1] [0.48] 

8 

Name Robot8 – 

Type 
differential-
rectangular 

– 

Processing Capabilities RCproc [6,2,mc] [mc,0.33] 
Communication Capabilities RCcomm. [11,100] [0.62] 

Sensing Capabilities RCsense [14,1.5,360] [0.55] 
Actuation Capabilities RCact [0.95,0.60,0.40,1] [0.30] 
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Actuation capabilities include operation time, base size, and base performance. 

Worker task W1 (Table 5.21) requires a robot of any size with at least ‘low’ actuation 

ability. Additionally, worker task W2 (Table 5.21) is an explorer task requiring a 

robot of any size with at least ‘medium’ actuation capabilities. Table 5.22 details the 

actuation capabilities of three potential robots with different drive types (Robot2, 

Robot7 and Robot8). These robots have overall actuation scores of 0.65 (‘high’), 0.48 

(‘medium’) and 0.30 (‘low’), respectively.  

 
In each task, a set of weights with a sum of unity is specified for each resource type. 

The processing and communication weights of tasks M1 and M2 add up to unity in 

Table 5.20. Similarly, the sensing and actuation weights of tasks W1 and W2 add up to 

unity in Table 5.21. A higher weight for a sub-resource gives it greater preference in the 

selection process. On the other hand, a lower weight gives reduced preference.  

 
Table 5.23 and Table 5.24 provide details of the robot quantity criteria FIS employed 

by the multi-robot map-building and exploration task. Exploration area size can be 

precise or specified as ‘small’, ‘medium’, or ‘large’ to simplify user input. Similarly, 

explorer-planner task quantity ratio can be specified as ‘low’, ‘medium’ or ‘high’ if 

precise data cannot be given. The two outputs from the FIS are the quantities of 

explorers and planners for the global task. 

 
Table 5.23 details the input and output settings of the robot quantity criteria FIS. The 

data ranges and membership function ranges have been empirically selected. They can 

be customised if required. If a human user is unable to provide precise data, the area 

size reference points for ‘small’, ‘medium’ and ‘large’, are arbitrarily selected as 500 

m2 (10%), 2500 m2 (50%) and 4500 m2 (90%), respectively. Similarly, the explorer-

planner ratio reference points for ‘low’, ‘medium’, and ‘high’, are arbitrarily selected 

as 1 (0%), 5.5 (50%) and 10 (100%), respectively. A data range of [0 12] and a 

trapezoidal type ‘high’ membership function is employed for the outputs to achieve 

output values of ten from the FIS. Table 5.24 lists the twelve fuzzy rules that are 

employed by the robot quantity criteria FIS. The rules and their weights have been 

empirically selected. 
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Table 5.23: Input/output details of robot quantity criteria FIS for a multi-

robot map-building task. 

 
Input 1 Name Area Size 

Data Range (m2) [0 5000] 
Membership Function Details  Name small Medium Large 

Type triangular Triangular triangular 
Parameters [–2000 0 2000] [500 2500 4500] [3000 5000 7000] 

Input 2 Name  Explorer-Planner Ratio 
Data Range   [1 10] 
Membership Function Details  Name low medium High 

Type triangular triangular triangular 
Parameters [–3 1 5] [2 5.5 9] [6 10 14] 

Output 1 Name  Explorer Quantity 
Data Range   [0 12] 
Membership Function Details  Name low medium High 

Type triangular triangular trapezoidal 
Parameters [–4 0 4] [1 5 9] [6 10 12 16] 

Output 2 Name  Planner Quantity 
Data Range   [0 12] 
Membership Function Details  Name low medium High 

Type triangular triangular trapezoidal 
Parameters [–4 0 4] [1 5 9] [6 10 12 16] 

 

Table 5.24: Robot quantity criteria FIS fuzzy rules for a multi-robot map-

building task. 

 
Rule 
No. 

Area Size Explorer-
Planner 
Ratio 

Inputs 
Connection 

Explorer 
Quantity 

Planner 
Quantity 

Rule 
Weight 

1 small low and low low 1 
2 small medium and low low 0.9 
3 small medium and medium low 0.1 
4 small high and low low 0.75 
5 small high and medium low 0.25 
6 medium low and medium medium 1 
7 medium medium and medium low 1 
8 medium high and medium low 0.5 
9 medium high and high low 0.5 
10 large low and high high 1 
11 large medium and high medium 1 
12 large high and high low 1 

 
 
The robot quantity criteria in the worker task specification (Figure 5.2, p.113) 

specifies an area of approximately 1600 m2 with a ‘medium’ setting for the explorer-

planner task ratio ([1600,medium]). A second three element data set (e.g. [1,1,4] for 

task W1 in  Table 5.21) is derived from the robot quantity criteria FIS output. It 

represents the initial, minimum and maximum quantities of robots for the task. Four 

explorers and one planner are initially required based on the robot quantity criteria 
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FIS output. The minimum planner and explorer quantities are set to unity by default.  

For the maximum quantity, the largest initial allocation of both tasks is selected. In 

the map-building and exploration experiments (chapter 7), the initial, minimum and 

maximum values are arbitrarily selected to investigate the effect of varying the 

quantity of robots deployed.  

 
The default initial resource utilisation for each worker task is set to “on”. This 

represents the task as being fully enabled. A minimum ([off]) and maximum ([on]) 

range of resource utilisation values for each task is specified by the resource 

utilisation mapping data. Negative one (–1) values of resource utilisation indicate that 

a non-periodic or event driven task is enabled. A task is disabled if its resource 

utilisation data is set to zero. Feedback coordination mechanism weights are omitted 

from Table 5.21. These weights are presented in Table 5.29 (p. 150). 

 

         
  (a)    (b)      (c) 

Figure 5.11: Three mobile robots in the VUW fleet. 
 

Pentagon shaped tricycle robots (Robot1 and Robot2) are similar to the tricycle robot 

Scratchy (Figure 5.11(a)) [15]. Scratchy’s capabilities are the same as Robot1. It has 

an AMD Athlon 64 3000+ processor with 512 MB RAM. The estimated benchmark 

of the processor obtained from MATLAB’s ‘bench’ function is 3.2. Scratchy has 

eleven 1.5 m range infrared sensors that are evenly spaced (360° distribution) around 

the robot. A 54 MBit/sec 802.11g (~ 100 m) wireless communication module is also 

present on Scratchy. For actuation, Scratchy has just over two hours of operation time 

and is 0.5 m in radius (when a circle is prescribed from the robot’s centre). It has a 

maximum speed of 0.5 m/sec on normal flat terrain with a 30% rating (0.3) for 
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difficult terrain traversability. Robot2 is microcontroller based with a benchmark of 

six and 10 MB memory. It has similar sensing and actuation capabilities as Robot1. 

 
The circular shaped differential drive robots (Robot3, Robot5, Robot6 and Robot7) 

are based on the humanoid differential drive robot MARVIN (Figure 5.11(b)) [51]. 

MARVIN’s base (lower half of Figure 5.11(b)) contains the processing, 

communication, sensing and actuation capabilities of the robots described in Table 

5.22.  

 
Robot3 has identical processing, communication and sensing capabilities to 

MARVIN’s base. It has an AMD Athlon XP 2000+ processor with 256 MB RAM. 

Based on data from MATLAB’s ‘bench’ function, the processor benchmark is 

approximately 2.1. MARVIN has ten evenly spaced (360° distribution) 1.5 m range 

infrared sensors and a 54 MBit/sec 802.11g (~ 100 m range) wireless module. The 

actuation capabilities of Robot3 include an operation time of over two hours with a 

base size radius of 0.4 m (similar to MARVIN). It has maximum speed of 0.5 m/sec 

on normal flat terrain with a low rating of 10% (0.1) for difficult terrain traversability. 

Unlike MARVIN (Robot3), Robot5, Robot6 and Robot7 are microcontroller based 

with 2–4 MB memory. These robots possess 11 MBit/sec 802.11b wireless 

communication with approximately 100 m range. Additionally, these robots have 

twelve 1.5 m range infrared sensors that are evenly distributed around the robot.  

 
Rectangular shaped differential track robots (Robot4 and robot 8) are similar to the 

tank robot (Figure 5.11(c)) [137].  The tank robot has fourteen evenly spaced (360° 

distribution) 1.5 m range infrared sensors and a 54 MBit/sec 802.11g (~ 100 m range) 

wireless module .  

 
In Table 5.22, Robot4 has fourteen 1.5 m range infrared sensors that are evenly 

distributed around the robot. Robot8 has sixteen infrared sensors. Unlike the tank 

robot, Robot4 and Robot8 have 11 MBit/sec 802.11b (~ 100 m range) wireless 

communication. While the tank robot possesses an AMD Athlon XP based computer 

for processing, Robot4 is microcontroller based with a benchmark of ten and 16 MB 

memory. Robot8 is also microcontroller based with a benchmark of six and 2 MB 

memory. For actuation, Robot4 has an operation time of over 2.5 hours and a base 

size radius of 0.6 m (when a circle is prescribed from the robot’s centre). On normal 
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flat terrain Robot4 can achieve a maximum speed of 0.4 m/sec. It has a high rating for 

difficult terrain traversability (100% or 1). Robot8 has similar actuation capabilities to 

Robot4. 

 

5.5 Task Devolution 
 

5.5.1 Task Devolution Description 
 

Task devolution performs two main functions. Firstly, it transfers the control of the 

global task from the base station to the (manager) robots. Secondly, an initial 

allocation of tasks to the robots is performed. 

 
A key element of the task devolution process is the Vector of Task Suitability 

(VOTS). VOTSij is the VOTS for a task-robot pair and represents the jth robot’s 

suitability for the ith task. The VOTS data for each resource type VOTStypeij is a 

function of the resource capability score of the robot rjRCStype and the minimum 

resource capability score required for the task tiRCStype (5.4). Robot rj is considered 

capable of performing task ti if rjRCStype ≥ tiRCStype for all resource types.  

 
 typeij j type i typeVOTS r RCS t RCS= −  (5.4) 

 
There are two stages in the task devolution process. At the first stage, the base station 

performs primary task devolution to identify the task manager robots and assign tasks 

to them. The task specification and robot capability details are then transferred to the 

task manager robots. In the second stage, the task manager robots execute a secondary 

task devolution process, identifying and assigning tasks to the worker robots. The 

primary and secondary task devolution stages are both greedy assignment processes. 

 
Since rjRCStype and tiRCStype are unit interval data, the VOTSij data of all capable 

robots are also unit interval. Two additional parameters, a VOTS weighted sum 

(VOTSWSij) and value (Vij), are computed from the VOTSij data during task 

devolution. An FIS (similar to section 5.3) is utilised to compute these two values. 

The fuzzy inference function settings are identical to those specified in Table 5.1. 

Table 5.25 details the settings for all the inputs and outputs of the FIS.  
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Four inputs to the FIS include the VOTS data for each resource type (VOTSprocij, 

VOTScommij, VOTSsenseij and VOTSactij). These four inputs are combined with fuzzy 

rules and VOTS summation weights VSWi to compute VOTSWSij. A fifth input, task 

diversity capability TDij, is also applied to compute a robot task execution value Vij in 

the secondary task devolution process. TDij and Vij are explained in steps 3 and 4  of 

the secondary task devolution, respectively. The set of fuzzy rules and corresponding 

weights employed to determine VOTSWSij and Vij from the five inputs is shown in 

Table 5.26. A unity weight value is employed for rule 15 to favour robots with high 

TDij values. On the other hand, lower weight values are employed for rules 13 and 14 

to only slightly alter Vij. 

 
Table 5.25: VOTSWSij and Vij FIS input/output settings. 

 
Inputs 1–5 & 
Outputs 1–2 

Name VOTSprocij, VOTScommij, VOTSsenseij, VOTSactij, TDij, 
VOTSWSij and Vij 

Data Range (m) [0 1] 
Membership Function 
Details  

Name small medium large 
Type triangular triangular triangular 
Parameters [–0.5 0 0.5] [0 0.5 1] [0.5 1 1.5] 

 
 

Table 5.26: Set of fuzzy rules to determine VOTSWSij and Vij. 

 
Rule 
No. 

VOTSprocij VOTScommij VOTSsenseij VOTSactij TDij Conn– 
ection 

VOTSWSij Vij Rule 
Weight 

1 low – – – – – low low vswiproc 
2 medium – – – – – medium medium vswiproc 
3 high – – – – – high high vswiproc 
4 – low – – – – low low vswicomm 
5 – medium – – – – medium medium vswicomm 
6 – high – – – – high high vswicomm 
7 – – low – – – low low vswisense 
8 – – medium – – – medium medium vswisense 
9 – – high – – – high high vswisense 
10 – – – low – – low low vswiact 
11 – – – medium – – medium medium vswiact 
12 – – – high – – high high vswiact 
13 – – – – low – – low 0.1 
14 – – – – medium – – medium 0.2 
15 – – – – high – – high 1 
 
 
The main steps of the primary task devolution are as follows: 

 
1. Identify a subset of all the robots that are capable of performing at least one 

management task. 

2. Rank the capable robots in descending order based on VOTSWSij for all tasks 



140                Development of an Artificial Intelligence System for the Instruction and 
Control of Cooperating Mobile Robots 

 

that they are capable of performing. 

3. Consider the highest ranked robot. Determine the capability of this robot to 

perform combinations of management tasks that have not been assigned. A 

combined management task is obtained by adding the resources required for 

the individual management tasks. VOTS data are calculated for the combined 

management task to determine the robot’s ability to execute the tasks. 

4. Assign a combined management task to the highest ranked robot. The goal is 

to maximise the robot’s resource utilisation such that the weighted sum of the 

VOTS data for the combined task approaches zero. This permits the selection 

of a minimal number of manager robots for the global task.  

5. Remove the highest ranked robot from the selection process. 

6. If all management tasks have not been assigned and all ranked robots have not 

been considered then go to 3. 

 
When steps 3 to 6 are executed, all management tasks may not be assigned. The 

greedy nature of the algorithm tends to favour combinations of smaller tasks over 

individual larger tasks. To account for this imbalance, an additional iterative step has 

been included. The weighted sum of VOTS data for each multiple task combination is 

overrated by a factor CO. Weight wCO is incremented in steps of 0.1 from 0 to 1 when 

all management tasks are not assigned successfully. The number of tasks in the 

combination is n1c and the maximum number of tasks possible in a combination is 

n1cp. Alternative task allocation strategies that employ other optimisation strategies are 

reviewed in chapter 2. 

 

 1

1

1 c
CO

cp

nCO w
n

= + ×  (5.5) 

 
Stage 2 of the task devolution process, secondary task devolution is outlined below: 

 
1. Identify a subset of robots that are able to execute each worker robot task. 

2. Determine the weighted sum VOTSWSij, of the VOTStypeij data for each capable 

task-robot combination. This weighted sum represents a robot’s load handling 

capacity for that task.  
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3. Count the number of other tasks that each capable robot can execute. Divide 

this value by the number distinct of worker robot task types. The resulting 

value represents the robot’s task diversity capability TDij. 

4. Determine each robot’s value Vij of performing each task using the VOTSWSij 

and TDij values from steps 2 and 3 respectively. 

5. For each task, sort the capable robots in descending order of value Vij data. 

6. Based on the number of capable robots for each task, sort the tasks in 

ascending order. This enables tasks with fewer capable robots to be given 

higher priority for allocation. 

7. Store the sorted capable robots and tasks in a robot-task capability matrix for 

task reallocation use. 

8. Using the worker task requirements, select and assign the quantity of robots 

needed for each type of task. The selection process checks the capability of a 

robot to execute the current task together with any other tasks that have 

already been assigned to it. 

9. For each robot that is allocated a task, initialise the corresponding resource 

utilisation values. 

10. Initialise task score values TSij for the assigned task-robot combinations (5.6).  

VOTSWSimax is the maximum VOTSWS value amongst all robots that have 

been assigned task i. The task score values are updated by the feedback 

coordination mechanism (section 5.6). 

 

 
max

ij
ij

i

VOTSWS
TS

VOTSWS
=  (5.6) 

 

5.5.2 Multi-Robot Map Building and Exploration Task Devolution  
 

A team of robots can be selected from Table 5.22 for the multi-robot map building 

task described in Table 5.20 and Table 5.21. Following the execution of the primary 

and secondary task devolution algorithms presented in this section, the resulting initial 

team and initial task allocations are shown in Table 5.27. After primary task 

devolution, only two of the eight robots (Robot1 and Robot3) are isolated as capable 

of executing at least one manager task. Robot3 is capable of executing M1, while 



142                Development of an Artificial Intelligence System for the Instruction and 
Control of Cooperating Mobile Robots 

 

Robot1 can execute M2. Hence, Robot3 and Robot1 are assigned tasks M1 and M2 

respectively. 

 
 

Table 5.27: Resulting initial team and initial task allocations for the task and 

robot specifications presented in Table 5.20-Table 5.22. 

 
Task ID Robot ID TSW1 TSW2 

M1 3 – – 
M2 1 – – 
W1 4 1.0000 – 
W2 4 – 1.0000 
W2 2 – 0.8692 
W2 5 – 0.5949 
W2 7 – 0.5768 

 
Table 5.28 details the sorted capable robots in the robot-task capability matrix. 

Robot8 is omitted since it does not meet the minimum resource requirements for 

executing any worker task. Based on the robot value data rankings, task W1 is 

enabled on Robot4, while Robot4, Robot2, Robot5 and Robot7 have task W2 enabled. 

Tasks W1 and W2 are enabled on Robot4 since it is the highest ranked robot and 

capable of executing both tasks. W1 and W2 are executed in parallel on Robot4. 

Preference is given to the planner task (W1). Each worker robot has the default initial 

resource utilisation of its assigned task(s) enabled after task allocation. The initial task 

score for each selected worker task-robot combination is given in the third and fourth 

columns of Table 5.27.  

 
Table 5.28: Robot-task capability matrix for worker robots. 

 
Task 

W1 W2 
Robot ID V VOTSWS Robot ID V VOTSWS 

4 0.6618 0.5859 4 0.4835 0.2901 
2 0.5646 0.4495 2 0.4587 0.2548 
5 0.5344 0.4178 5 0.4171 0.2126 
7 0.5336 0.4164 7 0.4155 0.2166 
      6 0.2433 0.2077 

 

5.6 Feedback Coordination Mechanism 
 
Feedback coordination is performed by the manager robots and executes periodically 

with time interval Tm after initial task allocation. If the feedback mechanism detects 

that the performance of a worker robot is not satisfactory, a task reallocation process 
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adapted from the worker task devolution is called. The task reallocation algorithm 

applies a set of group task specific rules that adjusts a robot’s suitability for a 

particular task. 
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Figure 5.12: Feedback coordination mechanism block diagram. 
 
A block diagram of the feedback coordination mechanism is shown in Figure 5.12. 

The current resource achievement RA and corresponding current resource utilisation 

RU (or task allocation) for each worker robot are input to the feedback mechanism. 

Each robot’s RA data are compared with expected (best-case scenario) resource 

achievement RA’ data to compute the robot’s task execution success TES value.  

 
The best-case scenario resource achievement can be determined from simulation data 

or a simple real life experiment. This would need to be carried out by an expert user 

initially as a form of “calibrating” the robot. A normal user is not expected to alter or 

provide this data. For an exploration task, the best case scenario is the exploration of 

an environment comprising normal terrain traversable by any robot and no obstacles. 

It is relatively easy for an expert user to implement a 2D simulator using MATLAB or 

a 3D simulator using software such as Microsoft Robotics Studio.  

 

A robot’s planning, communication, sensing and actuation achievement can be logged 

to data files for analysis after the global task is complete. However, robot models may 
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not always be accurate in simulations, and similarly simulation results do not always 

reflect real-world results. Thus a robot or team of robots would ideally have an initial 

test sequence in a simple real environment to determine ideal achievement data. This 

process is essential in the currently developed feedback system. If the ideal 

achievement data is incorrectly determined, it will affect failure detection. A good 

estimate is required. A future improvement to the system could be to dynamically 

adjust the failure detection thresholds (for poor performance, partial failures, and 

complete failures) in a tuning process (chapter 9). 

 
The RU data of each robot are compared with expected resource utilisation RU’ data 

to compute the robot’s load success RLS value. A failure detection FD module then 

takes the RLS and TES values as input. If a failure is detected, the task reallocation TR 

module is triggered and the resource utilisation and achievement targets of the worker 

robots are updated. 

 
It is assumed that the selected robots have sufficient processing resources for their 

task allocations. However, if a robot does not have sufficient processing resources, 

RLS data can be employed to gradually adjust resource utilisation data for improving 

task execution. This scenario is not investigated in this thesis. In the multi-robot 

exploration application (chapter 6) the feedback mechanism is also triggered to 

replace or remove explorer worker robots that become idle when no suitable 

unexplored areas remain. 

 

5.6.1 Performance Monitoring 
 
The performance monitoring components of the feedback coordination mechanism 

include the TES, RLS and FD modules. All performance monitoring variables are 

normalized to unit interval values. The resource utilisation achievement of each 

resource category for each task-robot combination RAijcat is specified as: 

 
 1 2 ' ', ,..., ,...,ijcat ijcat ijcat ijcats ijcatzRA ra ra ra ra =    (5.7) 

where: 

[ ], , ,cat plan comm sense act∈ , 
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'ijcatsra  is the s’th task dependent resource utilisation achievement sub-category, 

and  

z’ is the number of sub-categories for resource utilisation achievement RAijcat. 

 
Achievement data are a record of robot activity. As mentioned previously, resource 

achievement data (RA) are compared with expected resource achievement data (RA’) 

to determine success. Planning achievement is usually represented by the number of 

local and/or global plans made. Communication achievement can be represented by 

the volume of messages transmitted and received successfully. The accuracy of 

covered or explored area can represent sensing achievement. Actuation achievement 

may include criteria such as average speed, distance travelled or objects moved. 

 
By integrating the instantaneous values of current and expected target achievements 

over N task monitoring time intervals, overall values of achievement ORAijcat and 

expected achievement ORA’ijcat can be determined (5.8)–(5.9). 

 

 
N

ijcat ijcatORA RA= ∑  (5.8) 

 ' '
N

ijcat ijcatORA RA= ∑  (5.9) 

 
A set of achievement weights KAicat, comprising achievement sub-category weights 

kaicats’, is also specified for each task (5.10). These weights are used in conjunction 

with RAijcat and RA’ijcat to bias sub-category achievements raijcats’ and ra’ijcats’ when 

determining success. 

 
 [ ]1 2 ' ', ,..., ,...,icat icat icat icats icatzKA ka ka ka ka=  (5.10) 

 
To combine the success values of each resource category into a single TES value, a 

second set of achievement success bias weights WSi is used (5.11). The individual 

robot TES value TESijind is determined using only the individual robot’s instantaneous 

achievement data (5.12). On the other hand, a robot’s team TES value TESijtm is 

determined as a combination of the instantaneous achievements of all n robots in the 

team executing a task (5.13). 
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 , , ,i iplan icomm isense iactWS ws ws ws ws =    (5.11) 
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 (5.13) 

 
Replacing RAijcat and RA’ijcat with ORAijcat and ORA’ijcat respectively in (5.12), yields 

an overall individual robot success value OTESijind (5.14). Making the same 

replacements in (5.13) produces a robot’s overall team success value OTESijtm (5.15). 

 

 '
'

''
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 (5.15) 

 
Individual robot RLSij values are determined in a similar manner to OTESijind values. 

The major difference is that RAijcat and RA’ijcat data are replaced with RUijcat and 

RU’ijcat data respectively (5.16). A set of resource utilisation weights KUicat that 

combines resource utilisation data of the sub-resources for each task replaces KAicat 

(5.17). The RLS data of each resource type is combined into a single number using a 

set of load success bias weights WLi.  Generally, the weights in WLi and WSi can have 

similar values since they are employed by the same task. RLS values verify that a 

robot has the capacity to process resource data in a timely manner. 
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 (5.16) 
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 [ ]1 2 ' ', ,..., ,...,icat icat icat icats icatzKU ku ku ku ku=  (5.17) 

 
 , , ,i iplan icomm isense iactWL wl wl wl wl =    (5.18) 

 
Calculating the RLS data for planning and communication resources can be 

troublesome since planning and communication control algorithms are usually non-

periodic. However, the TES of planning and communication resources may be used to 

approximate the RLS values. Hence, planning achievement can be employed as an 

approximation of the corresponding control algorithm’s execution rate. Similarly, 

communication achievement may be used as an indication of the communication 

control algorithm’s execution rate. 

 
The FD module detects three types of robot faults when success values are below 

threshold. A complete failure CFij is detected when no achievement data are received 

from a robot and it has no pulse signal. The pulse signal is a message sent by each 

robot to the manager at regular intervals to indicate activity. Partial failures PFij occur 

when a robot fails at its current task due to faulty hardware but is not dead (i.e. 

achievement data are received from the robot). Faulty hardware can include sensor or 

actuator (motor) failures. Partial failures can be detected when a robot’s instantaneous 

task execution success value TESijind is below a threshold value close to zero TEST. 

When a robot’s overall task execution success value OTESijind is below a second non-

zero threshold value OTEST, it is identified as a poor performance robot PPij. 

 

 
1 ; if  
0 ; otherwise

ijind T
ij

TES TES
PF

<
= 


 (5.19) 

 

 
1 ; if  
0 ; otherwise

ijind T
ij

OTES OTES
PP

<
= 


 (5.20) 

 
The multi-robot mapping and exploration task (chapter 6) employs task scores TSij 

when assigning local environments to explorers and jobs to planners. Explorer task 

scores TSej are employed to adjust the utility values of neighbouring local 

environments around an explorer’s current local environment. This facilitates an 

increment or reduction in utility values based on the performance of an explorer robot. 

An explorer’s task score TSej is determined from the overall team success value 
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OTESejtm, where e corresponds to the index of the explorer task (5.21). Planner robot 

task scores TSpj (5.22) are also calculated in a similar manner. The index of the 

planner task is represented by p in (5.22). OTESetmmax and OTESptmmax correspond to 

the maximum OTES values amongst all worker robots for the explorer and planner 

tasks respectively. 

 

 
max

 ejtm
ej

etm

OTES
TS

OTES
=  (5.21) 

 

 
max

 pjtm
pj

ptm

OTES
TS

OTES
=  (5.22) 

 
Exploration ECT data (5.23) are computed using exploration time tek, unexplored area 

in the current local environment ckA , unexplored area in the new local environment 

'n kA , total area explored Ao and predicted exploration rate Eo. Explored area and 

exploration rate data are obtained from sensing achievements. ECT data are employed 

by the multi-robot mapping and exploration task (chapter 6) for local environment 

assignment. The ECT data can be computed since it is assumed that the local 

environments and thus global area to be explored has specified boundaries. 
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 (5.23) 

 

5.6.2 Task Reallocation 
 
During the task reallocation process a robot’s VOTS derived value in the robot-task 

capability matrix is updated with overall task execution success OTESijind data. The 

robots are then re-ranked in descending order using this updated value. After re-

ranking, a set of rules RL is applied to further adjust robot rankings and remove faulty 

robots. These rules are outlined below and listed in order of priority: 

 
1. Remove completely failed robots in CF from all tasks in the robot-task 

capability matrix. 

2. Delete the currently assigned task i from the robot-task capability matrix for 

partially failed robots in PF. 
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3. Shift partially failed robots in PF to the bottom row of the robot-task 

capability matrix for all other tasks. 

4. Move poor performance robots in PP to the bottom row of the robot-task 

capability matrix for the currently assigned task i. 

5. Promote robots with any task specific capability requirements to the top of 

the robot-task capability matrix. An example is exploring an environment 

with varied terrain types. In some situations a very specific actuation type 

may be needed to explore some local environments. 

6. Adjust the quantity of tasks to be assigned based on the progress of the 

group task. For example, robots can gradually be removed from the team as 

the exploration task nears completion.   

 
Hysteresis loops to avoid false detections due to noise are not required for complete 

failures (step 1) and partial failures (step 2) since reallocations are essential. In these 

two situations, a robot is unable to execute its allocated task and cannot be assigned 

the same task again. Hysteresis loops can be employed for poor performance (step 3). 

However, this has not been incorporated since poor performance is appropriately 

identified and corrected without hysteresis (section 8.5.1).   

 
To complete the task reallocation process, steps 6 to 9 of the worker task devolution 

procedure (section 5.5.1) are executed to adjust the resource utilisation of the worker 

robots. 

 
Partially failed and poor performance robots are given lower rankings to place them 

below non-faulty task capable robots. Depending on their new ranking and group task 

requirements, partially failed and poor performance robots may be assigned an 

alternative task, keep their current task (poor performance robots only) or be removed 

from the team. 

 

5.6.3 Multi-Robot Map Building and Exploration Task Feedback 
Example 

 
Table 5.29 – Table 5.34 detail the application of the feedback coordination 

mechanism in a multi-robot map building and exploration task. The worker robot 

tasks and robots available for the multi-robot map building and exploration task are 
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specified in Table 5.21 and Table 5.22 respectively. The feedback time interval Tm is 

set to 60 seconds. 

 
The feedback coordination weights for worker tasks are specified in Table 5.29. Task 

IDs W1 and W2 represent the planner and explorer tasks respectively. In the resource 

achievement weights, no weights, (denoted by ‘–‘), are required to combine the sub-

categories of planning, communication and actuation achievements. While 

communication and actuation have only one achievement sub-category each, planning 

has two achievement sub-categories. The maximum value of the two planning sub-

categories is selected to represent planning achievement. This can be permitted in the 

map building and exploration task since the two planning sub-categories are related. 

 
Table 5.29: Feedback weights for worker tasks. 

 
Task ID Criteria  Value 

W1 

Resource Achievement Weights 
Planning 

Communication 
Sensing 

Actuation 

 
– 
– 

[0.5,0.5] 
– 

Achievement Success Bias Weights [0.5,0.5,0,0] 
TES Threshold -1 

OTES Threshold -1 
Resource Utilisation Weights 

Planning 
Communication 

Sensing 
Actuation 

 
– 
– 

[0.5,0.5] 
[0.5,0.5] 

Load Success Bias Weights [0.5,0.5,0,0] 

W2 

Resource Achievement Weights 
Planning 

Communication 
Sensing 

Actuation 

 
– 
– 

[0.5,0.5] 
– 

Achievement Success Bias Weights [0.1,0.05,0.45,0.4] 
TES Threshold 0.12 

OTES Threshold 0.65 
Resource Utilisation Weights 

Planning 
Communication 

Sensing 
Actuation 

 
– 
– 

[0.5,0.5] 
[0.5,0.5] 

Load Success Bias Weights [0,0,0.5,0.5] 
 
Complete failure of a planner robot can be detected when no achievement data are 

received from the robot. Negative one (–1) threshold values in Table 5.29 indicate 

that poor performance and partial failures are not detected for the planning task. A 

partial failure of the planner task does not arise since a processing or communication 

failure generally renders the robot useless for other tasks in multi-robot applications. 
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In the explorer task, TES threshold TEST is set to a value close to zero (0.12) such that 

sensing and actuation failures (or partial failure) can be detected. Poor performance in 

the explorer task can be detected when the overall performance is below 65% of the 

best-case scenario. 

 
When combining resource utilisation data to determine robot load success values, 

planning and communication utilisation data correspond to planning and 

communication resource achievement data. Hence, no sub-category weights are 

required for planning and communication resource utilisation data as well. The load 

success bias weights favour planning and communication for the planner task. On the 

other hand, sensing and actuation are favoured for the explorer task’s load success 

calculation. 

 
Table 5.30: Instantaneous achievement data for two worker robots. 

 

Robot ID 
Achievement Category Task ID 

Resource 
  W1 W2 

Sub-Category N = 1 N = 2 N = 3 N = 1 N = 2 N = 3 

4 

Planning Global             
(n Plans) Local Environment Assignment 3 0 0 0 0 0 

 Path Plan 3 0 0 0 0 0 
 Local             
 Waypoint Generation 0 0 0 0 1 0 
  Path Plan 0 0 0 0 3 2 

Communication (bytes) 59999 0 0 8283 4576 3192 
Sensing Area Explored 0 0 0 705 339 158 
(n Cells) Area Explored Accurately 0 0 0 645 319 146 
Actuation Distance Travelled (m) 0 0 0 14.58 14.17 13.42 

2 

Planning Global 0 0 0       
(n Plans) Local Environment Assignment 0 0 0 0 0 0 

 Path Plan 0 0 0 0 0 0 
 Local          
 Waypoint Generation 0 0 0 1 0 0 
  Path Plan 0 0 0 3 2 3 

Communication (bytes) 0 0 0 8555 8192 0 
Sensing Area Explored 0 0 0 252 317 289 
(n Cells) Area Explored Accurately 0 0 0 233 308 272 
Actuation Distance Travelled (m) 0 0 0 15.18 14.6 16.6 

 
 

Table 5.30, Table 5.32 and Table 5.33 illustrate the performance of two worker robots 

over three monitoring intervals (N) while exploring local environments in a large 

environment (chapter 6). The instantaneous achievements (actual achievement during 

exploration) of Robot4 and Robot2 are presented in Table 5.30. Robot4 is a planner 

(task ID W1) and performed global planning over the first monitor interval. Since 
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Robot2 is not a planner, it has zero achievement for W1. Robot4 and Robot2 are both 

explorers and their achievement data are listed under task W2 in Table 5.30. The best-

case scenario achievement data over a single monitor period for tasks W1 and W2 are 

listed in Table 5.31. These data are obtained from prior simulations in a similar sized 

environment with normal terrain and no obstacles. By integrating the achievement 

data of Table 5.31 over several monitor intervals, overall expected achievement can 

be calculated.  

 
Table 5.31: Instantaneous expected achievement data for two worker robots. 

 

Robot ID 
Achievement Category Task ID 

Resource 
  W1 W2 

Sub-Category Tm Tm 

4 

Planning Global     
(n Plans) Local Environment Assignment 0.4420 0 

 Path Plan 0.4420 0 
 Local     
 Waypoint Generation 0 0.1473 
  Path Plan 0 2.8000 

Communication (bytes) 10380 5270 
Sensing Area Explored 0 349 
(n Cells) Area Explored Accurately 0 349 
Actuation Distance Travelled (m) 0 15.26 

2 

Planning Global     
(n Plans) Local Environment Assignment 0 0 

 Path Plan 0 0 
 Local     
 Waypoint Generation 0 0.1584 
  Path Plan 0 3.0100 

Communication (bytes)   8580 
Sensing Area Explored 0 382 
(n Cells) Area Explored Accurately 0 381 
Actuation Distance Travelled (m) 0 18.27 

 
 

Table 5.32: Instantaneous resource utilisation of two worker robots. 

 

Robot ID 
Resource Utilisation Task ID 

Resource 
 W1 W2 

Sub-Category N = 1 N = 2 N = 3 N = 1 N = 2 N = 3 

4 

Sensing  Obstacle & Pose Detection 0 0 0 8.86 9.93 9.96 
(Freq. [Hz]) Local Map Update 0 0 0 8.86 9.93 9.96 
Actuation Motion Control 0 0 0 8.86 9.93 9.96 

(Freq. [Hz]) Motor Commands 0 0 0 8.86 9.93 9.96 

2 

Sensing Obstacle & Pose Detection 0 0 0 9.7 9.96 9.78 
(Freq. [Hz]) Local Map Update 0 0 0 9.7 9.96 9.78 
Actuation Motion Control 0 0 0 9.7 9.96 9.78 

(Freq. [Hz]) Motor Commands 0 0 0 9.7 9.96 9.78 
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Table 5.32 details the sensing and actuation resource utilisation for tasks W1 and W2. 

Since no sensing and actuation is necessary for the planner task (W1), it has zero 

resource utilisation for these resources. The target (expected) utilisation for sensing 

and actuation resources in the explorer task (W2) is 10 Hz (Table 5.21). During task 

execution, the actual resource utilisation for task W2 is slightly reduced due to path 

planning computation overheads. 

 
Task execution success and robot load success data for Robot4 and Robot2 are given 

in Table 5.33. Since Robot2 is not a planner, it has zero success for task W1. 

However, Robot4 is a planner and has OTES and RLS values of unity over all three 

monitor periods for task W1. It is unsuitable to detect partial failure in the planning 

task using TESind. While Robot4 has zero TESind data over the second and third 

monitor interval, it has not failed. Instead, as suggested by the OTES data, Robot4 has 

performed extra plans over the first monitor interval. Robot4 and Robot2 are both 

explorers (task W2) and their success data do not indicate any partial failure or poor 

performance.  

 
Table 5.33: TES and RLS data over three monitor intervals for two worker 

robots. 

 

Robot ID Parameter 
Task ID 

W1 W2 
N = 1 N = 2 N = 3 N = 1 N = 2 N = 3 

4 

TESind 1.0000 0 0 0.9000 0.9556 0.6887 
TEStm 1.0000 0 0 0.3665 0.2689 0.1678 

OTESind 1.0000 1.0000 1.0000 0.9000 0.9535 0.9236 
OTEStm 1.0000 1.0000 1.0000 0.3665 0.3215 0.2729 

RLS 1.0000 1.0000 1.0000 0.8866 0.9400 0.9589 

2 

TESind 0 0 0 0.7675 0.8019 0.7936 
TEStm 0 0 0 0.2066 0.2119 0.1931 

OTESind 0 0 0 0.7675 0.7847 0.7877 
OTEStm 0 0 0 0.2066 0.2092 0.2039 

RLS 0 0 0 0.9700 0.9833 0.9816 
 
The task score values of all worker robots over three monitor intervals are shown in 

Table 5.34. TSW2 data indicate that initial task assignment based on robot capabilities 

may not always rank robots in order of descending superiority. The initial team and 

task allocations (Table 5.27) shows that Robot2 is superior to Robot5 and Robot7 in 

the explorer task. Over the three monitor intervals during task execution, Robot2 is 

inferior to Robot7 and Robot5 in the explorer task. Task reallocation is not necessary 

since all robots are performing satisfactorily. The OTESind values for all explorers 



154                Development of an Artificial Intelligence System for the Instruction and 
Control of Cooperating Mobile Robots 

 

(task W2) is above the poor performance threshold of 0.65. Also, the TESind values for 

all explorers (task W2) is above the partial failure threshold of 0.12. Hence, all robots 

continue executing their assigned tasks.   

 
Table 5.34: Task score data over three monitor intervals for all worker robots. 

 

Robot ID 
Task Score 

TSW1 TSW2 
Initial N = 1 N = 2 N = 3 Initial N = 1 N = 2 N = 3 

4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2 0 0 0 0 0.8692 0.5637 0.6507 0.7471 
6 0 0 0 0 0.5949 0.7071 0.7371 0.7804 
5 0 0 0 0 0.5768 0.6754 0.7501 0.8153 

 

5.7 Scalability of Task Allocation and Feedback 
Coordination 

 
Task allocation consists of two stages. These are primary task devolution and 

secondary task devolution. Both processes are centralised and execute sequentially. 

After the selection of a manager robot from the primary stage, all information 

regarding the available robots is forwarded to it from the base station. Using the robot 

capability data presented in Table 5.22 with numerical values for robot IDs and drive 

types, each robot’s description is approximately 112 bytes in double precision. 

Latency is expected to be small (≤ 0.5 sec) when information for up to thirty robots is 

transmitted using 802.11g wireless communication. 

 
Secondary task allocation utilises a centralised greedy algorithm. This is expected to 

function appropriately if the number of robots is increased. More complex meta 

heuristic algorithms, such as genetic algorithms, Tabu search, branch and bound, or 

pattern search [138] could be utilised to search the space of robot fleet permutations. 

However, these methods are likely to have greater search times and still do not 

guarantee an optimal selection. Moreover, these methods would not produce adequate 

solutions if tasks are incorrectly specified by a non-expert human user. This research 

favours the use of a feedback system to detect and correct suboptimal situations 

during task execution. 

 
Feedback coordination is periodic and requires worker robots to send achievement 

data to managers. Chapter 8 evaluates feedback coordination at monitor time intervals 
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of 60 sec, 180 sec and 300 sec. Using the achievement data presented in Table 5.30, 

the feedback data sent by each robot will be approximately 64 bytes in double 

precision. Assuming the worker robots employ 802.11b wireless devices, a maximum 

bandwidth of 1408 KB/sec is available. Hence, the volume of feedback data is small 

relative to the bandwidth of communication. Up to 22528 robots can be monitored. 

However, in reality worker robots will be executing tasks and sharing other data as 

well. Chapter 6 evaluates the scalability for a multi-robot mapping and exploration 

task.  

5.8 Summary 
 
This chapter has presented a task allocation and feedback coordination mechanism for 

a hierarchical heterogeneous multi-robot system that consists of limited capability 

mobile robots. By employing fuzzy inference systems (FISs), the system can accept 

simplified human user data (graded inputs) for task specification. This enables non-

expert human users to specify tasks to a team of robots. However, such an approach 

requires additional effort from an expert in designing the system. The use of graded 

inputs is subjective and a non-expert human user may need to be educated via user 

manuals. Task allocation matches the resources required for a task with resources 

available on prospective robots.  

 
By employing feedback coordination, the system has the potential to address sub-

optimal task allocations and robot failures. Feedback coordination can also be used to 

rectify errors in tasks specified by non-expert users. Ideal (best-case scenario) 

achievement data is required to benchmark the performance of robots during task 

execution. Hence, an expert user is required to “calibrate” a robot’s performance prior 

to task execution. It is envisioned that this calibration will only be required to be done 

when the task type is altered.  

 
Data presented in this chapter demonstrates the application of the task allocation and 

feedback coordination mechanism to a multi-robot map building and exploration task. 

Results of extensive experiments with the task allocation and feedback coordination 

applied to a multi-robot map building and exploration task (chapter 6) are presented in 

chapter 7 and chapter 8. 
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6 Multi-Robot Map Building and 
Exploration Task 

 

6.1 Overview 
 
In multi-robot systems comprising robots with limited processing and sensing 

capabilities, mapping a large environment may be performed efficiently with good 

task allocation and coordination strategies [132]. Chapter 5 presented a task allocation 

and feedback coordination mechanism that can be employed for limited capability 

robots. This chapter focuses on a hierarchical multi-robot map building and 

exploration strategy that utilises the task allocation and feedback mechanism of 

chapter 5. The strategy enables limited capability (in terms of processing capability or 

memory capacity) robots to map a large environment that may contain numerous 

scattered obstacles. Since this is a customised map building and exploration strategy 

that is not similar to other approaches, it is difficult to compare it with the techniques 

reviewed in section 2.9. 

 
A global environment is divided into local environments (similar to chapter 4) for the 

limited capability robots (worker robots as described in section 5.3) to explore (Figure 

6.1). This  approach is an example of territorial division [139, 140] where separate 

areas are assigned to each robot for performing tasks. The division is based on the 

sensing and processing capabilities of the robots in addition to their physical size.  By 

storing only a local map, robots with limited processing and sensing abilities can 

update map data while surveying the local environment. Territorial division also has 

the potential advantage of decreasing robot interference during task execution [140].  

 
Two types of tasks are performed by the limited capability robots. Firstly, a planner 

task enables robots to navigate between the local environments. Secondly, to navigate 

and explore within a local environment, an explorer task is required.  Ideally a robot 

would be able to perform both of these tasks. However, due to (say) processing or 

memory limitations it may only be able to execute one in real time. Hence, the multi-

robot map building and exploration task is expressed as multi-task robots performing 

single-robot tasks. The planning and exploring tasks of the limited robots can be 
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coordinated with the assistance of a computationally powerful manager robot (Figure 

6.2).   
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Figure 6.1: A team of limited capability robots exploring a large environment. 
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Figure 6.2: Multi-robot map building and exploration task overview. 
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A major role played by the manager robot is the maintenance of the map-building 

task’s global information. It maintains a queue of explorer requests for new local 

environments and updates the status of the local environments as the global task 

progresses. Planners rely on the manager for path planning data and new local 

environment allocation requests. The planners can communicate amongst themselves 

to address concurrency issues. Asynchronous two-way communication is assumed to 

exist between the manager, planners and explorers. Messages are received via 

callback functions.  

 
Figure 6.1 shows an example of a global environment divided into local environments 

in a MATLAB simulation of the multi-robot map building and exploration task. There 

are sixteen local environments and their boundaries are represented by grey dotted 

lines. Three limited capability robots (light blue, blue and yellow in Figure 6.1) are 

employed to explore the environment. Scattered obstacles present in the environment 

are represented by black squares. Also present in the environment are regions of 

boggy terrain whose boundaries are denoted by the black dashed-dotted lines. Only 

robots with a particular drive type, such as caterpillar-like treads, can navigate 

through boggy terrain. For clarity of explanation, the environment is characterised as 

either being flat and easily accessible (normal) or difficult to traverse (for example 

bogs, rubble, steep slopes).  Throughout this chapter, such difficult terrain will just be 

labelled as boggy. 

 
A complementary pair of global maps stored on the manager robot represents obstacle 

and terrain information. The obstacle map consists of occupancy probability data and 

is stored at the required resolution (section 3.2). Data in the obstacle map represent 

obstacles independent of terrain.  

 
Unlike obstacle data, terrain data represents terrain traversable by any robot and 

difficult terrain. In this thesis, terrain traversable by any robot is represented as non-

boggy terrain while boggy terrain represents difficult terrain. A value of zero 

represents non-boggy terrain whereas boggy terrain is represented by value of unity.  

 
This thesis arbitrarily assumes that the area of a bog is not insignificant in comparison 

to the area of a local environment. Under this assumption terrain data are generalised 
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for a local map. Hence, when part of a local map consists of a bog, the entire local 

map is marked as boggy. This assumption is a function of available robot memory and 

the division of the global environment into local environments.  Marking the entire 

local environment as boggy will save memory as it can be problematic to maintain 

multiple global maps at the required resolution (obstacle occupancy grid map 

resolution) for limited robots. If the sizes of bogs are small in comparison to the local 

environment, the terrain map can be maintained at full resolution (similar to the 

obstacle map). This permits superior paths to be planned at the expense of additional 

memory. 

 
Initially, it is assumed that all local environments consist of non-boggy terrain. 

However, as boggy terrain is encountered by explorers during exploration, the terrain 

data are updated to a value of unity. Explorers communicate the discovery of bogs to 

managers and this information is shared with the planner robots.  

   
A multi-robot map building and exploration task has been simulated using MATLAB. 

Results of performing this multi-robot task with and without the feedback 

coordination system (section 5.4) are presented in chapter 8.  

6.2 Explorer Task 
 

As previously mentioned, there are two major functions (or sub-tasks) carried out by 

the explorers. One function is navigation to an assigned local environment. The other 

function is to explore and map the assigned local environment. Figure 6.3 illustrates 

the explorer control sequence and the relationship between the two major sub-tasks. 

Initially, the explorer requests for a new exploration area and/or path. It then receives 

new instructions from a planner about where to go and explore. Following this, the 

two major sub-tasks are sequentially executed to achieve the objectives of the 

explorer task.  

 
Navigation to an assigned local environment involves travelling along a planned path 

provided by a planner robot (Figure 6.3 and Figure 6.6) from the current location to 

the centre of the assigned local environment. An explorer may travel through partially 

explored regions of the global environment to reach an unexplored local environment. 

Therefore, it cannot be assumed that any edge or corner of the local environment is 
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better than others. Planning to the centre of the assigned local environment permits 

equal entry opportunities from all edges or corners. Navigation to an assigned local 

environment is complete once the explorer is inside its assigned local environment. 

The navigation strategy employed is described in chapter 3.  
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Receive new local environment and 
path from a planner

Send request for new local 
environment & path to manager 

Navigate to assigned local 
environment

Explore and map local 
environment

Send updated local environment 
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environment?

Send updated local environment 
map data to manager and request a 

new path

Receive a new path from a planner

Request a priori local environment 
map data from manager

Receive a priori local environment 
map data from manager

 
Figure 6.3: Explorer control flowchart. 

 
 
While navigating to its assigned local environment, the explorer will pass through 

other local environments. Some of these local environments may be unexplored or 

partially explored. Hence, explorers maintain a small quantity of local map memories 

and send updated map information to the managers as navigation to the assigned local 
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environment progresses. Exploration and mapping of the assigned local environment 

is discussed in the following sections.  

 

6.2.1 Exploring the Assigned Local Environment 
 

The robots employed for exploration have limited range sensors mounted at fixed 

positions and orientations. For initial simulation purposes, straight beam sensors such 

as infrared sensors are assumed for obstacle detection since they are in common use, 

being inexpensive and reasonably accurate depending on the grid map resolution.  

Cone-shaped beams such as ultrasonics could equally be modelled, and are briefly 

discussed at the end of section 6.2.2.  

 
However, employing infrared sensors requires a robot to traverse most of the 

environment to update map data. To aid traversal (hence exploration) of the assigned 

local environment, a set of waypoints is generated (Figure 6.4). The waypoint 

generation technique is inspired by the trapezoidal decomposition coverage method 

[141]. Waypoint generation accounts for a robot’s sensing characteristics (range and 

noise) and the size of the local environment. Sensor noise is assumed to be linearly 

proportional to range.  

 
The first two blocks of Figure 6.4 get the dimensions of the local environment and 

identify the corner from which the waypoint list begins. The next step for generating 

waypoints involves determining a threshold sensor noise NSt from an expected 

occupancy probability threshold value Ps and map resolution parameters (Xres,Yres) 

(6.1). This threshold sensor noise is converted to a threshold sensing range SRt by 

employing the minimum sensor noise NSmin, maximum sensor noise NSmax, minimum 

sensing range SRmin and maximum sensing range SRmax characteristics (6.2).  
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Using the information of the first three blocks (Figure 6.4), a minimum number of 

evenly spaced lines required to scan the environment is determined. The start and end 
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points of these evenly spaced lines are ordered into a set of waypoints. A graphical 

layout of an ordered set of eight waypoints for a local environment is presented in 

Figure 6.5. Generally, the sensing radius threshold SRt calculation is only necessary 

for the first local environment explored and its value is retained by the robot for 

subsequent local environment exploration. If the expected occupancy probability 

threshold Ps is set to a different value then the sensing range threshold is recalculated. 

 

Determine local environment map 
corner closest to robot

Get minimum and maximum 
coordinates of local environment

Use the specified expected 
occupancy probability value Ps to 

determine the sensing range 
threshold SRt 

Calculate the sensing radius 
threshold with respect to the centre 
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Use Rst , local environment 
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number of evenly spaced 

exploration lines

Create a list of waypoints for line 
scanning using the start and end 
points of the evenly spaced lines

Output waypoints list

 
 

Figure 6.4: Waypoint generation flowchart. 
 
 
After the waypoints have been generated and ordered into a list, they must be 

sequentially visited. The navigation strategy described in chapter 3 is utilised to 

achieve waypoint navigation. Path planning favours unexplored space while the local 

environment map data are updated at regular intervals. As each waypoint is 

successfully visited, the target is updated to the next waypoint on the list. If the 

progress towards a waypoint is unsatisfactory, path replanning occurs initially. 
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However, persistent unsatisfactory progress such as poor relative progress since the 

last replan or circling the goal location, results in the waypoint being considered 

inaccessible. This may occur if the waypoint is located inside a previously unmapped 

obstacle or within a narrow passage that was previously unknown. In such situations, 

the target is updated to the next waypoint on the list. When the last waypoint on the 

list has been visited or is deemed inaccessible, the exploration is complete and map 

data are forwarded to the manager for evaluation (section 6.4.2). 
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Figure 6.5: Graphical layout of waypoints. 

 
 

Assuming the global environment has reasonably flat terrain, the robots employed for 

exploration are capable of detecting boggy terrain by monitoring the PWM control 

effort applied to their drive motors. If the PWM control effort is abnormally high at 

low velocities, then it is highly likely that a non-bog capable robot is in boggy terrain. 

In this situation, the explorer informs the manager to update the local environment as 

boggy. To attempt to get out of the bog, a non-bog capable robot reverses to the first 

node of its current path (i.e. the path the robot followed to enter the bog). Once 

successfully out of the bog, the non-bog capable explorer can request for an 

alternative non-boggy local environment to explore. If the robot is unsuccessful in 

getting out of the bog, the feedback mechanism (section 5.4) will detect robot failure. 

 
If a robot is capable of traversing boggy terrain, it is assumed that a reduction in robot 

travel speed occurs in the absence of other obstacles when passing through a bog. An 

increase in the drive motor PWM control effort at this reduced speed is also expected. 
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In this situation, the bog capable explorer informs the manager to update the local 

environment as boggy and continues to explore the local environment.  

 
 

6.2.2 Mapping the Assigned Local Environment 
 
Each node in the local environment’s occupancy grid map is assigned an occupancy 

probability value in the range [0.05,0.95] (section 3.2.1). Initially, each node within a 

previously unassigned local environment has an occupancy value of 0.5 to represent 

unexplored space.  

 
Uncertainty in the robot’s position is not modelled. For the purpose of this discussion 

it is assumed that the robots are able to localise themselves. However, imprecise robot 

localisation due to sensor uncertainty would cause cells of the occupancy grid map to 

be updated incorrectly resulting in an inaccurate map. This in turn presents difficulties 

for navigating to unexplored regions using the map data. Simultaneous localisation 

and mapping (SLAM) can be utilised to correct this problem [67]. However, this may 

present difficulties due to limited sensing, computing or memory on the robots. 

Instead, navigation aids such as beacons or GPS (DGPS) can be employed to correct 

imprecise localisation [67].  

 
Since the infrared sensor beams are directional, they are simulated as a straight line 

originating from the sensor up to the maximum sensing range. As an example, the 

Sharp GP2Y0A02YK infrared sensors have a beam angle of approximately 5 degrees. 

The beam width is approximately 13 cm at the maximum range of 1.5 m. This is small 

in comparison to the occupancy grid resolution of 30 cm (section 3.2.1). Nodes that 

the sensor beams pass through need to have their probabilities updated as free space. 

Nodes that the robot itself occupies are also updated as free space. If an obstacle is 

detected by the sensor beam then the corresponding nodes are updated as occupied 

space. 

 
Occupancy probabilities are updated in real time using Bayes’ rule [130]. This rule 

produces an updated (or posterior) occupancy probability Pu using an initial (or prior) 

occupancy probability Pi and recently acquired sensor information (6.5). The new 

sensor information is translated into an expected probability that a sensed occupied 



166                 Development of an Artificial Intelligence System for the Instruction 
and Control of Cooperating Mobile Robots 

 

 

cell is occupied P(occs|occ) or a sensed unoccupied cell is unoccupied P(uoccs|uocc). 

As it is only possible for a cell to be sensed as either occupied or unoccupied, only 

one of the two probabilities is employed in the occupancy probability update. 

 
P(occs|occ) data are approximated by employing the grid map resolution parameters 

(Xres,Yres)  and sensor noise NSsen to compute a ratio of areas (6.3). The numerator of 

(6.3) corresponds to the area of a single occupancy grid while the denominator is an 

enlarged area accounting for sensor uncertainty. P(uoccs|uocc) is approximated by a 

linear probability function that varies between 0.2 (at the minimum sensing range 

SRmin) and 0.5 (at the maximum sensing range SRmax) (6.4). The lower probability 

limit of 0.2 has been arbitrarily selected to control the free space probability saturation 

rate. On the other hand, the upper limit of 0.5 results in the prior and posterior 

probabilities being the same. Equation (6.4) thus permits cells closer to the robot to 

saturate faster towards the minimum occupancy probability value of 0.05 representing 

free space (section 3.2). 
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If boggy terrain is detected during mapping and the explorer is non-bog capable, all 

cells that the explorer’s sensors sweep through while inside the bog are reset to 

unexplored. This is done to prohibit global path planning through the bog when the 

non-bog capable explorer has successfully exited the bog and is assigned an 

alternative (non-boggy) local environment. It is necessary since the explorer is already 

within a local environment marked as boggy and needs to exit it successfully to reach 
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non-bogy terrain. The cells can be updated later when a bog capable robot is assigned 

to explore the local environment.      

 
The node occupancy probability update method can be extended to sensors with cone-

like beams such as ultrasonic sensors. The sensor beam simulation representation can 

be changed from a straight line to a triangular shaped approximation for a 2D 

simulation. Additionally, the sensor noise function and its relationship to the expected 

probabilities (P(occs|occ) and P(uoccs|uocc)) within the triangular sensing region may 

be different. 

 

6.3 Planner Task 
 

Similar to the explorers, the planners execute two major functions (or sub-tasks). One 

of these functions is to assign local environments to explorers (section 6.3.1). The 

other major function is to perform global path planning for explorers. Figure 6.6 

shows the relationship of the two major sub-tasks in the planner control sequence.  

 
Once the manager has a job such as an explorer’s request for a new local environment 

assignment and/or path in the queue (section 6.4), it delegates the job to an available 

planner. With the assistance of the manager, planners maintain the status of each local 

environment (section 6.4.2). These status values are employed by the local 

environment assignment and global path planning sub-tasks. Hence, before executing 

the two sub-tasks, the planner checks its received messages for status updates from 

other planners. If communication fails, the planners act independently and it is 

possible for a local environment to be allocated to multiple robots simultaneously. 

However, a feedback coordination mechanism (section 5.6) can identify and remove 

or replace faulty (duplicate) planners. 

 
If a job does not require a new local environment assignment for an explorer, a path is 

planned to its currently assigned local environment. However, if an explorer requires 

a new local environment assignment, a new local environment assignment is proposed 

by a planner (section 6.3.1). Before addressing any concurrency issues, the planner 

requests an estimated completion time (ECT) acceptability notification from the 



168                 Development of an Artificial Intelligence System for the Instruction 
and Control of Cooperating Mobile Robots 

 

 

manager (section 6.4.3). ECT is only computed when less available local 

environments remain than explorers.  
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Figure 6.6: Planner control flowchart. 
 
 

A planner needs to negotiate with other planners before confirming its proposed local 

environment assignment. This involves addressing concurrency issues such as 

assigning the same local environment to multiple explorers. To address concurrency 

issues, the planner requests other planners to provide their proposed assignments. A 

distributed mutual exclusion strategy [142] is applied to proposed assignments with 

identical local environments. Initially, proposed assignment(s) with the minimum 
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utility-cost tradeoff are isolated. Then, if there are more than one minimum tradeoff 

proposed assignments, the one with the lowest job ID is selected. This ensures that 

only one explorer is assigned to the conflicting local environment. After resolving any 

conflicts, a confirmed new local environment assignment is sent to other planners and 

the managers. Prior to global path planning, the status of the confirmed local 

environment is updated as assigned. 

 
If the job does not require a new local environment assignment for the explorer, or if a 

confirmed assignment has been made for the explorer, a global path is planned to the 

assigned local environment. Global path planning involves planning a path from the 

explorer’s current position to the centre of its newly assigned local environment. 

Planners employ the memory constrained path planning technique presented in 

chapter 4 to facilitate global path planning for explorers. If a particular local 

environment’s status indicates that it has been assigned to another explorer, the path 

planner avoids planning through that local environment to minimise interference 

between robots. Additionally, the path planner employs terrain information to avoid 

planning paths through boggy local environments for non-bog capable explorers. 

  

6.3.1 Local Environment Assignment  
 

Planner robots employ a greedy algorithm inspired by [11] to propose a new local 

environment assignment for an explorer (Figure 6.7). The proposed new local 

environment assignment is checked for ECT acceptability and other planner conflicts 

(Figure 6.6) prior to confirmation. Initially, the planner obtains an update on the 

current local environment assignment of each explorer from the manager. Next, if the 

explorer requiring a new local environment is capable of exploring boggy terrain 

(determined from a robot’s actuation capability data (chapter 5)), a set of all available 

boggy local environments is determined. This set of available local environments 

consists of all unexplored or partially explored boggy local environments.  

 
Utility and cost values are computed for each local environment in the set of available 

environments for each explorer. The utility of a local environment is a dimensionless 

value that represents the gain from exploring the local environment. In this 

application it represents the unexplored space within a local environment. The cost of 
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a local environment is expressed in terms of travel distance and proximity to the other 

explorer robots. Utility and cost values are explained in some detail below.  

 
 

Yes

No

Get current local environments of all 
explorer robots

Tradeoff utility and cost for all 
available boggy local environments

Select local environment with 
maximum tradeoff

Output selected local environment

Empty set

Bog capable explorer?

Determine set of all available boggy 
local environments

Determine set of all available non-
boggy local environments

Tradeoff utility and cost for all 
available non-boggy local 

environments

Yes

No

Calculate explorer utility values for 
all non-boggy local environments

Calculate explorer utility values for 
all boggy local environments

Calculate explorer cost values for all 
non-boggy local environments

Calculate explorer cost values for all 
boggy local environments

 
 

Figure 6.7: Flowchart to propose a new local environment assignment for an 
explorer. 

 
 
Utility values are computed for each available boggy local environment if the set of 

available boggy local environments is non-empty. Each explorer – local environment 
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combination (ej–lm) has a utility value Uej–lm. All initial utility values (Uej–lm-init) are 

set to unity since all local environments are assumed to be unexplored (6.6).  

 
 1ej lm initU − − =  (6.6) 

 
A utility factor UFej-lm influences the utility values of local environments adjacent to 

the current local environment assignments of the explorers (6.7). This parameter 

enables weaker explorers (slow robots) to favour local environments adjacent or close 

to their current location. Non-zero unit interval explorer task scores TSej 

(section 5.6.1) determine UFej-lm (6.8). The limit function (6.7) maintains utility values 

in the range [0,2]. This facilitates adequate tradeoff between utility and unit interval 

cost values (6.10). If the utility of an adjacent local environment becomes zero due to 

utility factor reduction or being completely explored then it is less favoured (Table 

6.1). However, if the utility of an adjacent local environment is two, it is highly 

favoured for exploration (Table 6.1). 

 
 ( . )ej lm ej lm ej lm initU limit UF U− − − −=  (6.7) 
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After computing utility values for the local environments, corresponding cost values 

need to be determined. Each explorer – local environment combination (ej–lm) has a 

unit interval cost value Cej–lm (6.9). The cost function weighs the distance of the 

explorer to an available local environment distej-lm and the mean distance of the 

available local environment to other explorers distej’-lm  . Distance distej-lm is 

minimised while  distej’-lm  is maximised. Unit interval cost values are obtained by 

employing the maximum distance values (max(distej-lm) and max( distej’-lm  )) together 

with weights (wej-lm-1 and wej-lm-2) in the computation (6.9).   
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Weight wej-lm-1 favours minimising the distance of the available local environment 

from the explorer robot. On the other hand, weight wej-lm-2 favours maximising the 

mean distance of the available local environment from other explorer robots. A value 

of 0.9 and 0.1 has been empirically determined for wej-lm-1 and wej-lm-2 respectively. 

These values provide adequate balance between the two cost components distej-lm and 

distej’-lm  . If wej-lm-1 is reduced and wej-lm-2 is increased then the cost calculation can 

favour the maximisation of distance between explorers. However, minimising the 

distance of travel to an available local environment is preferred in the exploration 

task. This avoids excessive travel through unexplored terrain to reach a new local 

environment. 

Once the utility and cost values have been determined, a tradeoff value for each 

available local environment can be computed. Each explorer – local environment 

combination (ej–lm) has a tradeoff value Tej–lm (6.10). An available local environment 

with maximum tradeoff is selected as the proposed local environment for each 

explorer. Table 6.1 details the range of tradeoff values as utility and cost are varied. 

 
 ej lm ej lm ej lmT U C− − −= −  (6.10) 

 
Table 6.1: Utility and cost combination tradeoff data range. 

 Uej–lm Value Cej–lm Value Tej–lm Range 
2 (0,1] [1,2) 

(1,2) (0,1] (0,2) 
1 (0,1] [0,1) 

(0,1) (0,1] [-1,1) 
0 (0,1] [-1,0) 

 
 
If the set of available boggy environments is empty, a set of all available non-boggy 

local environments is determined. Similarly, if the explorer is not capable of exploring 

boggy terrain, the set of all available non-boggy local environments is also 

determined. All unexplored or partially explored non-boggy local environments are 

contained in the set of available local environments. At this stage of planning, the set 

of non-boggy local environments is not empty since the manager always checks this 
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condition before sending a job to a planner. The utility and cost values of the available 

non-boggy local environments are calculated in a similar manner to the procedure 

described above ((6.6)–(6.9)). Each non-boggy local environment’s tradeoff value is 

also computed as described previously (6.10), and the local environment with 

maximum tradeoff is selected as the proposed assignment. 

 

6.4 Manager Responsibilities 
 

The primary purpose of the manager robot is to coordinate the planning and exploring 

activities of the limited capability robots. It initially assigns planner and explorer tasks 

to the limited robots, and then monitors their performance while the map-building and 

exploration task executes (chapter 5). During task execution, the manager also 

maintains global information related to the map-building and exploration task. 

 
While the manager robot is computationally more powerful than the explorers, it may 

not be able to execute all the functions required for successful coordination. Hence, 

there may be multiple managers sharing the workload. However, in this chapter it is 

assumed (to simplify the system explanation) that the maintenance of the map-

building task’s global information can be handled by a single manager robot. If a 

single manager is unable to execute the global information maintenance task, it can be 

subdivided and executed on multiple robots that communicate with one another.  

 
There are three major components of global information maintenance for the multi-

robot map-building and exploration task: job queue maintenance, global map data and 

local environment status updates, and estimated completion time (ECT) computation. 

Each of these components is presented in some detail below. 

 

6.4.1 Job Queue Maintenance 
 

A single queue is maintained by the manager to receive job requests from explorers 

and forward these requests to planners for processing. Maintaining a single queue 

avoids job duplication. The manager responds to messages and data received from 

explorers and planners. Initially, an unassigned job list UJL is empty (Figure 6.8(b)) 

and the manager waits for a job to arrive from an explorer (Figure 6.8(a)).  
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                    (a)    (b) 
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and place in completed jobs list

Receive job completion notification 
from planner

 
(c) 

 
Figure 6.8: Job queue maintenance flowcharts. 

 
The job received from an explorer JBej consists of the explorer’s ID j and task type 

TTj (6.11). Task type TTj is a request for either a new path to an assigned local 

environment or a new local environment assignment and path. If explorer j is 

requesting a new local environment assignment and there are suitable local 

environments remaining, a unique task ID TI is merged with JBej to produce manager 

task MTI (6.12). MTI is then appended to UJL (6.13). However, if there are no suitable 

local environments remaining to explore, explorer j is notified and removed from the 

team by the feedback mechanism (section 5.6). If explorer j is requesting a new path 

then its job is appended to UJL. 

 
 { , }ej jJB j TT=  (6.11) 
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 { , }TI ejM TI JB=  (6.12) 
 

 { ; }TIUJL UJL M=  (6.13) 
 
It is possible for several explorers to send a job to the manager simultaneously. 

Hence, there can be several jobs in UJL before a job is forwarded to a planner for 

processing. Instead of forwarding jobs to planners in a first in first out (FIFO) manner, 

UJL is sorted to enable the most suitable explorers to have their jobs processed first.  

 
Initially, the jobs in UJL are already ranked in ascending order of task ID. Next, the 

jobs in UJL are sorted into new local environment assignment jobs and path plan jobs. 

Priority is given to jobs requiring a new local environment assignment to reduce the 

number of idle robots during exploration. Following this, the new local environment 

assignment jobs are sorted in ascending order based on explorer task scores TSej 

(section 5.6.1). If there are more local environments available for exploration than 

new local environment assignment jobs, no further processing is necessary. However, 

if there are more new local environment assignment jobs than local environments 

available for exploration, the weakest explorer(s) assignment jobs are purged from 

UJL. The weakest explorer(s) are notified that their exploration task is complete and 

they are removed from the team by the feedback coordination mechanism 

(section 5.6). 

 
After sorting and truncating UJL, the highest ranked job in UJL, M*TT, needs to be 

delegated to a planner for processing. All available planners (i.e. planners not 

processing any jobs) are ranked in descending order based on planner scores TSpj. The 

highest ranked planner is then delegated M*TT. An initially empty assigned jobs list 

AJL has M*TT appended to it (6.14). Following this, M*TT is purged from UJL.  

 
 { ; * }TTAJL AJL M=  (6.14) 
 
After completing its delegated job, the planner sends a job completion notification to 

the manager. When the notification is received by the manager, M*TT is removed from 

AJL and placed in the completed jobs list CJL (Figure 6.8(c)). 

 
During exploration, explorers can suffer failures in sensing, actuation, processing and 

communication. These failures can be detected by the feedback coordination 
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mechanism (section 5.6) and the exploration task can be updated accordingly (Figure 

6.9(a)). Similarly, planner failures (mainly due to processing and communication 

faults) can also be detected and acted upon (Figure 6.9(b)). 

 
When an explorer fault notification is received, the message is relayed to all planners 

and all pending jobs from the failed explorer are purged. Next, the manager attempts 

to recover any updated local environment map data from the failed explorer and 

integrate it with the global map. Following this, the status of the local environment 

assigned to the failed explorer is updated based on exploration quality (section 6.4.2). 

 
If a planner fails, the notification is forwarded to all other planners by the manager. 

All jobs delegated to the failed planner are transferred back from AJL to UJL. Planner 

failures are generally caused by processor related faults on a robot. Without a 

functional processor it is difficult to assign any other role or task to a failed planner. 

Hence, such a robot is usually removed from the team and replaced with another robot 

(section 6.4). 

Receive failed explorer notification

Attempt recovery of any updated 
local environment map data from the 

failed explorer

Merge retrieved map data with the 
global map

Forward notification to all planners

Remove all jobs received from the 
failed explorer from the unassigned 

and assigned job lists

Update status of local environment 
assigned to failed explorer

                   

Receive failed planner notification

Forward notification to all other 
planners

Remove all jobs delegated to the 
failed planner from the assigned 
jobs list and place them in the 

unassigned job lists  
        (a)            (b) 

 
Figure 6.9: Updating the job queue when explorers and planners fail. 
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6.4.2 Global Map Data and Local Environment Status Updates 
 
Explorers send local environment map data updates to the manager as exploration of 

the global world proceeds (Figure 6.10(a)). Updates may be sent while navigating to 

an assigned local environment to free up explorer local map memories for new data. 

Additionally, updates are sent when exploration of an assigned local environment is 

complete. Newly acquired local environment map data must be integrated with the 

existing map data on the manager. Similar to Yamauchi [8], Bayes’ rule [130] 

integrates the new Pnew and existing Pold occupancy probabilities of map nodes to 

produce a combined occupancy probability Pcom.   

 

 .
. (1 ).(1 )

old new
com

old new old new

P PP
P P P P

=
+ − −

 (6.15) 

 
Each local environment is assigned one of the following status values: unexplored 

UE, partially explored PE, explored E or being explored BE. Initially, the status of all 

local environments is set to UE. When a local environment is assigned to an explorer 

its status is updated to BE. The status of a local environment changes again after local 

environment map data received from an explorer is integrated with existing map data. 

Depending on the overall explored area in the combined map data (6.17), the status is 

changed to either E or PE (6.18), (6.19). 

 
Receive local environment map data 

from explorer

Merge local environment map data 
with the global map

Update status of local environment 
assigned to explorer

   

Receive boggy local environment 
notification

Update local environment as boggy 
in terrain map

 
              (a)                 (b) 

 
Figure 6.10: Global map data update flowcharts. 

 
 
A flood-filled map is produced by applying a modified flooding algorithm [143] to 

the combined map data. The modified flooding algorithm has the ability to flood 

obstacles with discontinuous boundary nodes. An element-wise (or node-wise) logical 
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comparison is made between the combined map data CMD and flood-filled map data 

FMD to generate logical map data LMD (6.16). 

 
 ( 0.5).( )LMD CMD FMD= −  (6.16) 
 
The sum of non-zero entries in LMD gives the unexplored nodes Nodesunex in the local 

environment. A per unit explored area value EA can be determined from Nodesunex 

and the nodes in the combined map data of the local environment NodesCMD. A 

threshold EA value EAT can be employed to distinguish between PE and E status 

((6.18) (6.19)). 

 

 1 unex

CMD

NodesEA
Nodes

= −  (6.17) 

 
 TE EA EA= ≥  (6.18) 
 
 TPE EA EA= <  (6.19) 

 
If the status of a local environment assigned to an explorer is changed to PE after 

receiving and integrating map data, the explorer should not be reassigned the same 

local environment. The manager maintains a record of each explorer’s previously 

assigned PE local environments to avoid this scenario. 

 
Explorers also send local environment terrain updates to the manager during 

exploration. Initially, all local environments are assumed to be non-boggy. When bogs 

are discovered, the explorer sends a notification to the manager to update the local 

environment’s terrain data as boggy (Figure 6.10(b)). 

 

6.4.3 Estimated Completion Time (ECT) Computation 
 

The goal of ECT computation is to ensure that the best explorers are selected when 

there are less unexplored local environments than explorer robots. This computation 

assumes that the local environments and thus global area to be explored has specified 

boundaries. A planner requests for an ECT acceptability notification after proposing a 

new local environment assignment for explorer j (section 6.3). This request is 

received by the manager and processed as described in Figure 6.11.  
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Figure 6.11: ECT flowchart. 
 
 
ECT computation is required for all explorers if there are less local environments 

available for exploration than explorers. The feedback coordination performance data 

(section 5.4.1) are employed to estimate the completion time ECTk of the kth explorer 

if the proposed local environment is assigned to it. After computation, the ECT data 

of all explorers are ranked in ascending order. If explorer j’s rank is not below the 

quantity of local environments available for exploration then its ECT is acceptable. 

Otherwise, explorer j’s ECT is unacceptable. The outcome of ECT acceptability is 

relayed to the planner that requested the computation. If the explorer’s ECT is 

unacceptable, the manager removes the planner’s job from the assigned jobs list. The 

explorer is also notified and removed from the team by the feedback mechanism 

(section 5.4). 

 
ECT computation is not required when there are at least as many local environments 

available as explorers. Each explorer’s ECT is assumed to be acceptable and the 
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manager notifies the planner to continue with the local environment assignment 

process.   

 

6.5 Scalability 
 
Scalability of the map-building and exploration task is largely dependent on the 

volume of data that represents a local map. Local map data is frequently utilised by 

planners for memory constrained global path planning. Explorers receive local map 

data from managers and return updates to managers. Section 5.7 highlights that 

worker robots communicate 64 bytes of data to managers for feedback coordination. 

This is small in comparison to the local map sizes discussed in chapter 4. A key 

finding from chapter 4 is that local map sizes should be kept small to reduce memory 

constrained path planning time. Another potential advantage of using smaller local 

map sizes is that explorers (some of which may be poor) are confined to smaller areas 

of the global environment.  

 
Assuming the worker robots employ 802.11b wireless devices, a maximum bandwidth 

of 1408 KB/sec is available. If a local map size of 64 KB is used for exploration with 

feedback coordination, a maximum of 21 robots can be controlled. This number can 

be further increased to 96 if 802.11g devices are employed by the workers.  

 

6.6 Summary 
 

This chapter has presented a map-building and exploration strategy that takes 

advantage of the benefits of hierarchical heterogeneous multi-robot systems. The 

presented strategy is well suited for three-tiered multi-robot systems such as [16] 

comprising robots with limited sensing and processing abilities. At the highest level 

of the hierarchy, manager robots coordinate lower tiered robots and maintain global 

information regarding the mapping and exploration task. Robots employed for planner 

and explorer tasks at the second and third tiers of the hierarchical system have limited 

processing capability or memory capacity. Hence, they utilise the map data stored on 

a manager robot for global path planning and map-building.  
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The presented technique also provides different levels of abstraction. Manager robots 

have a global view of the task. On the other hand, explorer robots are only aware of 

the section of the environment that they are required to explore. Planners are made 

aware of what plans they need to make and for which robots.   

 
Moreover, the mapping and exploration task is designed to be employed by the task 

allocation and feedback mechanism presented in chapter 5. Chapter 8 details the 

results of performing the multi-robot mapping and exploration task with and without 

feedback coordination (section 5.4).  
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7 Task Allocation (Devolution) 
Experiments 

 

7.1 Overview 
 
This chapter presents experiments on the task allocation strategy described in 

chapter 5. The multi-robot map-building and exploration task presented in chapter 6 is 

employed as a model global task for the experiments. Section 7.2 presents the task 

allocation experiment configurations. It details the tasks, vector of task suitability 

(VOTS) summation weight sets, and robot sets that have been employed in the 

experiments. Section 7.3 and section 7.4 present the results of the primary and 

secondary task devolution processes, respectively. A summary of the experiments 

detailed in this chapter is given in section 7.6. 

 

7.2 Task Allocation (Devolution) Experiment 
Configurations 

 
The goal of the task allocation (devolution) process is to select the most suitable 

robots for the global task. Each robot possesses certain resources while each task 

requires a particular set of resources. Four categories of resources are employed to 

encode tasks and robots (section 5.2 and section 5.3). These categories include 

processing, communication, sensing and actuation. Each resource category can also 

have a number of sub-resource categories. As explained in chapter 5, resources 

present on a robot are expressed as numerical vectors of merit (VOM). Similarly, the 

resources required for a task are expressed as vectors of task requirements (VOTR). 

 
The task devolution process compares the VOTR data for a task with the VOM data 

of the available robots to produce a VOTS for each task-robot combination (section 

5.5). All valid robot-task combination VOTS data are stored in a robot-task capability 

matrix (RTCM). The robots in the RTCM need to be ranked in descending order of 

task suitability (based on VOTS data) to permit the selection of the most suitable 
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robots. This process can be simplified if the VOTS data can be combined into a single 

number.  

 
A set of VOTS summation weights VSWi (section 5.2) is employed to combine the 

resource VOTS scores into a single number (5.2). The VOTS summation weights can 

be varied depending on the nature of the task. For instance, if a task requires a lot of 

planning, a greater weighting can be given to processing when ranking the robots. On 

the other hand, sensing and actuation can be given higher weighting if the task 

requires a robot to explore an environment. Note that variation of the VOTS 

summation weights can affect the ranking of a capable robot in the RTCM. In this 

manner, certain robot(s) amongst those capable can be given higher preference for 

selection. 

 
In the multi-robot map-building and exploration task presented in chapter 5, there are 

two manager tasks (MT1 and MT2 in Table 5.20, section 5.4) and two worker tasks 

(WT1 and WT2 in Table 5.21, section 5.4) that need to be allocated. Table 7.1 details 

the VOTS summation weight sets evaluated for the manager tasks. A similar set of 

weights is applied to test the planner (worker) task. Intuitively, the manager and 

planner (worker) tasks are processing and communication resource intensive. Hence, 

except for W1, the weights of Table 7.1 give these two resources greater preference 

than sensing and actuation. Table 7.2 shows the VOTS summation weights tested for 

the explorer (worker) task.  Generally, the explorer task is sensing and actuation 

resource intensive. Thus, Table 7.2 gives these resources greater preference than 

processing and communication (except for W1). 

 
 

Table 7.1: Manager and planner (worker) task VOTS summation weights. 

 
Weight Set vswproc vswcomm vswsense vswact 

W1 0.25 0.25 0.25 0.25 
W2 0.30 0.30 0.20 0.20 
W3 0.40 0.40 0.10 0.10 
W4 0.45 0.45 0.05 0.05 
W5 0.50 0.50 0.00 0.00 
W6 0.75 0.25 0.00 0.00 
W7 1.00 0.00 0.00 0.00 
W8 0.25 0.75 0.00 0.00 
W9 0.00 1.00 0.00 0.00 
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Table 7.2: Explorer (worker) task VOTS summation weights. 

 
Weight Set vswproc vswcomm vswsense vswact 

W1 0.25 0.25 0.25 0.25 
W2 0.20 0.20 0.30 0.30 
W3 0.10 0.10 0.40 0.40 
W4 0.05 0.05 0.45 0.45 
W5 0.00 0.00 0.50 0.50 
W6 0.00 0.00 0.25 0.75 
W7 0.00 0.00 0.00 1.00 
W8 0.00 0.00 0.75 0.25 
W9 0.00 0.00 1.00 0.00 

 
 

Table 7.3: VOM data of five sets of eight heterogeneous mobile robots. 

 
Robot 

ID Resource 
Value 

Set (a) Set (b) Set (c) Set (d) Set (e) 

R1 

Proc. Cap. [3.1,1,pc] [2.1,1,pc] [2.1,0.5,pc] [2.1,0.5,pc] [3.1,1,pc] 
Comm. Cap. [54,100] [54,100] [54,100] [54,100] [54,100] 
Sens. Cap. [12,1.5,360] [13,1.5,360] [13,1.5,360] [11,1.5,360] [14,1.5,360] 

Act. Cap. [2.00,0.60,0.5,0.3] [2.00,0.60,0.5,0.3] [2.00,0.60,0.5,0.1] [2.00,0.60,0.5,0.3] [2.00,0.60,0.4,1] 

R2 

Proc. Cap. [2.1,1,pc] [3.1,0.5,pc] [3.1,1,pc] [3.1,1,pc] [2.1,1,pc] 
Comm. Cap. [54,100] [54,100] [54,100] [54,100] [54,100] 

Sens. Cap. [13,1.5,360] [13,1.5,360] [13,1.5,360] [13,1.5,360] [12,1.5,360] 

Act. Cap. [2.00,0.60,0.5,0.1] [2.00,0.60,0.5,0.1] [2.00,0.60,0.5,0.1] [2.00,0.60,0.4,1] [2.00,0.60,0.4,1] 

R3 

Proc. Cap. [6,4,mc] [10,16,mc] [10,16,mc] [10,16,mc] [10,16,mc] 

Comm. Cap. [11,100] [11,100] [11,100] [11,100] [11,100] 
Sens. Cap. [12,1.5,360] [12,1.5,360] [12,1.5,360] [13,1.5,360] [13,1.5,360] 

Act. Cap. [1.06,0.25,0.4,1] [1.50,0.40,0.5,0.1] [1.19,0.25,0.5,0.3] [1.19,0.25,0.5,0.3] [1.19,0.25,0.5,0.3] 

R4 

Proc. Cap. [10,16,mc] [6,4,mc] [6,4,mc] [10,16,mc] [6,2,mc] 
Comm. Cap. [11,100] [11,100] [11,100] [11,100] [11,100] 
Sens. Cap. [14,1.5,360] [13,1.5,360] [12,1.5,360] [12,1.5,360] [13,1.5,360] 

Act. Cap. [1.50,0.40,0.5,0.1] [0.95,0.15,0.5,0.3] [0.95,0.15,0.5,0.3] [1.19,0.25,0.5,0.3] [0.85,0.15,0.4,1] 

R5 

Proc. Cap. [10,16,mc] [10,16,mc] [10,16,mc] [10,16,mc] [10,16,mc] 
Comm. Cap. [11,100] [11,100] [11,100] [11,100] [11,100] 

Sens. Cap. [13,1.5,360] [13,1.5,360] [12,1.5,360] [11,1.5,360] [14,1.5,360] 

Act. Cap. [1.50,0.40,0.5,0.1] [1.43,0.40,0.5,0.3] [1.25,0.25,0.5,0.1] [1.25,0.25,0.5,0.1] [1.50,0.40,0.5,0.1] 

R6 

Proc. Cap. [6,4,mc] [10,16,mc] [10,16,mc] [6,2,mc] [6,4,mc] 

Comm. Cap. [11,100] [11,100] [11,100] [11,100] [11,100] 
Sens. Cap. [12,1.5,360] [11,1.5,360] [14,1.5,360] [11,1.5,360] [13,1.5,360] 

Act. Cap. [1.06,0.25,0.4,1] [1.43,0.40,0.5,0.3] [1.19,0.25,0.5,0.3] [1.19,0.25,0.5,0.3] [1.19,0.25,0.5,0.3] 

R7 

Proc. Cap. [6,2,mc] [6,2,mc] [6,4,mc] [6,4,mc] [10,16,mc] 
Comm. Cap. [11,100] [11,100] [11,100] [11,100] [11,100] 
Sens. Cap. [13,1.5,360] [11,1.5,360] [12,1.5,360] [13,1.5,360] [11,1.5,360] 

Act. Cap. [1.43,0.40,0.5,0.3] [1.43,0.40,0.5,0.3] [1.06,0.25,0.4,1] [1.25,0.25,0.5,0.1] [1.25,0.25,0.5,0.1] 

R8 

Proc. Cap. [6,4,mc] [6,4,mc] [10,16,mc] [6,4,mc] [10,16,mc] 
Comm. Cap. [11,100] [11,100] [11,100] [11,100] [11,100] 

Sens. Cap. [13,1.5,360] [12,1.5,360] [10,1.5,360] [11,1.5,360] [10,1.5,360] 

Act. Cap. [1.25,0.25,0.5,0.1] [1.19,0.25,0.5,0.3] [1.19,0.25,0.5,0.3] [0.95,0.15,0.5,0.3] [1.06,0.25,0.4,1] 



186                Development of an Artificial Intelligence System for the Instruction and 
Control of Cooperating Mobile Robots 

 

 

 
Table 7.3 details randomly generated VOM data for five sets of eight robots. Each 

robot set is independent and represents a situation where eight candidate robots are 

available for task allocation. The numerical values for each resource type have been 

randomly selected from a set of practical values. Section 5.3 explains the numerical 

data values presented in Table 7.3 and section 5.4 provides sample data from real 

robots.  

 
 

Table 7.4: VOM data of Table 7.3 simplified with FISs. 

Robot 
ID Resource 

Value 

Set (a) Set (b) Set (c) Set (d) Set (e) 

R1 

Proc. Cap. [2,0.54] [2,0.53] [2,0.46] [2,0.46] [2,0.54] 
Comm. Cap. [0.87] [0.87] [0.87] [0.87] [0.87] 
Sens. Cap. [0.52] [0.54] [0.54] [0.51] [0.55] 

Act. Cap. [0.58] [0.58] [0.58] [0.58] [0.58] 

R2 

Proc. Cap. [2,0.53] [0.47] [2,0.54] [2,0.54] [2,0.53] 
Comm. Cap. [0.87] [0.87] [0.87] [0.87] [0.87] 

Sens. Cap. [0.54] [0.54] [0.54] [0.54] [0.52] 

Act. Cap. [0.58] [0.58] [0.58] [0.58] [0.58] 

R3 

Proc. Cap. [1,0.38] [1,0.86] [1,0.86] [1,0.86] [1,0.86] 

Comm. Cap. [0.63] [0.63] [0.63] [0.63] [0.63] 
Sens. Cap. [0.52] [0.52] [0.52] [0.54] [0.54] 

Act. Cap. [0.39] [0.50] [0.49] [0.49] [0.49] 

R4 

Proc. Cap. [1,0.86] [1,0.38] [1,0.38] [1,0.86] [1,0.33] 
Comm. Cap. [0.63] [0.63] [0.63] [0.63] [0.63] 
Sens. Cap. [0.55] [0.54] [0.52] [0.52] [0.54] 

Act. Cap. [0.50] [0.30] [0.30] [0.49] [0.26] 

R5 

Proc. Cap. [1,0.86] [1,0.86] [1,0.86] [1,0.86] [1,0.86] 
Comm. Cap. [0.63] [0.63] [0.63] [0.63] [0.63] 

Sens. Cap. [0.54] [0.54] [0.52] [0.51] [0.55] 

Act. Cap. [0.50] [0.50] [0.50] [0.50] [0.50] 

R6 

Proc. Cap. [1,0.38] [1,0.86] [1,0.86] [1,0.33] [1,0.38] 

Comm. Cap. [0.63] [0.63] [0.63] [0.63] [0.63] 
Sens. Cap. [0.52] [0.51] [0.55] [0.51] [0.54] 

Act. Cap. [0.39] [0.50] [0.49] [0.49] [0.49] 

R7 

Proc. Cap. [1,0.33] [1,0.33] [1,0.38] [1,0.38] [1,0.86] 
Comm. Cap. [0.63] [0.63] [0.63] [0.63] [0.63] 
Sens. Cap. [0.54] [0.51] [0.52] [0.54] [0.51] 

Act. Cap. [0.50] [0.50] [0.39] [0.50] [0.50] 

R8 

Proc. Cap. [1,0.38] [1,0.38] [1,0.86] [1,0.38] [1,0.86] 
Comm. Cap. [0.63] [0.63] [0.63] [0.63] [0.63] 

Sens. Cap. [0.54] [0.52] [0.50] [0.51] [0.50] 

Act. Cap. [0.50] [0.49] [0.49] [0.30] [0.39] 
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The detailed robot capability data presented in Table 7.3 is combined with fuzzy 

inference systems (section 5.3) to produce an overall score for each resource type 

(Table 7.4). Table 7.4 and the task descriptions presented in chapter 5 (Table 5.20 and 

Table 5.21) are utilised for task devolution experiments in this chapter.  

 
The effect of applying the VOTS summation weights of Table 7.1 and Table 7.2 on 

the five sets of robots has been investigated. Results of applying the VOTS 

summation weights of Table 7.1 and Table 7.2 are presented in Figure 7.1 – Figure 

7.15. The five graphs ((a)–(e)) in each figure illustrate results for each robot set (Table 

7.3). All robots identified in the results figures are capable of task execution. If a 

robot is not listed in the graphs then it is incapable of task execution. 

 
VOTS weighted sum (VOTSWS) data (Figure 7.1 and Figure 7.4) and Value data 

(Figure 7.7 and Figure 7.11) illustrate intermediate results of the task allocation 

process. The data presented in these figures is employed to rank the capable robots 

and select the most suitable robot(s). While VOTSWS data are computed using VOTS 

data and summation weights only, Value data calculation also includes a task 

diversity capability (TD) input (Table 5.26, section 5.5.1). VOTSWS data ranks 

candidate manager robots and Value data ranks candidate worker robots.  

 
In Figure 7.1 and Figure 7.4, it is important to note that higher VOTSWS data values 

does not necessarily mean that the corresponding weight set is better. Instead, it is the 

relative VOTSWS data values within a weight set that is important. This is also valid 

for the Value data presented in Figure 7.7 and Figure 7.11. The sole purpose of 

varying the VOTS summation weights is to investigate change in robot rankings 

based on the calculated VOTSWS and Value data. Section 5.5.2 presents an example 

of VOTSWS and Value data calculation for the task and robot descriptions detailed in 

Table 5.20 – Table 5.22. 

 
Figure 7.3, Figure 7.6, Figure 7.10, Figure 7.14 and Figure 7.15 display the robots that 

are assigned tasks. In these figures, an ‘x’ indicates that a robot has been selected for 

the respective task.  

 
Since each robot set is independent and robot capabilities are randomly selected, 

comparisons between robots with the same IDs are invalid. 
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7.3 Primary Task Devolution Results 
 

Figure 7.1 illustrates the variation in VOTS weighted sum (VOTSWS) data as the 

VOTS summation weights are varied according to Table 7.1 for manager task MT1. 

In all five robot sets, only robots R1 and R2 are capable of executing task MT1. The 

VOTSWS data varies in all five robot sets, but does not indicate a change in robot 

rankings (Figure 7.1 (a)–(e)).  
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Figure 7.1: VOTSWS data for manager task MT1. 
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Applying non-zero weightings for sensing and actuation (W1–W4 in Table 7.1) can 

alter the difference between VOTSWS data of the candidate robots. Weight set W7 

gives weighting only to processing for all robot sets. When the processing resources 

of robots R1 and R2 are compared to the low processing requirement of task MT1, 

large VOTS data is obtained for the processing resource. This results in higher 

VOTSWS values when weight set W7 is employed.  
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Figure 7.2: Robot rankings for manager task MT1. 
 
For weight set W9, weighting is only given to communication. Since all capable 

robots possess the same communication resources they have equal VOTSWS data at 
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weight W9. Figure 7.2 (a)–(e) shows that the rankings of robots R1 and R2 remain the 

same for weight sets W1–W8. Thus, Figure 7.3 (a)–(e) shows that the same robot is 

assigned manager task MT1 within each robot set, for all the tested weight sets.  
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Figure 7.3: Robot(s) assigned to manager task MT1. 

 
Intuitively, weight set W5 has been selected to give equal weighting to processing and 

communication capability data. 

 
Figure 7.4, Figure 7.5 and Figure 7.6 show the VOTSWS data, robot rankings and 

selected robots, respectively, for manager task MT2. Similar to manager task MT1, 
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the VOTSWS data varies in all robot sets (Figure 7.4 (a)–(e)). Minimum VOTSWS 

data is obtained when weighting is given to processing only (weight set W7 in Table 

7.1). A higher processing requirement for task MT2 results in lower VOTSWS values 

when weight set W7 is employed.  
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Figure 7.4: VOTSWS data for manager task MT2. 
 
All capable robots have identical VOTSWS data for weight set W9 since they possess 

identical communication resources. Similar to task MT1, applying non-zero 

weightings to sensing and actuation resources (W1–W4 in Table 7.1) alters VOTSWS 

data. Weight sets W1–W8 do not alter the rankings of capable robots within each 
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robot set (Figure 7.5 (a)–(e)). Hence, in each robot set, all tested weight combinations 

assign the same robot to task MT2 (Figure 7.6 (a)–(e)).  
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Figure 7.5: Robot rankings for manager task MT2. 

 
It is important to point out that the second best robot is always selected for task MT1 

(Figure 7.2 and Figure 7.3) while the best robot is selected for task MT2 (Figure 7.5 

and Figure 7.6). Task MT2 is more difficult than task MT1 due to its higher 

processing and communication requirements. This gives task MT2 priority for 

assignment during task allocation. Figure 7.1 (task MT1) shows VOTSWS values 
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greater than 0.4 for all tested configurations. On the other hand, VOTSWS values are 

less than 0.3 for all tested configurations in Figure 7.4 (task MT2). Since the 

VOTSWS values for task MT1 are greater than task MT2, this verifies that task MT2 

is more difficult than task MT1. 
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Figure 7.6: Robots assigned to manager task MT2. 
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7.4 Secondary Task Devolution Results  
7.4.1 Worker Task WT1 (Planner) 

 
Figure 7.7 – Figure 7.10 details the results of VOTS summation weight variation 

(Table 7.1) for worker task WT1 (planner). Weight sets W1–W4 give weighting to all 

four resource types. No weighting is given to sensing and actuation resources in 

weight sets W5–W9. In weight set W7, weighting is only given to processing. 

Communication is solely preferred in weight set W9.  
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Figure 7.7: Value data for worker task WT1 (planner). 
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Figure 7.7 shows the variation in Value data as the weights are varied according to 

Table 7.1. The robots plotted in each robot set are capable of executing worker task 

WT1. In all five robot sets, robots R1 and R2 are not identified as candidate worker 

robots since they have already been categorised as manager robots in section 7.3. 

Robots with ‘good’ processing capabilities tend to show a gradual increase in Value 

data as the weight sets are varied from W1–W9. For example, R4 and R5 in robot set 

(a) (Figure 7.7 (a)) have processing capability scores of 0.86 (as illustrated in Table 

7.4). A similar trend is visible in the other robot sets. 

 
Value data is highest for all robots at weight set W9. This indicates that all robots 

have communication capabilities that are much greater than the task’s minimum 

requirement when compared to other resource types (processing, sensing, or 

actuation). All candidate worker robots possess identical communication devices in 

the tested configurations. However, Value data can vary depending on the number of 

different tasks that a robot is capable of performing. For example, R4 in robot set (b) 

(Figure 7.7 (b)) has a lower Value than other robots at W9 since it is incapable of 

executing task WT2 (explorer). 

 
Robots with processing capabilities close to the minimum requirement generally 

exhibit little variation in Value data as the weight sets are varied from W1–W5 (e.g. 

R8 in sets (a) and (d) (Figure 7.7 (a),(d)) or R4 in sets (b) and (c) (Figure 7.7 (b),(c))). 

However, there can be a slight increase until W5 (e.g. R3 in set (a) (Figure 7.7 (a)), or 

R8 in set (b) (Figure 7.7 (b)) or R7 in set (c) (Figure 7.7 (c)) attributed to the good 

communication capabilities of the robots. For weights sets W6 and W7, Value data is 

decreased due to the high weighting of processing capability. Weight sets W8 and W9 

exhibit an increase in Value compared to W7 in all robot sets. This is due to the 

weighting for communication being greater than processing. 

 
Based on the Value data of Figure 7.7, Figure 7.8 illustrates the robot rankings for the 

planner worker task. A robot with a rank of unity has the highest rank.  

 
Figure 7.8 shows that four robot sets (Figure 7.8 (a),(b),(c),(e)) out of five produce 

identical rankings within their respective sets when weight sets W1–W4 are applied. 

Robot set (d) (Figure 7.8 (d)) shows a change in ranking for R4 and R5 when weight 
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sets W3 and W4 are employed. In weight sets W1 and W2, R4 and R5 are ranked 

third and second, respectively. But, in weight sets W3 and W4, R4 and R5 are ranked 

second and third, respectively. This change can be attributed to the fuzzy combination 

of VOTS data. It should also be noted that the Value data of R4 and R5 are almost 

identical for weight sets W2, W3, and W4 (Figure 7.7 (d)). A key point to note is that 

each robot has a unique rank when weight sets W1–W4 are applied to the tested robot 

sets. 
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Figure 7.8: Robot rankings for worker task WT1 (planner). 
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Weight sets W5–W8 produce identical robot rankings within each robot set for all 

tested robot sets. Additionally, multiple robots have identical ranks for an individual 

weight set when these weight sets are employed. Similar to weight sets W5–W8, 

weight set W9 produces identical ranks for multiple robots in all robot sets. 

 
Hence, Figure 7.8 illustrates that applying weightings to sensing and actuation in 

addition to processing and communication allows each robot to have a unique rank. A 

planner task is generally more processing and communication intensive than sensing 

and actuation. This means that the weightings of processing and communication 

should be greater than sensing and actuation. Weight set W3 has been selected since it 

has low weightings for sensing and actuation. It should be noted that weight sets W2 

or W4 could be used as well. Applying small weightings to sensing and actuation also 

permits the task allocation process to give a higher ranking (closer to 1) to robots with 

better sensing and actuation resources. This is beneficial since a planner may also 

need to be mobile during execution of the multi-robot exploration task. 

 
Worker task WT1 task score data (Figure 7.9) is utilised by the mapping and 

exploration task (chapter 6) for allocating planning requests made by explorers to the 

planners. Figure 7.9 illustrates that the task score data for robots with good processing 

resources approaches unity as the weight sets are altered from W1–W7. One example 

is R5 and R6 in robot set (b).  Another example is R3, R5, and R8 in robot set (c). On 

the other hand, task score data for robots with weaker processing resources 

approaches zero as the weights are varied from W1–W7. An example of this is R4 and 

R8 in robot set (b). Another example is R7 and R8 in robot set (d). Task score data are 

high in weight sets W8 and W9 due to the high weighting of the good communication 

resources present on all robots. 
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Figure 7.9: Task score data for worker task WT1 (planner). 
 

Figure 7.10 details the robots assigned to the planner worker task for the tested weight 

and robot sets. In all five robot sets, the same robot is selected within each respective 

set for weight sets W1–W4. Similarly, the same robot within each respective robot set 

is chosen when weight sets W5–W8 are applied. Weight set W9 only gives weighting 

to the identical communication resources present on all robots. Thus, the robot with 

the lowest identification number (R3) is selected for all robot sets when weight set 

W9 is applied. In three robot sets (Figure 7.10 (b),(c),(e)), applying small weightings 

to sensing and actuation (W1–W4) selects a robot that is different from the selection 
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when no weighting is given to these two resource types (W5–W9). However, the 

selected robots have identical processing resources for all three robot sets. 

 
Weight Set Robot 

ID W1 W2 W3 W4 W5 W6 W7 W8 W9 

R1          

R2          

R3         x 

R4 x x x x x x x x  

R5          

R6          

R7          

R8          

   

Weight Set Robot 
ID W1 W2 W3 W4 W5 W6 W7 W8 W9 

R1          

R2          

R3     x x x x x 

R4          

R5 x x x x      

R6          

R7          

R8          

  
        (a)              (b) 

Weight Set Robot 
ID W1 W2 W3 W4 W5 W6 W7 W8 W9 

R1          

R2          

R3     x x x x x 

R4          

R5          

R6 x x x x      

R7          

R8          

   

Weight Set Robot 
ID W1 W2 W3 W4 W5 W6 W7 W8 W9 

R1          

R2          

R3 x x x x x x x x x 

R4          

R5          

R6          

R7          

R8          

  
        (c)              (d) 

Weight Set Robot 
ID W1 W2 W3 W4 W5 W6 W7 W8 W9 

R1          

R2          

R3     x x x x x 

R4          

R5 x x x x      

R6          

R7          

R8          

  
(e) 

Figure 7.10: Robots assigned to worker task WT1 (planner). 
 
 

7.4.2 Worker Task WT2 (Explorer) 
 
Results of VOTS summation weight variation (Table 7.2) for worker task WT2 

(explorer) are illustrated in Figure 7.11 – Figure 7.15. Weightings are given to all four 

resource types in weight sets W1–W4. Weight sets W5–W9 do not give any 

weighting to processing and communication resources. Actuation is the only resource 

given weighting in weight set W7. Weight set W9 only gives weighting to sensing. 
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Figure 7.11 details the variation in Value data as the weights are changed according to 

Table 7.2. In all robot sets, the low processing and communication requirements for 

the explorer task produces higher Value data in weight sets W1–W4 when compared 

to weight set W5. As the weight sets are altered from W1 to W4, the weightings for 

processing and communication are reduced thus lowering the Value data. 
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(e) 

Figure 7.11: Value data for worker task WT2 (explorer). 
 
Equal weighting is given to sensing and actuation in weight set W5. Weight sets W7 

and W9 give weighting to only sensing and actuation, respectively. Comparing the 
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Value data for these three weight sets shows that W5 has the lowest Value data. This 

trend is present in all robot sets. Employing FISs to calculate Value data produces 

these reduced values. However, the value data within a particular weight set is critical 

for ranking robots. When compared to 100% actuation (W7) and 100% sensing (W9), 

the Value data for all robots is reduced proportionally in W5.  

 
Similar to weight set W5, weight sets W6 and W8 also exhibit a slight reduction in 

Value data when compared with 100% actuation (W7) and 100% sensing (W9). This 

reduction in Value is also due to the FISs employed for Value data calculation. At 

W6, the FISs give 75% weighting to actuation and 25% weighting to sensing but 

reduce the Value data for all robots in similar proportion. A similar trend is noticed at 

W8 where 25% weighting is given to actuation and 75% weighting to sensing. 

 
In Figure 7.11 (a),(b),(d), one robot (R7, R7, and R6, respectively) has a much lower 

value compared to the other robots within the respective robot set. This is due to that 

particular robot not having sufficient processing resources to execute planner task 

WT1. 

 
Figure 7.12 illustrates the robot rankings obtained from the Value data of Figure 7.11 

for the explorer task. Similar to the planner task WT1, a robot with a rank of unity has 

the highest rank. All five robot sets produce identical rankings within their respective 

sets for weight sets W1–W4. One robot set (Figure 7.12 (a)) produces an identical 

rank (4th) for two robots (R3 and R6) for all weightings. Table 7.4 shows that these 

two robots have identical resource capabilities. In all other robot sets, each robot has a 

unique rank when weight sets W1–W4 are applied.  

 
Applying weight sets W5–W9 ranks the candidate robots based on sensing and 

actuation resources only. It is possible for robots to have identical rankings for some 

weight sets due to identical sensing and actuation resources. This is valid for all 

robots sets (Figure 7.12 (a)–(e)) at weight sets W7 and W9 where weighting is only 

given to actuation and sensing resources, respectively. Figure 7.12 (a)–(e) show that 

robot rankings can be altered when weight sets W5–W9 are employed. At most, the 

ranking of a robot changes by one position if both sensing and actuation are weighted 

(weight sets W5, W6, and W8). A maximum rank change of three positions is shown 

in Figure 7.12 (e) at weight set W7 for R7. Similarly, R7 in Figure 7.12 (c) exhibits a 



202                Development of an Artificial Intelligence System for the Instruction and 
Control of Cooperating Mobile Robots 

 

 

rank change of three positions at weight set W9. In these two situations, the change is 

due to a robot being strong in one resource type but weaker in all other resource types. 
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(e) 

Figure 7.12: Robot rankings for worker task WT2 (explorer). 
 
Thus, it is possible to achieve a unique rank for non-identical robots by applying 

weightings to planning and communication in addition to sensing and actuation. The 

explorer task is generally more sensing and actuation intensive than processing and 

communication. Hence, the weightings of sensing and actuation are expected to be 

greater that sensing and actuation. Weight set W4 has been selected as it provides low 

weightings for processing and communication in addition to sensing and actuation. 
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Weight sets W2 and W3 could also be employed since they produce the same 

rankings as W4. A better ranking (closer to unity) is achieved for robots with better 

processing and communication resources when small weightings are provided for 

these two resources. This can be beneficial since the selected robot(s) may be able to 

execute the planner task when a planner robot fails during task execution.  
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(e) 

Figure 7.13: Task score data for worker task WT2 (explorer). 
 
Figure 7.13 illustrates the initial task score data for worker task WT2. This data is 

utilised to bias the allocation of exploration areas to explorer robots in the mapping 

and exploration task (chapter 6). Section 5.5.1 details the computation of task score 
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data. Task score data is close to unity (> 0.9) for all robots within each robot set when 

weighting is given to only sensing and actuation resources (weight sets W5–W9). 

Giving weighting to planning and communication in addition to sensing and actuation 

(weight sets W1–W4), produces lower task score data for some robots in each robot 

set. The robots with lower task scores have weaker processing capabilities than the 

robots with higher task scores in these weight sets (W1–W4). For example, at W1 in 

set (a) R3 has a processing capability of 0.38 (from Table 7.4) and a task score of 

0.72. But, R4 with a processing capability of 0.86 (also from Table 7.4) produces a 

task score of 1 at W1 in set (a).Weight set W4 has the least task score reduction 

amongst weight sets W1–W4 for all five robot sets. 

 
Weight Set Robot 

ID W1 W2 W3 W4 W5 W6 W7 W8 W9 

R1          

R2          

R3 x x x x x x x x x 

R4 x x x x x x x x x 

R5 x x x x x x x x x 

R6 x x x x x x x x x 

R7          

R8 x x x x x x x x x 

   

Weight Set Robot 
ID W1 W2 W3 W4 W5 W6 W7 W8 W9 

R1          

R2          

R3 x x x x x x x x x 

R4          

R5 x x x x x x x x x 

R6 x x x x x x x x x 

R7 x x x x x x x x x 

R8 x x x x x x x x x 

  
        (a)              (b) 

Weight Set Robot 
ID W1 W2 W3 W4 W5 W6 W7 W8 W9 

R1          

R2          

R3 x x x x x x x x x 

R4          

R5 x x x x x x x x x 

R6 x x x x x x x x x 

R7 x x x x x x x x x 

R8 x x x x x x x x x 

   

Weight Set Robot 
ID W1 W2 W3 W4 W5 W6 W7 W8 W9 

R1          

R2          

R3 x x x x x x x x x 

R4 x x x x x x x x x 

R5 x x x x x x x x x 

R6 x x x x x x x x x 

R7 x x x x x x x x x 

R8          

  
        (c)              (d) 

Weight Set Robot 
ID W1 W2 W3 W4 W5 W6 W7 W8 W9 

R1          

R2          

R3 x x x x x x x x x 

R4          

R5 x x x x x x x x x 

R6 x x x x x x x x x 

R7 x x x x x x x x x 

R8 x x x x x x x x x 

  
(e) 
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Figure 7.14: Robots assigned to worker task WT2 (explorer) when five explorers 
are required. 

The multi-robot mapping and exploration task (chapter 6) and feedback coordination 

mechanism (section 5.6) have been tested on teams comprising five, three, and one 

explorer(s). Hence, the selection of these quantities of explorer robots is examined. 

For a team of five explorers, Figure 7.14 reveals that the same five explorers are 

selected for all weight sets within each robot set.  

 
Weight Set Robot 

ID W1 W2 W3 W4 W5 W6 W7 W8 W9 

R1          

R2          

R3          

R4 x x x x x x x x x 

R5 x x x x x x x x x 

R6          

R7          

R8 x x x x x x x x x 

   

Weight Set Robot 
ID W1 W2 W3 W4 W5 W6 W7 W8 W9 

R1          

R2          

R3 x x x x x x x x x 

R4          

R5 x x x x x x x x x 

R6 x x x x  x x   

R7          

R8     x   x x 

  
        (a)              (b) 

Weight Set Robot 
ID W1 W2 W3 W4 W5 W6 W7 W8 W9 

R1          

R2          

R3 x x x x x x x x x 

R4          

R5 x x x x x x x x x 

R6 x x x x x x x x x 

R7          

R8          

   

Weight Set Robot 
ID W1 W2 W3 W4 W5 W6 W7 W8 W9 

R1          

R2          

R3 x x x x x x x x x 

R4 x x x x x   x x 

R5 x x x x  x x   

R6          

R7     x x x x x 

R8          

  
        (c)              (d) 

Weight Set Robot 
ID W1 W2 W3 W4 W5 W6 W7 W8 W9 

R1          

R2          

R3 x x x x x x x x x 

R4          

R5 x x x x x x x x x 

R6     x x  x x 

R7 x x x x   x   

R8          

  
(e) 

Figure 7.15: Robots assigned to worker task WT2 (explorer) when three 
explorers are required. 

 
Figure 7.15 details the robots selected when three explorers are required. Weight set 

W4 selects at least two robots that are also chosen in all other weight sets for each of 

the five robot sets. Figure 7.15 (a) and Figure 7.15 (c) select the same three robots for 
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all weight sets. Six out of eight weight sets (including W4) choose the same robots in 

Figure 7.15 (b). Figure 7.15 (d) and Figure 7.15 (e) select identical robots for four out 

of eight and five out of eight weight sets (including W4), respectively.  

 
Weight Set Robot 

ID W1 W2 W3 W4 W5 W6 W7 W8 W9 

R1          

R2          

R3          

R4 x x x x x x x x x 

R5          

R6          

R7          

R8          

   

Weight Set Robot 
ID W1 W2 W3 W4 W5 W6 W7 W8 W9 

R1          

R2          

R3       x   

R4          

R5 x x x x x x  x x 

R6          

R7          

R8          

  
        (a)             (b) 

Weight Set Robot 
ID W1 W2 W3 W4 W5 W6 W7 W8 W9 

R1          

R2          

R3          

R4          

R5       x   

R6 x x x x x x  x x 

R7          

R8          

   

Weight Set Robot 
ID W1 W2 W3 W4 W5 W6 W7 W8 W9 

R1          

R2          

R3 x x x x     x 

R4          

R5       x   

R6          

R7     x x  x  

R8          

  
        (c)             (d) 

Weight Set Robot 
ID W1 W2 W3 W4 W5 W6 W7 W8 W9 

R1          

R2          

R3          

R4          

R5 x x x x x x x x x 

R6          

R7          

R8          

 
 

(e) 
Figure 7.16: Robots assigned to worker task WT2 (explorer) when one explorer 

is required. 
 
If a single explorer is to be chosen, the robot with a rank of one in each weight set – 

robot set combination is the best candidate. Figure 7.16 illustrates this result. The 

same robot would be selected for all weight sets in robot sets (a) and (e). Robot sets 

(b) and (c) select the same robot for all weight sets except W7. Three robots (R3, R5, 

and R6) in set (b) (Figure 7.12 (b)) have an equal highest ranking at W7 due to 

identical actuation resource scores. Thus the robot with the lowest ID (R3) is selected. 



Task Allocation (Devolution) Experiments 

 

207 

In robot set (c), R5 is selected at weight set W7 since it has the best actuation 

capabilities.  

 
Robot set (d) (Figure 7.16 (d)) produces mixed results. The better processing 

capabilities of R3 give it the highest ranking in weight sets W1–W4. When weighting 

is given to sensing and actuation using weight sets W5–W8, R7 is the best robot since 

it has the best sensing and actuation resources. Weight set W9 selects R3 as the best 

robot since it has identical sensing resources to R7 and has a lower identification 

number. 

 

7.5 Alternative Techniques 
 
Several methods for multi-robot task allocation have been reviewed in section 2.7. A 

key difference between these methods and the work presented in this chapter is the 

ability of the developed task allocation strategy to select robots using reduced human 

user input. Unlike the methods of section 2.7, tasks are specified with graded inputs 

(such as ‘low’, ‘medium’, or ‘high’) of processing, communication, sensing, and 

actuation physical resource requirements. 

 
Other methods that utilise robot capabilities and task requirements for multi-robot 

task allocation are ASyMTRe [21], Vig and Adams [13], and RACHNA [115]. These 

methods use more complex heuristic greedy strategies (anytime algorithms [144], 

Shehory and Kraus’ algorithm [114], and market-based reverse auctions [115], 

respectively) to select robots for tasks. This gives them the ability to select a better 

team than the developed system for a given task specification, although still not 

optimal. Tasks need to be specified in a more complex manner in these task allocation 

methods. Additionally, there is no guarantee that any selected team will remain the 

best during task execution. 

 
Based on the taxonomy of multi-robot task allocation by Gerkey and Mataric [94], the 

task allocation method developed in this thesis belongs to the multi-task robots, 

single-robot tasks (MT-SR) classification. This type of task allocation is uncommon 

as it assumes that robots can concurrently execute multiple tasks. None of the multi-

robot task allocation methods reviewed in section 2.7 are of this type. Most robot 
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tasks require sensing and actuation components and it is often difficult to utilise these 

resources simultaneously for multiple tasks. However, as demonstrated in this thesis, 

computational tasks (such as planning) can be coupled with sensing or actuation tasks 

(such as exploration). The other methods that use robot capabilities and task 

requirements for multi-robot task allocation [13, 21, 115] belong to the single-task 

robots, multi-robot tasks (ST-MR) classification. However, MT-SR and ST-MR 

problems can be solved using similar algorithms. 

 
If there is only one type of task to be allocated, the developed task allocation method 

becomes an equivalent of the iterated single-task robots, single-robot tasks (ST-SR) 

classification. The assignment of tasks to robots then becomes similar to BLE [102], 

ALLIANCE [12], and M+ [98] algorithms. These instances of the canonical greedy 

algorithm are known to be 2-competitive for the optimal assignment problem [145]. 

This means that in the worst case, these algorithms produce a solution whose benefit 

is half of the optimal benefit. However, anecdotal evidence suggests that the greedy 

algorithm works extremely well on typical multi-robot task allocation problems [94]. 

 
Market-based multi-robot task allocation methods [9, 97, 98, 100, 101, 105] are well 

suited for situations where there are more tasks than robots. They are suitable for 

applications where the costs and revenues of tasks can be quantified. An auctioning 

mechanism assigns tasks based on the bids placed by robots. This process is similar to 

a canonical greedy algorithm. As mentioned in section 2.7, it can be difficult to 

determine the revenue and cost functions for robot physical capabilities (such as 

processing, communication, sensing, and actuation) in market-based multi-robot task 

allocation. The only method that uses a variant of market-based methods for task 

allocation using physical robot capabilities [115] recognises this difficulty.  

 
The specification of tasks with graded inputs for non-expert users has a limitation. If 

the task requirements are incorrectly specified, the initial selection of robots is likely 

to be inadequate regardless of the search algorithms utilised for the selection process. 

Due to this limitation, a simple greedy algorithm is utilised instead of more complex 

meta heuristic algorithms such as genetic algorithms, Tabu search, branch and bound, 

or pattern search [138]. To address this limitation, a feedback system (evaluated in 
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chapter 8) is utilised to monitor robot performance for detecting and correcting 

failures. 

 

7.6 Summary 
 
This chapter has presented results on a task allocation strategy that can be employed 

by a hierarchical heterogeneous multi-robot system comprising limited capability 

mobile robots. A multi-robot mapping and exploration task (chapter 6) has been 

employed as a model task for task allocation experiments on five sets of eight mobile 

robots. Tasks are specified with reduced (simplified) human user inputs, unlike the 

more complex specifications of the task allocation methods reviewed in section 2.7. 

This reduction requires additional effort from an expert user in designing FISs 

(section 5.3 and section 5.5) to match tasks and robots. The primary task devolution 

process is able to successfully identify and select suitable robots for manager tasks.  

 
Worker robots are also successfully identified and selected during the secondary task 

devolution process. Small weightings for sensing and actuation in the planner worker 

task (W1–W4 in Table 7.1) are able to provide unique ranks for multiple candidate 

robots. This can also be beneficial since a planner robot may need to be mobile during 

execution of the mapping and exploration task. Using weightings W1–W4 in Table 

7.1 also selects the same robot for the planner task, indicating robustness. This means 

that the weights can be intuitively selected within this range of values. 

 
Applying small weightings for planning and communication in the explorer task 

(W1–W4 in Table 7.2) also permits unique ranks to be obtained for multiple candidate 

robots. Small weightings for planning and communication in the explorer task do not 

affect robot rankings adversely. When five explorers are required, the same robots in 

each robot set are selected for all tested weight sets. Weight sets W1–W4 select the 

same robots for each robot set when three explorers are required. At least two of the 

three selected robots are identical to those chosen when no weighting is given to 

planning and communication (W5–W9 in Table 7.2). Similarly, W1–W4 select the 

same robot for each robot set when one explorer is required. In four of the five tested 

robot sets, the robot chosen by weight sets W1–W4 is also selected by at least four of 

the five other weights (W5–W9 in Table 7.2). The small weightings for planning and 
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communication can also favour the selection of an explorer robot that may be able to 

execute the planner task when a planner robot fails during task execution. Using 

weightings W1–W4 in Table 7.2 also selects the same robot(s) for the explorer task, 

indicating robustness. This means that the weights can be intuitively selected within 

this range of values. 

 
The robots selected for the global task are the best based on the FISs employed for 

robot capability data simplification (section 5.3) and the task devolution algorithms 

(section 5.5). However, this initial selection of robots may not necessarily be optimal 

or remain the best during task execution. Additionally, tasks can be inaccurately 

specified by non-expert users resulting in incorrect robot selection. Hence, a feedback 

coordination mechanism (section 5.6) is employed to monitor the robots after initial 

task allocation. Chapter 8 presents results of employing the feedback coordination 

mechanism to monitor robots during task execution.  
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8 Feedback Coordination Experiments 
 

8.1 Overview 
 
This chapter presents experiments on the feedback coordination technique presented 

in chapter 5. The multi-robot map-building and exploration task described in 

chapter 6 is employed as a model global task for the experiments. Section 8.2 presents 

the feedback coordination experiment configurations. It details the global 

environments, team configurations, and feedback configurations employed for the 

experiments presented in this chapter. Section 8.3 details the results of mapping and 

exploration employing initial task allocations (section 5.5) to robots without any 

feedback. Results obtained with task score feedback (but without task reallocation) 

are discussed in section 8.4. Section 8.5 presents the results of employing full 

feedback (task reallocation) to rectify poor performance, partial failures and complete 

failures. A summary of the results discussed in this chapter is presented in section 7.6. 

 

8.2 Feedback Coordination Experiment 
Configurations 

 

Based on a grid map resolution of 0.3 m with 16 square-sized local maps for 

exploration, a global exploration area size of 38.4 m × 38.4 m has been employed for 

the feedback experiments. The local map size (8 KB or 8192 Bytes) has been selected 

based on the execution speed of the MATLAB simulator and the sensing and 

processing capabilities of worker robots. Selecting larger local map and global map 

sizes results in lengthy simulation times using MATLAB. 

 
Ten global worlds with randomly positioned obstacles at three obstacle densities (5%, 

10%, and 15%) have been generated. An additional ten global worlds with boggy 

terrain that covers approximately 5% of the global area has been generated for each of 

these obstacle densities. Figure 8.1 illustrates five worker robots (one planner and five 

explorers) exploring local environments in a 10% obstacle density world with 5% 

boggy terrain. 
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Figure 8.1: Five worker robots exploring a 10% obstacle density world with 5% 

boggy terrain. 
 

In addition to the various obstacle and bog densities, three robot team configurations 

have been evaluated. These are single planner – single explorer ([1 1]), single planner 

– three explorers ([1 3]), and single planner – five explorers ([1 5]). The task and 

robot descriptions presented in Table 5.20 – Table 5.22 of chapter 5 are employed for 

experiments in this chapter. In the worker task descriptions, the outputs of the robot 

quantity criteria FIS (section 5.4) are manually set to achieve the three robot team 

configurations.  

 
Table 5.29 in chapter 5 lists the feedback weights employed for the worker tasks. 

Achievement success bias weights WS, task execution success threshold TEST, and 

overall task execution success threshold OTEST are tuned for the explorer task (WT2). 

These parameters are not tuned for the planner task (WT1) since a single planner is 

employed in all experiments. Task score feedback has no effect on a single planner. If 

the task requirements are met, a planner will function unless a complete failure 

occurs.  
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Table 8.1: Summary of feedback experiment configurations. 
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Table 8.1 summarises the feedback experiment configurations employed in this 

chapter. There are three test levels. Level 1 executes the mapping and exploration task 

without any feedback. Levels 2 and 3 evaluate performance with feedback. Feedback 

is tested using three monitor time interval values: Tm = 60 sec, Tm = 180 sec, and Tm = 

300 sec. The monitor time values have been selected based on communication 

bandwidth constraints. 

 
Task score feedback is assessed in level 2. The achievement bias weights (section 

5.6.1) are employed to combine the achievement data of the four resource types 

(processing, communication, sensing, and actuation) into a task execution success 

(TES) value. Task score values are computed from TES data (section 5.6.1). An 

explorer’s primary function is to traverse a local map and collect sensor data for the 

global map. Thus, greater weighting should be given to sensing and actuation 

achievement data. Weight sets W1–W3 in Table 8.1 give greater weighting to sensing 

and actuation when compared to processing and communication. At weight set W4 

equal weighting is given to all four resource types. 

 
Full feedback to correct poor performance (PP), partial failures (PF), and complete 

failures (CF) is tested in level 3. Poor performance is considered an unforced failure 

in the experiments as it arises due to interaction with the global environment. Four 

OTEST values (P1–P4 in Table 8.1) are heuristically tested to detect poor 

performance. Higher OTEST values (closer to one) will result in faster detection of 

poor performance. Poor performance detection and correction is fully explained in 

section 5.6.1.  

 
Partial and complete failures have been programmed to occur as the global task 

executes. Hence, they are considered to be forced failures. These failures are present 

on single robots. Partial failures permanently impair a robot’s sensing or actuation 

performance but the device remains operational. In a complete failure, all contact with 

the robot is permanently lost due to processing or communication failure. These two 

types of failures are fully explained in section 5.6.1. Four TEST values (F1–F4 in 

Table 8.1) are heuristically tested to detect partial failures. Lower TEST values (closer 

to zero) result in slower detection of partial failures. However, if TEST is high, false 

detections of partial failures are possible.  
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Testing has been carried out in the following steps: 

 
1. Execute all level 1 tests (no feedback experiments).  

2. Run level 2 tests with monitor time interval Tm = 60 sec. Test the achievement 

bias weights W1–W4 detailed in the last column of Table 8.1. (Tm = 60 sec is 

the fastest update rate of the three tested monitor time values. Hence, it should 

be the most reactive during task execution.)  

3. Evaluate the results obtained from step 2 and select the best set of 

achievement bias weights.  

4. Execute level 2 tests with Tm = 180 sec and Tm = 300 sec. Use the best 

achievement bias weight set determined from step 3.  

5. Run level 3.1 tests with Tm = 60 sec. Test poor performance (unforced 

failures) with the PP OTES threshold (OTEST) values P1–P4 listed in Table 

8.1. Set the PF TES threshold (TEST) to a constant value (0.15) for these 

experiments. The PF TEST value is to be tuned in level 3.2. (OTES data are 

obtained by integrating TES values over Tm so it is appropriate to use the 

smallest Tm value.)  

6. Evaluate the results obtained from step 5 to determine the best PP OTES 

threshold value.  

7. Execute level 3.1 tests with Tm = 180 sec and Tm = 300 sec. Use the best PP 

OTES threshold value determined in step 6.  

8. Run level 3.2 tests with Tm = 60 sec. Test partial failures with the PF TES 

threshold (TEST) values F1–F4 listed in Table 8.1. Set the PP OTES threshold 

to the best value obtained in step 6. (Tm = 60 sec is the fastest update rate and 

produces the most accurate TES value.)  

9. Evaluate the results obtained from step 8 and select the best PF TES threshold 

value.  

10. Execute level 3.2 tests with Tm = 180 sec and Tm = 300 sec. Use the best PF 

TES threshold value obtained in step 9.  

11. Run level 3.3 complete failure tests with the best PP OTES and PF TES 

threshold values.  

12. Execute level 3.4 overall feedback tests. Test poor performance (unforced 

failures) with the best PP TES and PF TES threshold values.  
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Note that the above twelve steps are not part of an auto-tuning process. Instead, they 

just list the tests and experiments conducted to evaluate the response weight and 

threshold variation. A similar procedure can be employed to evaluate the feedback 

system for other global task types. 

 
A maximum exploration time (MET) of 15000 sec (250 min) is permitted for the 

single planner – single explorer configuration. For the single planner – three explorer 

and single planner – five explorer configurations an MET of 5000 sec (83.3 min) is 

allowed. These times have been determined from initial experiments to permit 

completion of exploration in most situations when feedback is employed. Exploration 

performance is assessed based on exploration time (ET) and percent area explored 

(PAE). An exploration rate value (ER) is calculated from ET and PAE (8.1).  

 

 PAEER
ET

=  (8.1) 

 
Each experiment is repeated ten times due to simulation time length constraints. Since 

ten environments with evenly spaced obstacles are automatically generated for each 

environment type, a total of one hundred experiments are conducted in each type of 

environment.  In the results figures, each bar represents the average value and the 

corresponding error bar illustrates standard deviation. A paired sample t-test with two-

sided p-values is used to compare the feedback and non-feedback experiment data. 

Comparisons are statistically significant if p-values are less than or equal to 0.05 (5% 

statistical significance level). Exploration performance parameter ratios are computed 

to determine superiority or inferiority by dividing the feedback experiment data by the 

non-feedback experiment data. 

8.3 Experiments without Feedback 
 
Figure 8.2 illustrates the exploration time, area explored, and exploration rate score 

for exploration without any feedback. Generally, exploration time reduces when more 

explorers are employed (Figure 8.2 (a)). The percentage area explored improves as 

more explorers are utilised (Figure 8.2 (b)). A maximum mean area of approximately 

80% is explored for the [1 1] team configuration, which is less than the minimum 

mean area explored when three ([1 3]) or five ([1 5]) explorers are utilised.  
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Exploration time is very close to the MET values and percentage area explored is 

generally lower at 15% obstacle density (as expected). This indicates that the robots 

have not been able to complete exploration of the global environment. The exception 

to this trend is when five explorers are employed in a 15% obstacle density 

environment without any bogs. In this case, the additional explorers in the five 

explorer team are sufficient to complete exploration before the MET.    
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(c) 

Figure 8.2: Results of exploration without feedback for the various robot team – 
environment combinations. 

 
 
The trends of exploration time and area explored are combined in the overall 

exploration rate data (Figure 8.2 (c)) (8.1). As expected, the highest overall scores are 

obtained when five explorers are employed while the lowest values are obtained when 

only one explorer is utilised. Figure 8.3 combines the data for individual 

environments in Figure 8.2 into single values for each robot team configuration. This 

is achieved by collating all data samples and computing overall mean and standard 

deviation values. An easier comparison can made between the robot team 
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configurations by doing this. It also permits easier comparison with the various 

feedback experiments discussed in section 8.4 and section 8.5.  
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Figure 8.3: Reduction of non-feedback exploration results into single values. 
 
Figure 8.4 compares the performance of the [1 3] and [1 5] robot teams with the [1 1] 

robot team over all tested environments. Comparisons are made by dividing the [1 3] 

and [1 5] robot team data by the [1 1] robot team data. Exploration time is reduced to 

32.1% and 24.5% when three and five explorers are employed, respectively (Figure 

8.4 (a)). Figure 8.4 (b) reveals that 58.9% and 64.8% greater area is explored when 

the [1 3] and [1 5] robot teams are utilised respectively. Exploration rates are 4.80 and 

7.28 times greater for the three and five explorer team configurations, respectively 

(Figure 8.4 (c)). A 5% statistical significance test produced zero p-values for all 

comparisons made with the [1 1] robot team. 

 
Comparing the [1 3] and [1 5] robot teams also produces statistically significant 

results at the 5% level. Results such as this will not generally be plotted in this chapter 

since these are a side issue from the chapter’s primary objective, which is a 

comparison of the non-feedback and feedback experiments. Exploration time is 
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reduced to 76.3% when five explorers are employed instead of three. A small increase 

in exploration area (3.6%) is achieved when five explorers are utilised. Hence, the 

exploration rate is improved by 52% when five explorers are employed instead of 

three. The p-values for exploration time and exploration rate are zero. A p-value of 

0.0001 has been obtained for the exploration area comparison. 
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Figure 8.4: Comparison of [1 3] and [1 5] robot team configurations with the 
[1 1] robot team configuration. 

 
Figure 8.5 and Figure 8.6 illustrate the results obtained when partial failures and 

complete failures are present in the non-feedback experiments, respectively. The [1 1] 

robot team has been omitted from the tests since it will be impossible to complete the 

global task without feedback when a partial or complete failure occurs on a robot. An 

example of a partial failure is the situation where a single explorer collides with an 

obstacle or otherwise stops moving. Complete failures result in the single planner 

failing. In the [1 3] and [1 5] robot teams, partial and complete failures are present on 

single robots. The results presented in Figure 8.5 and Figure 8.6 are statistically 

compared with the full feedback experiments presented in section 8.5.  
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Figure 8.5: Non-feedback exploration results with partial failures. 
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Figure 8.6: Non-feedback exploration results with complete failures. 
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8.4 Experiments with Task Score Feedback 
 
Figure 8.7 illustrates the results obtained when task score feedback is employed for 

the [1 3] and [1 5] robot team configurations with a monitor time Tm = 60 sec. Table 

8.1 details the numerical values of achievement weight sets W1–W4. There is little 

variation in the exploration time, area explored, and overall exploration rate when the 

achievement weight sets are varied from W1 to W4 (Figure 8.7 (a)–(c)). Inspecting 

the exploration rate data reveals that weight sets W2 and W3 have the highest values. 

This suggests that they are potentially the best weight sets to employ. Task score 

feedback is not assessed for the [1 1] robot team configuration since it will not alter 

task execution. 
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Figure 8.7: Results of exploration with task score feedback. 
 
To verify whether W2 or W3 is the best weight set to further consider, Figure 8.7 is 

statistically compared with the non-feedback experiments of Figure 8.3. Figure 8.8 

details the results of the comparison. A comparison with a p-value less than or equal 

to 0.05 is statistically significant. Achievement weight sets W2 and W3 have mean 
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exploration time ratio values less than unity for both robot team configurations 

(Figure 8.8 (a)). However, all exploration time ratio comparisons are not statistically 

significant (Figure 8.8 (d)).  
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Figure 8.8: Comparison of task score feedback and non-feedback results at Tm = 

60 sec. 
 
When task score feedback is used, the area explored is not less than the area explored 

without feedback (Figure 8.8 (b)). However, the comparison is only statistically 

significant for weight sets W2–W4 in the [1 3] robot team configuration (Figure 
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8.8 (d)). Weight set W3 has the lowest p-value and increases the area explored by the 

greatest percentage (2.6%). The exploration rate ratios for weight sets W2 and W3 are 

not statistically significant (Figure 8.8 (c),(d)). Based on the comparisons, weight set 

W3 has been selected as the best weight set for task score feedback since it achieves a 

statistically significant improvement in area explored. 

 
The 2.6% increase in area explored at W3 is small. Task score feedback does not 

appear to be sensitive to weight variation when at least 25% weighting is given to 

both sensing and actuation resources. This indicates robustness. Task score feedback 

is able to send good explorer robots to distant unexplored local environments without 

negatively affecting exploration performance. 
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Figure 8.9: Comparison of task score feedback and non-feedback results for non-

boggy environments. 
 
To evaluate if task score feedback offers any statistically significant improvement to 

the [1 5] robot team, separate comparisons have been made for boggy environments 

and non-boggy environments. Figure 8.9 illustrates the comparison for non-boggy 

environments. There is no statistically significant variation in exploration time (Figure 

8.9 (a),(c)). Except when weight set W1 is employed for the [1 3] robot team 

configuration, there is also no statistically significant difference in area explored 

(Figure 8.9 (b),(c)). 
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Figure 8.10: Comparison of task score feedback and non-feedback results for 

environments with boggy terrain. 
 
 
Figure 8.10 shows the comparison for global environments with boggy terrain. Task 

score feedback has statistically significant benefits in environments with boggy terrain 

(Figure 8.10  (b),(c)). It can increase the area explored by up to 5.2% for the [1 3] 

team in the tested global environments (W3 in Figure 8.10 (b)). However, there is no 

statistically significant reduction in exploration time for the [1 3] team with task score 

feedback (Figure 8.10 (a),(c)). No statistically significant improvement is recorded in 

the [1 5] team configuration.  

 
As mentioned previously, the small variation in performance over different weight 

sets indicates that task score feedback is robust to weight variation. In non-boggy 

terrain environments, sending good explorer robots to distant unexplored local 

environments does not negatively affect exploration performance. By utilising task 

score feedback, a small robot team (such as the [1 3] team) can improve area explored 

in environments comprising sections of boggy terrain. 

 
It is possible that the global world is relatively small in comparison to the number of 

robots deployed for exploration in the [1 5] team. Hence, the [1 5] team has been 
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tested in two larger environments comprising 25 and 36 local maps, respectively. 

Similar to the 16 local map environment results above, no statistically significant 

improvement is recorded in the 25 and 36 local map environments. Figure 8.11 

illustrates the comparison of task score feedback and non-feedback experiments when 

weight set W3 is employed. 
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Figure 8.11: Comparison of task score feedback and non-feedback results for the 

[1 5] team in a 25 local map world (a) and a 36 local map world (b). 
 
 
Task score feedback aids the dispersion of robots in the global environment 

(section 6.3.1). It sends good explorers to local environments that may be distant from 

their currently allocated local environment. On the other hand, weak explorers 

generally navigate to the closest adjacent local map, similar to the non-feedback 

experiments. In the [1 5] team configuration, the distance traversed by good explorers 

to reach new unexplored local maps negates the reservation of unexplored space 

around poor explorers as indicated in Figure 8.11. 
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Figure 8.12: Comparison of task score feedback and non-feedback results at  

Tm = 180 sec. 
 
The performance of the best weight set, W3, has been evaluated for two additional 

monitor time values (Tm = 180 sec and Tm = 300 sec). Figure 8.12 shows a comparison 

of exploration with task score feedback at Tm = 180 sec and exploration without any 

feedback. The result is similar to W3 in Figure 8.8 (Tm = 60 sec). A statistically 

significant increase in area explored (2.1%) is achieved for the [1 3] robot team 

configuration (Figure 8.12 (b),(c)).  

 
Figure 8.13 compares exploration with task score feedback at Tm = 300 sec and 

exploration without any feedback. Exploration with task score feedback using Tm = 

300 sec (Figure 8.13) also offers similar improvements to exploration using Tm = 

60 sec (Figure 8.8) when compared to exploration without any feedback. The [1 3] 

robot team configuration achieves an increase of 1.9% in area explored that is 

statistically significant (Figure 8.13 (b),(c)). 

 
This is another indication that task score feedback is robust and able to perform at 

varying monitor time intervals. 
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Figure 8.13:  Comparison of task score feedback and non-feedback results at 

Tm = 300 sec. 
 
 

8.5 Experiments with Full Feedback 
 

8.5.1 Poor Performance Experiments 
 
Figure 8.14 shows the results obtained when poor performance feedback is employed 

for the [1 1], [1 3], and [1 5] robot team configurations using a monitor time  

Tm = 60 sec. Numerical values for threshold values P1–P4 are given in Table 8.1. At 

threshold value P4, exploration time is greater for all three robot team configurations 

than at threshold P1 (Figure 8.14 (a)). Exploration time increases for the [1 1] robot 

team configuration as the threshold value is changed from P1–P4. This result is 

expected since poor performance is detected more rapidly when the threshold value is 

higher. The trend is particularly evident for the [1 1] team since the single explorer 

system lacks robustness to failures when compared the multiple explorer 

configurations ([1 3] and [1 5] teams).  
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Figure 8.14: Results of exploration with poor performance feedback. 

 
There is little variation in percentage area explored for threshold values P1–P4 

(Figure 8.14 (b)). The exploration rate obtained using threshold value P1 is greatest 

for all robot team configurations (Figure 8.14 (c)). This indicates that P1 likely to be 

the best threshold value to employ. 

 
A statistical significance comparison has been made between the poor performance 

feedback and non-feedback exploration results in Figure 8.15. Maximum reduction in 

exploration time is achieved at threshold value P1 (Figure 8.15 (a)). Exploration time 

is reduced to 73.3%, 89%, and 89.5% for the [1 1], [1 3], and [1 5] robot teams, 

respectively at P1 (Figure 8.15 (a)). All reductions are statistically significant with p-

values less than 0.05 except for the [1 5] robot team at P4 (Figure 8.15 (d)). 

Maximum improvement in area explored (59%) is obtained at threshold value P3 for 

the [1 1] robot team (Figure 8.15 (b)). For the [1 3] team, a statistically significant 

improvement of approximately 4% is attained for all threshold values (Figure 

8.15 (b),(d)). The results of the area explored by the [1 5] robot team is similar to the 
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non-feedback experiments (Figure 8.15 (b),(d)) because five explorers are able to 

complete exploration within the specified MET (5000 sec) in both cases. 
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Figure 8.15: Comparison of poor performance feedback and non-feedback 

results at Tm = 60 sec. 
 
Threshold value P1 has been selected as the best since it has the highest exploration 

rate improvement for all robot team configurations when compared to the non-
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feedback experiments (Figure 8.15 (c)). This comparison is statistically significant 

(Figure 8.15 (d)). It reduces exploration time to 73.3%, 89% and 89.5% for the [1 1], 

[1 3], and [1 5] robot teams, respectively. Area explored is improved by 57.4%, and 

3.75% for the [1 1] and [1 3] robot teams, respectively.  Hence exploration rate is 

improved by 113%, 17.2% and 7.8% for the [1 1], [1 3], and [1 5] robot teams, 

respectively. 

 

P1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Exploration Time Ratio

Threshold value

V
al

ue

 

 

[1 1]
[1 3]
[1 5]

P1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Area Explored Ratio

Threshold value

V
al

ue

 

 

[1 1]
[1 3]
[1 5]

 
   (a)     (b) 
 

Exploration Time (a) Area Explored (b)

[1 1]
[1 3]
[1 5]

p-values (two decimal places, < 0.05 shaded blue)

Robot 
Config. P1 P1

< 0.01 < 0.01

< 0.01 0.43
< 0.01 < 0.01

 
(c) 

 
Figure 8.16: Comparison of poor performance feedback and non-feedback 

results at Tm = 180 sec. 
 
Similar to the task score feedback experiments, the performance of the best threshold 

value (P1) has been evaluated for Tm = 180 sec and Tm = 300 sec. Figure 8.16 

illustrates the comparison of exploration with poor performance feedback at Tm = 

180 sec and exploration without any feedback. A similar result to P1 in Figure 8.15 

has been obtained. Exploration time is reduced to 70.1%, 86.1%, and 90.4% for the 

[1 1], [1 3], and [1 5] robot teams, respectively (Figure 8.16 (a),(c)). Area explored is 

improved by 57.8% and 4.1% for the [1 1] and [1 3] robot teams, respectively (Figure 

8.16 (b),(c)).  

 
Figure 8.17 compares the poor performance feedback and non-feedback results when 

the monitor time is set to 300 sec. Setting the monitor time to 300 sec (Figure 8.17) 
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also achieves similar improvements to exploration with a monitor time of 60 sec 

(Figure 8.15). The [1 1], [1 3], and [1 5] robot teams have their exploration times 

reduced to 68.6%, 87.3%, and 90.8%, respectively (Figure 8.17 (a),(c)). 

Improvements of 57.5% and 4.3% in area explored have been obtained for the [1 1] 

and [1 3] robot teams, respectively (Figure 8.17 (b),(c)). 

 
In a team of physical robots, poor performance can be successfully detected and 

corrected thereby improving task execution. The poor performance detection 

threshold value will usually be a non-zero number. A threshold value closer to unity 

enables faster detection of poor performance but risks false detection. Poor 

performance failure detection and correction is robust to threshold variation and 

monitor time interval variation. 
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Figure 8.17: Comparison of poor performance feedback and non-feedback 

results at Tm = 300 sec. 
 
 

8.5.2 Partial Failure Experiments 
 
Partial failure tests have been carried out on the [1 3] and [1 5] robot teams only. As 

detailed in section 5.6.2, a partial failure is corrected by reallocating the faulty robot’s 
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task to a new robot. It is obvious that detecting and correcting a partial failure in the 

[1 1] team will have better performance than without employing any feedback. Figure 

8.18 shows the results obtained when partial failure feedback is employed for the [1 

3], and [1 5] robot team configurations using a monitor time Tm = 60 sec. Table 8.1 

lists the numerical values of thresholds F1–F4.  

 
In the [1 3] and [1 5] robot teams, there is little variation in exploration time for all 

tested threshold values (Figure 8.18 (a)). Thresholds F1–F4 also show little variation 

in area explored for the [1 3] and  [1 5] robot teams (Figure 8.18 (b)). The small 

variation in exploration rates for both team configurations (Figure 8.18 (c)) indicates 

that partial failure feedback is not sensitive to threshold variation. This means that the 

rate at which partial failures are detected and corrected is similar for the tested 

threshold values. 
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Figure 8.18: Results of exploration with partial failure feedback. 
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Figure 8.19 illustrates the statistical significance comparison made between the partial 

failure feedback and non-feedback exploration results. A maximum reduction in 

exploration time is achieved at threshold value F4 for the [1 3] robot team (Figure 

8.19 (a)). Exploration time is reduced to 85.8% at this threshold value. Threshold 

value F1 produces the greatest reduction in exploration time (89.1%) for the [1 5] 

robot team (Figure 8.19 (a)). The reductions in exploration time are statistically 

significant with p-values less than 0.05 (Figure 8.19 (d)). 
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Figure 8.19: Comparison of partial failure feedback and non-feedback results at 

Tm = 60 sec. 
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Area explored improvement is greatest at threshold value F1 (Figure 8.19 (b)). A 

statistically significant improvement of 10.8% is achieved for the [1 3] robot team at 

F1 (Figure 8.19 (b),(d)). The area explored by the [1 5] robot team is similar to the 

non-feedback experiments (Figure 8.19 (b),(d)) because five explorers are able to 

complete exploring the global world within the MET (5000 sec) in both cases.  

 
Threshold value F2 has been selected the best for the [1 3] team since it has the 

highest exploration rate improvement of 29.4% when compared to the non-feedback 

experiments (Figure 8.19 (c)). This comparison is statistically significant (Figure 

8.19 (d)). It reduces exploration time to 88.1% and area explored is improved by 

10.8%. It should be noted that F1 and F3 also produce similar exploration rate 

improvements to F2 indicating robustness. 

 
For the [1 5] robot team, threshold F1 is the best since it has the highest statistically 

significant exploration rate improvement (13.5%) when compared to the non-

feedback experiments (Figure 8.19 (c),(d)). Exploration time is reduced to 89.1% 

when this threshold value is employed. 
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Figure 8.20: Comparison of partial failure feedback and non-feedback results at 

Tm = 180 sec. 
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The performance of the best weight sets have also been evaluated for monitor time 

values of 180 sec and 300 sec. Figure 8.20 shows a comparison of exploration with 

partial failure feedback at Tm = 180 sec and exploration without any feedback. The 

results for the [1 3] and [1 5] robot teams are similar to thresholds F2 and F1 in Figure 

8.19 (Tm = 60 sec), respectively. Exploration time is reduced to 88.1% for the [1 3] 

robot team (Figure 8.20 (a)). In the [1 5] robot team, exploration time is reduced to 

91.8% (Figure 8.20 (a)). These exploration time reductions are statistically significant 

(Figure 8.20 (c)). A statistically significant increase in area explored (10.4%) is 

achieved for the [1 3] robot team (Figure 8.20 (b),(c)). 
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Figure 8.21: Comparison of partial failure feedback and non-feedback results at 

Tm = 300 sec. 
 
 
Figure 8.21 compares exploration with partial failure feedback at Tm = 300 sec and 

exploration without any feedback. Partial failure feedback using Tm = 300 sec (Figure 

8.21) also offers similar improvements to using Tm = 60 sec (Figure 8.19). In the [1 3] 

robot team, exploration time is reduced to 88% (Figure 8.21 (a)). Exploration time is 

reduced to 90.1% in the [1 5] robot team. Both exploration time reductions are 

statistically significant (Figure 8.21 (c)). The [1 3] robot team also achieves a 10.7% 

increase in area explored that is statistically significant (Figure 8.21 (b),(c)). 
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For a team of physical robots, partial failures can be successfully detected and 

corrected thus improving task execution. The partial failure detection threshold value 

will usually be a small number (close to zero) to reduce false detections. For the tested 

values, partial failure detection and correction is robust to threshold variation and 

monitor time interval variation. 

 

8.5.3 Complete Failure Experiments 
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Figure 8.22: Results of exploration with complete failure feedback. 

 
Similar to the partial failure experiments, complete failure experiments have also been 

carried out on the [1 3] and [1 5] robot teams only. It is clear that exploration will fail 

in the [1 1] team when complete failures happen. Figure 8.22 illustrates the 

exploration results obtained when complete failure feedback is employed. Exploration 

time, area explored, and overall scores are similar for all three monitor time values 
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(Figure 8.22 (a)–(c)). Thus complete failure feedback can perform at multiple monitor 

time values. At least 97% of the global environment is explored for all tested robot 

team – monitor time combinations when complete failure feedback is utilised (Figure 

8.22(b)). 
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Figure 8.23: Comparison of complete failure feedback and non-feedback results. 
 
 
Complete failure feedback results and non-feedback results are compared with 

statistical significance tests in Figure 8.23. Exploration time is reduced for all robot 
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team – monitor time combinations (Figure 8.23 (a)). These reductions are all 

statistically significant with p-values less than 0.01 (Figure 8.23 (d)). In the [1 3] 

team, exploration time is reduced to 89.9%, 87.8%, and 88.3% for monitor time 

values of 60 sec, 180 sec, and 300 sec, respectively. Monitor times 60 sec, 180 sec, 

and 300 sec reduce exploration time to 74.5%, 73.9%, and 74.3%, respectively, for 

the [1 5] robot team. These performance improvements over the various monitor 

times are similar within measurement errors.  

 
Area explored is increased for all robot team – monitor time combinations (Figure 

8.23 (b)). These increments are all statistically significant except for the [1 5] robot 

team at 60 sec monitor time (Figure 8.23 (d)). An 11% increase in area explored is 

observed for the [1 3] robot team. In the [1 5] robot team, a 1% increase in area 

explored is achieved for monitor time values of 180 sec and 300 sec. 

 
The reduction in exploration time and increase in area explored for all tested 

combinations produces a statistically significant increase in the exploration rate 

(Figure 8.23 (c),(d)). In Figure 8.23 (d), the exploration rate p-values are all less than 

0.01. For the [1 3] team, exploration rate is improved  by 28.1%, 30.3%, and 29.3% 

for monitor time values of 60 sec, 180 sec, and 300 sec, respectively. Monitor times 

60 sec, 180 sec, and 300 sec improve exploration rate by 47.2%, 49.5%, and 47.2%, 

respectively, for the [1 5] robot team. Again, these improvements are similar within 

measurement errors. 

 
Hence, complete failure detection is robust when monitor time is varied from 60 sec 

to 300 sec. 

 

8.5.4 Combined Feedback Experiments 
 

This section evaluates the combined feedback system with all three types of failures 

(poor performance, partial failure, and complete failure) and task score feedback 

(section 8.4) enabled using their best threshold values and weights. Experiments and 

results presented in this section are designed to determine if the various components 

of the feedback system can function when combined in a complete system. The small 

variation in performance over different threshold values and weights for the 
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individual failure tests and task score feedback experiments means that selecting 

different values from the best ones will not affect combined system performance 

significantly. 

 
Figure 8.24 illustrates the results obtained when combined feedback is employed for 

exploration. Exploration time (Figure 8.24 (a)), area explored (Figure 8.24 (b)), and 

exploration rate (Figure 8.24 (c)) are similar for all three monitor time values. Hence, 

the combined feedback system is capable of performing at multiple monitor time 

values. At least 94% of the global environment is explored for all tested robot team – 

monitor time combinations (Figure 8.24 (b)).  
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Figure 8.24: Results of exploration with combined feedback. 

 
A statistical significance comparison between the combined feedback and non-

feedback exploration results has been made in Figure 8.25. Exploration time (Figure 

8.25 (a)), area explored (Figure 8.25 (b)), and exploration rate (Figure 8.24 (c)), 
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produce similar results for each robot team as the monitor time is varied from 60 sec 

to 300 sec.  
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Figure 8.25: Comparison of combined feedback and non-feedback results. 

 
Robot team [1 1] achieves exploration rate improvements of 119%, 120%, and 120% 

for Tm = 60 sec, Tm = 180 sec, and Tm = 300 sec (Figure 8.25 (c)). The improvement is 

due to the exploration time being reduced to a statistically significant 70% of the non-
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feedback exploration time (Figure 8.25 (a),(d)). A statistically significant increase of 

58% in area explored is achieved for the [1 1] robot team (Figure 8.25 (b),(d)).  

 
At Tm = 180 sec, the greatest exploration rate improvement of 22.8% is achieved for 

the [1 3] robot team (Figure 8.25 (c)). Exploration rate improvements of 19.7% and 

20.7% are achieved for Tm = 60 sec and Tm = 300 sec, respectively. These values are 

similar within measurement error. The area explored improvement is 3.6% for all 

monitor time values (Figure 8.25 (b)). Exploration time is reduced to 87%, 84.8%, 

and 86.4% for Tm = 60 sec, Tm = 180 sec, and Tm = 300 sec, respectively. Similar to 

the exploration rate comparison, these values are similar within measurement error.  

 
For [1 5] team, there is not much variation in exploration time or area explored when 

monitor time is changed (Figure 8.25 (a),(b)). This suggests that there may be many 

explorers relative to global environment size to see the effects of monitor time 

change. However, exploration time is reduced to a statistically significant 89.5%, 

90.4%, and 90.8% for Tm = 60 sec, Tm = 180 sec, Tm = 300 sec, respectively (Figure 

8.25 (a),(d)). This produces an exploration rate improvement of approximately 7.7% 

for the [1 5] robot team when complete feedback is employed. 

 
These results verify that the various components of the feedback system exhibit 

synergy when integrated. The combined system is also robust when monitor time is 

varied from 60 sec to 300 sec. 

 

8.6 Alternative Techniques 
 

8.6.1 Mapping and Exploration 
 
Methods that develop efficient exploration strategies to disperse robots and take 

advantage of heterogeneous robots have been reviewed in section 2.9.  

 
Singh and Fujimura [1] take advantage of heterogeneity by selecting appropriately 

sized robots to investigate “tunnels” leading to unexplored regions. The BERODE 

architecture [2] uses behavioural roles (maintainer, recoverer, and pusher) to address 

limited communication in multi-robot exploration. In this thesis, heterogeneity in the 

processing capabilities of robots is exploited for hierarchical multi-robot exploration.  
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A computationally powerful robot (manager) coordinates the lower-tiered limited 

capability robots (planners and explorers). Different levels of abstraction are 

maintained. Manager robots have a global view of the task. On the other hand, 

explorer robots are only aware of the section of the environment that they are required 

to explore. Planners are made aware of what plans they need to make and for which 

robots.  

 
Simmons [3] also divides the exploration task but not based on heterogeneity due to 

computational ability. A central mapper unit and central executive (similar to a 

manager robot) coordinate exploration. However, the approach does not use separate 

planner robots as this is handled by the central executive. This reduces its ability to 

handle decentralised groups of explorer robots. On the other hand, it is less dependent 

on inter-robot communication. Similar to Simmons [3], Tovar et al. [4] also employ a 

centralised planner to coordinate robot movement for exploration.   

 
The robots employed for exploration in this thesis utilise infrared rangefinders. Other 

exploration strategies are based on superior sensors such as ultrasonics [1, 2, 5-7], 

laser scanners [3, 4, 8, 9], and vision [4]. This limitation in sensing necessitates the 

division of the global environment into smaller territories for individual robots unlike 

the approaches reported in section 2.9. It also makes comparisons of exploration time 

in similar sized environments inappropriate. Naturally, a team of robots with superior 

sensors is able to explore an environment more efficiently. 

 
Dispersing robots within an environment for exploration generally balances an 

expected revenue (or utility) and the cost of travel (a function of distance). The 

approach taken in this thesis is similar to some of the methods reviewed in section 2.9 

([3-8]). 

 
Yamauchi [5] disperses robots based on proximity to frontier regions (cost of travel) 

only. The robots maintain separate global maps and make independent decisions 

about where to explore. Hence, there is no explicit coordination which can result in 

time wastage during exploration. 
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Simmons [3] computes a utility value for representative frontier cells based on the 

difference between an estimated information gain value (revenue) and a cost value. 

The cost value is computed from the optimal path between the robot’s current location 

and the frontier cell. Estimated information gain is an estimate of the unexplored 

space around the frontier cell. A discounting factor is applied to the estimated 

information gain value to keep robots apart during exploration. Burgard et al. [8] use 

an approach similar to Simmons [3]. In this approach, estimated information gain is 

replaced by a utility value and the difference between utility and cost is computed. A 

utility reduction function reduces the utility of target points within the sensing range 

of a robot to aid dispersion. Poernomo and Ying [6] use a cost function similar to [3, 

5, 8] but reduce the cost value based on the distances between robots to aid 

dispersion.  

 
Zlot et al. [7] developed a market-based exploration strategy that uses distance 

information to compute costs and information gained by visiting a goal point to 

compute revenue. A profit (similar to utility) is computed from the difference between 

revenue and cost. Robots bid on tasks (goal points to visit) in auctions and the highest 

bidders (highest profiting robots) above a reserve price are awarded tasks. This 

approach is more complex than [3, 8] as it requires revenue functions, cost functions, 

and reserve prices to be appropriately defined to achieve coordination. Tovar et al. [4] 

use a complex product utility function that employs fourteen variables to balance cost 

of travel and expected information gain (revenue).  

 
Similar to [3, 6, 8], the method presented in this thesis disperses robots by trading off 

utility and cost values. Utility values are unit interval values computed based on the 

size of the local environment. Cost values are determined from a weighted 

combination of the distance to a local environment and the distance to other robots. 

Unlike [3-8], time-based (or performance-based) cost information is included in the 

form of a novel of task score feedback value. Task score feedback allows weaker 

explorer robots to reserve local environments near them. 

 
A drawback of the method presented in this thesis is the dependence on accurate 

localisation of the limited robots. This need arises since the robots are required to 

traverse the environment and acquire sensor data simultaneously. Due to the limited 

processing capabilities of the robots, navigation aids such as beacons or GPS are 
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preferred over SLAM. The exploration method also depends on initially specified 

environment boundaries. 

 
Unlike other map-building and exploration techniques (section 2.9), a feedback 

coordination system is used to improve the area explored and reduce the overall 

exploration time. It makes the team dynamic during exploration (to account for 

failures) unlike the other approaches that employ fixed robot teams for exploration. 

 

8.6.2 Fault Tolerance (Feedback Coordination) 
 
Fault tolerance in multi-robot systems has been reviewed in section 2.8. The L-

ALLIANCE architecture [10] is designed for behaviour-based systems. Task 

completion time is used as the performance metric and motivational behaviours effect 

task reallocation. Hence, the system can detect failures but not classify them. The 

performance of a robot in executing a specific task over a few recent trials is used as 

an estimate of expected performance. 

 
Kannan and Parker’s [11] task execution success and failure metrics influence fault 

tolerance and overall system performance. Overall performance is computed as the 

difference between successfully executed tasks (success metric) and unsuccessful task 

execution (failure metric). Hence, performance can only be determined after the 

completion of tasks. Kannan and Parker [12] further develop adaptive causal model 

based performance metrics for fault-tolerant systems. Causal models are complex and 

cumbersome to implement. They also need to be tailored for different tasks and 

environments. In the SFX-EH architecture [13], robots share knowledge of the state of 

their sensors and task execution to detect sensing failures. Failures are dealt with by 

taking corrective actions such as reconfiguring perceptual schemas or recalibrating 

sensors. 

 
The feedback coordination system developed in thesis is designed to be used with the 

novel reduced human user input task allocation system. Unlike the methods of 

section 2.8, the feedback system monitors the four broad categories of robot hardware 

resources (processing, communication, sensing, and actuation) explicitly. Robots are 

monitored during task execution and can be replaced before task completion if 
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performance is unsatisfactory. Failure detection accounts for suboptimal greedy 

allocations, inaccurate task specifications, and hardware failures (such as sensing, 

actuation, or processing). Unlike [13], the feedback system replaces robots instead of 

attempting to correct the failed sensors of a robot. A simple linear weighted 

combination of the four resource categories is used to determine the performance a 

robot. However, similar to [10], a reasonable estimate of the ideal (best-case scenario) 

performance of the robots is still required before task execution. Unlike [11], a ratio 

of the current performance to ideal performance produces a task execution success 

metric that can be determined during task execution. 

 
 

8.7 Summary 
 
This chapter has presented results on a novel feedback coordination mechanism that 

can be employed by a hierarchical heterogeneous multi-robot system comprising 

limited capability mobile robots. A customised multi-level abstracted multi-robot 

mapping and exploration task (chapter 6) has been employed as a model task for 

experiments. Exploration results obtained with the various types of feedback have 

been compared to the results obtained without any feedback. 

 
Task score feedback does not affect exploration time. However, it can positively 

impact area explored in a global world that comprises boggy terrain. In the [1 3] robot 

team, task score feedback improved the area explored by 5.2% for global worlds with 

boggy terrain. Task score feedback is capable of performing at multiple monitor time 

values (60 sec, 180 sec, and 300 sec). 

 
The feedback system is able to successfully identify and correct three types of 

failures. Poor performance feedback offers improvements for all three robot teams. In 

the [1 1] robot team, poor performance feedback can reduce exploration time to as 

low as 69% and increase area explored by up to 59%. For the [1 3] robot team, it can 

reduce exploration time to as low as 84.4% and increase area explored by up to 4.1%. 

Exploration time can be reduced to as low as 89.5% in the [1 5] robot team. The 

impact of exploration time reduction is less as the number of explorers is increased 
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due to redundancy. Poor performance feedback is able to function successfully at 

monitor time values of 60 sec, 180 sec, and 300 sec. 

 
Partial failure feedback has been tested on the [1 3] and [1 5] robot team 

configurations. In the [1 3] robot team, area explored can be increased by up to 10.8% 

and exploration time can be reduced to as low as 85.8%. For the [1 5] robot team, 

exploration time can be reduced to as low as 89.1% when partial failure feedback is 

employed. Similar to poor performance feedback, partial failure feedback operates 

successfully at monitor time values of 60 sec, 180 sec, and 300 sec. 

 
Complete failure feedback has also been tested on the [1 3] and [1 5] robot teams. 

Area explored can be increased by up to 11% and exploration time can be reduced to 

as low as 87.8% for the [1 3] robot team. In the [1 5] robot team, exploration time can 

be reduced to 73.9% and a 1% increase in area explored can be achieved. Complete 

failure feedback is also able to perform at various monitor time values. 

 
When combined into a complete system, task score feedback, poor performance 

feedback, partial failure feedback, and complete failure feedback are able to function 

successfully for all robot team – monitor time interval combinations.  

 
Task score feedback is robust to achievement bias weight variation within the tested 

limits. Similarly, the detection and correction of the three forms of failures is robust to 

threshold value variation within the tested limits. Hence, achievement bias weights 

and threshold values can be intuitively selected without having a negative impact on 

performance.  

 
All individual feedback system components are also robust to monitor time interval 

variation within the tested limits. Robustness to monitor time interval variation is also 

achieved in the combined system comprising all feedback system components. 

Compared to a monitor time interval of 60 sec, a monitor time interval of 300 sec 

reduces the volume of messages transmitted and received in the heterogeneous multi-

robot system without negatively affecting performance.  
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A single set of ideal achievement data is employed for all the experiments presented 

in this chapter. Hence, an expert user is expected to “calibrate” a robot’s performance 

only when the task type is altered.  

 
A similar procedure can be utilised to evaluate the feedback system for different 

applications.  
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9 Conclusions 
 

9.1 Overview 
 
This thesis has presented an artificial intelligence system that exploits the benefits of 

hierarchical heterogeneous multi-robot systems and potentially allows non-expert 

human users to utilise it. In a system that consists of computationally powerful robots 

at the upper level and limited capability robots at the lower levels, resources (such as 

processing) can be shared and tasks can be abstracted.  

 
A hierarchical hybrid navigation system that does not rely on periodic path planning 

to enable limited capability heterogeneous robots to explore and traverse 

environments is summarised in section 9.2. Section 9.3 summarises a novel two-tiered 

global path planner that permits limited memory robots to utilise the memory of 

computationally powerful robots. The navigation system and global path planner are 

components of a customised multi-level abstracted multi-robot map building and 

exploration task that is used to demonstrate a novel reduced human user input task 

allocation and feedback coordination technique (section 9.4). Limited capability 

mobile robots are able to efficiently execute a group task using the developed task 

allocation and feedback coordination strategy.  

 
Section 9.5 lists future extensions to the research presented in this thesis. Publications 

that have arisen from this thesis and their corresponding contributions are highlighted 

in section 9.6. A summary of achievements is provided in section 9.7. 

 

9.2 Basic Robot Navigation System 
 
A hierarchical hybrid navigation system has been developed for basic individual robot 

navigation that permits both reactive and deliberative control. This offers flexibility 

for navigation in known and unknown environments. The underlying navigation 

system is based upon a rudimentary implementation of Lee-Johnson’s navigation 

system [51]. Several bugs and shortfalls in Lee-Johnson’s initial navigation system 
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have been identified and corrected. The rudimentary system has been successfully 

further extended to facilitate the control of heterogeneous robots. 

 
Deliberative control is developed using a modified version of the A* path planning 

algorithm and a rectangular occupancy grid map (section 3.2.2). The modified A* 

algorithm permits continuous cost values instead of binary data. Inspired by frontier-

based exploration, the rectangular occupancy grid map is updated in real-time and 

path replanning takes place when required.  

 
The reactive control strategy combines a modified dynamic window approach 

(section 3.5) and a direction sensor similar to the vector field histogram technique 

(section 3.4). Employing only a dynamic window approach for reactive control yields 

poor navigation. Combining the developed modified dynamic window with a 

direction sensor reduces navigation time to 20%–50% when compared to solely 

relying on the dynamic window. This combines the benefits of directional methods 

and velocity space techniques to produce a reactive system that is not dependent on 

periodic path planning.     

 
In unknown environments, reactive navigation is able to achieve similar performance 

to combined reactive – deliberative navigation. This removes the dependence on 

periodic path planning for hybrid navigation in unexplored obstructed environments. 

While the navigation system employs many empirically tuned parameters to achieve 

reduced dependence on periodic planning, a fixed set of parameters has been 

functional for the tested robot-environment combinations in simulations. The hybrid 

navigation system has also been successfully implemented on a physical tricycle robot 

and tested in an indoor corridor environment.  

 

9.3 Memory Constrained Path Planning 
 
A novel method for global path planning that enables limited memory robots to utilise 

the memory of computationally powerful robots has been developed and evaluated. 

The technique is suitable for use in hierarchical heterogeneous multi-robot systems to 

allow memory constrained robots to navigate beyond localised regions of a global 
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environment. This is useful for tasks such as exploration where robots may be 

required to map large environments. 

 
Specifically, the developed global path planning strategy is well suited for use in a 

hierarchical heterogeneous multi-robot system such as Victoria University of 

Wellington’s urban search and rescue system (chapter 1). As outlined in section 1.1, 

manager robots supervise worker robots during task execution. However, due to 

limited processing ability, manager robots may not be able to perform global path 

planning and maintain full communication with all worker robots. Instead of relying 

on a single centralised path planning robot, global path planning is decentralised and 

assigned to some of the worker robots. 

 
Smaller sized local maps are created from a large global map that cannot be 

completely stored in a memory constrained robot.  The local map size is dependent on 

the memory constrained robot’s memory capacity. After dividing the large 

environment into small sections, a two-tiered A* algorithm was developed that 

sequentially searches the local maps for a global path. The path planning algorithm 

executes entirely on the memory constrained robot. During path planning, the 

memory constrained robot retrieves local map data from other higher memory 

capacity robots. 

 
Superior or comparable execution times to non-memory constrained path planning are 

achieved by the memory constrained technique when the local map size is much 

smaller than the global map size. A limited memory robot is able to further improve 

memory constrained planning by dividing its available memory space to store 

multiple smaller sized local maps. 

 
Memory constrained path planning search space is reduced at high (≥ 20%) obstacle 

densities. This can affect obstacle clearance. However, path length is not adversely 

affected at these higher obstacle densities. In general, many real environments have 

low overall obstacle densities and smaller regions of high density obstacles may be 

confined to a few local maps. This reduces obstacle clearance issues in memory 

constrained planning. Employing a hybrid navigation system with a good reactive 

controller also mitigates this issue. Moreover, if obstacles block some local map 
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boundaries, the back tracking algorithm can find a path through other local maps 

provided that exit points exist in them.  

 

9.4 Task Allocation and Feedback Coordination 
Mechanism 

 
A novel reduced human user input task allocation and feedback coordination 

mechanism for limited capability mobile robots has been developed and evaluated. As 

previously mentioned, an urban search and rescue system under development at 

Victoria University of Wellington is a potential application of the developed task 

allocation and feedback technique. Three levels of control exist in the mechanism. At 

the highest level of control, a remote base station computer specifies a group task and 

the robots available for selection. The second and third levels of control comprise 

manager robots and worker robots, respectively. Task allocation (devolution) 

processes identify the managers and workers from the list of available robots. Once 

the managers are identified, the remote base station is no longer needed since 

executive control is transferred to them. Worker robots execute tasks based on 

instructions from the manager robots. 

 
To reduce human user input, tasks and robots are specified using four major 

categories of robot capabilities (i.e. resources): processing, communication, sensing 

and actuation. The task allocation algorithms employ numerical vector of merit 

(VOM) data that specifies robot capabilities. The four major resource categories are 

also encoded in vector of task requirements (VOTR) data to specify tasks that require 

allocation. By representing robots and tasks using these four major resources, the task 

allocation process is also made generic. A vector of task suitability (VOTS) is 

computed from VOTR and VOM data to identify eligible robots for task execution. A 

primary task devolution process identifies the manager robots while a secondary task 

allocation process is employed to select worker robots. 

 
Often, a human user may not be able to accurately specify the type of mobile robot 

required for a task. For example, it is often unreasonable to specify the exact quantity 

and type of sensors required for an exploration task. In such situations it is often better 

to input a grading for a sensor type (or the sensing resource/capability) and let the task 
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allocation process choose the best robot for the task. Hence, the reduced human user 

input task allocation system also permits tasks to be specified with such graded 

information. This is unlike many other task allocation strategies that rely on expert 

knowledge for task specification. Fuzzy Inference Systems (FISs) have been 

employed to simplify the VOM data for comparison with the VOTR data. However, it 

should be noted that additional effort is required from the system designer to reduce 

complexity for non-expert users. 

 
After initial task allocation, the worker robots may fail to perform adequately. This 

can be due suboptimal initial task allocations or unexpected failures (such as 

inaccurate task specifications or hardware failure). In the developed system, a 

feedback mechanism monitors the efficiency of worker robots during task execution. 

If the performance of a worker robot is unsatisfactory, a task reallocation algorithm 

adjusts the task-robot combinations of the team.  

 
Three forms of unsatisfactory performance can be detected by the feedback system. 

Poor performance is detected when the overall success of a robot during its entire 

period of operation falls below a non-zero threshold. Partial failure detection 

considers the recent success of a robot. If a robot’s recent success falls below a 

threshold value that is usually close to zero, it has partially failed. A completely failed 

robot is detected when performance data are not received from the robot and it fails to 

send pulse signal activity messages.   

 
A customised multi-level abstracted multi-robot map-building and exploration task 

has been implemented as a model group task to demonstrate the effectiveness of the 

developed task allocation and feedback coordination system. It is important to note 

that the developed system is generic and not limited purely to exploration.  

 
The map-building and exploration technique takes advantage of the benefits of 

hierarchical heterogeneous multi-robot systems. It is well suited for a three-tiered 

multi-robot system comprising worker robots with limited sensing and processing 

capabilities. Worker robots can be assigned planner and explorer tasks. A 

computationally powerful manager robot coordinates the planner and explorer tasks to 

enable mapping of a large environment containing scattered obstacles. Thus, the 

manager robot maintains a global view of the task. Planner tasks enable robots to 
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navigate to new localised regions of the large environment. Robots that are assigned 

planner tasks only need to be made aware of what plans they need to make and for 

which robots. The explorer task permits navigation and exploration within a localised 

region of the global environment. Hence, robots that are assigned explorer tasks are 

only made aware of the section of the environment that they are required to explore. 

 
Task devolution experiments show that primary task devolution is able to successfully 

identify and select suitable robots for manager tasks. The selection of manager robots 

is robust for the tested VOTS summation weight sets. Secondary task devolution is 

able to successfully identify and select worker robots. Applying small weightings to 

sensing and actuation in the planner worker task gives unique rankings to robots 

without affecting robustness of task allocation. Similarly, giving small weightings to 

planning and communication in the explorer task also enables unique ranks for robots 

without adversely affecting robustness. 

 
Experiments on the feedback system show that the three forms of failures (poor 

performance, partial failure and complete failure) are successfully detected and 

corrected. This results in improved task execution performance. In smaller teams, task 

score feedback it able to provide a small improvement in the area explored for 

environments comprising regions of boggy terrain without affecting the time taken to 

complete exploration. Task score feedback, poor performance feedback and partial 

failure feedback are robust to weight and threshold variation within the tested limits. 

Hence, it is possible to select weights and thresholds intuitively without negatively 

affecting performance. The feedback system is also robust to monitor time interval 

variation within the tested limits, allowing dependence on communication to be 

varied. Additionally, a single set of ideal achievement data is employed in the 

experiments. Thus, it is expected that an expert user will need to “calibrate” a robots 

performance only when the task type is changed. 

 

9.5 Future Work 
 
The vast majority of the experiments presented in this thesis are simulations because 

multiple robots are tested in a variety of environments. Navigation system 

experiments on physical robots have been limited to a single tricycle mobile robot. 
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More experiments on a variety of physical heterogeneous robots in a range of real 

environments would be useful to evaluate the navigation system’s performance in real 

world situations. Extensive simulation experiments have evaluated the novel two-

tiered global path planning technique for limited memory mobile robots. The 

performance of the two-tiered path planner in the real world can be investigated with 

physical robots in tasks such as multi-robot exploration. Similarly, the task allocation 

and feedback coordination technique can be applied to a multi-robot mapping and 

exploration task utilising physical robots to evaluate its effectiveness in the real 

world.  

 
To investigate the degree to which the reduced human user input task allocation and 

feedback coordination technique is generic, it would be useful to implement and 

evaluate its performance in alternative multi-robot applications such as cooperative 

object transportation and security system applications. Eventually, it would be 

beneficial to have the task allocation and feedback coordination strategy integrated in 

the three-tiered hierarchical multi-robot system for urban search and rescue being 

developed at Victoria University of Wellington. This would test the effectiveness of 

the reduced human user input system in the real world. 

 
In all the navigation and exploration experiments presented in this thesis, the robots 

were assumed to know their global position at all times. Long term experiments in the 

real world without external devices such as GPS or beacons will cause localisation 

uncertainties as (for example) odometry or inertial navigation system (INS) errors will 

accumulate. Such errors will also cause distortions in the maps created during 

exploration. Thus, the implementation of a robust simultaneous localisation and 

mapping (SLAM) algorithm would be beneficial to reduce these uncertainties and 

errors.  

 
The presented navigation system employs empirically tuned fixed parameter values 

and simple weighted linear objective functions. An extension to the existing 

implementation would be to design objective functions using fuzzy inference systems. 

The performance of a non-linear fuzzy system utilising various rule combinations can 

be investigated. Furthermore, neuro-adaptive techniques can be employed to train the 

weightings of rules in the objective function fuzzy inference systems for optimal 

navigation system performance. 
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In the task allocation component, fuzzy inference systems have been employed to 

simplify human user input and compute weighted sums in the task allocation process. 

It would be useful to extend the use of fuzzy systems to the feedback system. For 

instance, if a human user is required to input threshold, weight and monitor time 

values, these can be specified as graded inputs (say for example, ‘low’, ‘medium’ or 

‘high’). Following this, a fuzzy inference system can be developed to detect robot 

failures. Furthermore, the feedback fuzzy system can utilise neuro-adaptive 

techniques to self-tune thresholds and weights if user input is incorrect. Presently, the 

developed feedback system is able to function appropriately without incorporating 

hysteresis loops for avoiding false detections due to noise during task reallocation. It 

would be useful to investigate the incorporation of hysteresis loops into the task 

reallocation process to improve feedback system performance. 

 
The current implementation of the feedback system requires an initial test sequence in 

a simple real environment or some expert knowledge to determine an informed 

starting estimate of expected achievement data. If this expected achievement data is 

incorrectly determined, it will affect failure detection. It would be useful to investigate 

the degree to which the feedback system is tolerant to incorrect achievement data.  

 

9.6 Publications 
 
Five conference proceedings, one book chapter and four international journal articles 

(two currently under review) have emerged from the research presented in this thesis. 

They are listed in the subsections below. 

 
Book chapter B1 presents an overview of the concept of utilising a decentralised 

hierarchical multi-robot system. It also presents a review of cooperative mobile robot 

control architectures (section 2.6). 

 
Publication C1 presents initial work on the reactive control system for limited sensing 

robots that employs a hybrid of directional approaches (polar histogram) and velocity 

space techniques (dynamic window approach). Initial work on the novel two-tiered 

global path planning strategy for limited memory robots is presented in conference 

proceeding C2. The application of the hybrid deliberative-reactive navigation system 
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in the customised multi-level abstracted multi-robot mapping and exploration task 

utilising heterogeneous mobile robots is presented in conference proceeding C4. 

Journal paper J2 presents and evaluates the latest version the hybrid reactive-

deliberative navigation system based on the work presented in chapter 3. Based on 

chapter 4, the latest version of the two-tiered global path planning strategy is 

presented and evaluated in journal paper J3. 

 
Conference proceeding C3 presents initial work on the reduced human user input task 

allocation and feedback coordination system for limited capability robots. The 

feedback system component is further developed to detect and correct the three forms 

of robot failures in publication C5. Journal paper J1 presents and evaluates the 

feedback system detailed in chapter 5. A reduced human user input task allocation 

system for non-expert users that employs fuzzy inference systems (detailed in 

chapter 5 and chapter 7) is presented and evaluated in journal paper J4.    

 

9.6.1 Refereed Conference Proceedings 
 

C1.   P. Chand and D. A. Carnegie, "Reactive control of a tricycle mobile robot," 
in Proceedings of the Twelfth Electronics New Zealand Conference, 2005, 
pp. 129-134. 

 
C2.   P. Chand and D. A. Carnegie, "Memory-time tradeoffs in a path planning 

approach utilising limited memory robots," in Proceedings of the 
International Conference on Computational Intelligence, Robotics and 
Autonomous Systems, 2007, pp. 243-248. 

 
C3.   P. Chand and D. A. Carnegie, "Task Allocation and Coordination for Limited 

Capability Mobile Robots," in Proceedings of the Australasian Conference 
on Robotics and Automation, 2007. 

 
C4.   C. P. Lee-Johnson, P. Chand, and D. A. Carnegie, "Applications of a 

Adaptive Hierarchical Mobile Robot Navigation System," in Proceedings of 
the Australasian Conference on Robotics and Automation, 2007. 

 
C5.   P. Chand and D. A. Carnegie, "Feedback coordination of limited capability 

mobile robots," in Proceedings of the International Conference on 
Mechatronics and Machine Vision in Practice, 2008, pp. 531-536. 
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9.6.2 Book Chapters 
 

B1.   D. A. Carnegie, A. D. Payne, and P. Chand, "The design of a pair of identical 
mobile robots to investigate cooperative behaviours," in Cutting Edge 
Robotics – Section V Multi-Robot Systems. Austria: International Journal of 
Advanced Robotic Systems, 2005, pp. 377-396. 

 

9.6.3 International Journal Articles 
 

J1. P. Chand and D. A. Carnegie. "Feedback coordination of limited capability 
mobile robots," International Journal of Intelligent Systems Technologies 
and Applications, vol. 8, no. 1/2/3/4, pp. 144-157, 2010. 

 
J2. P. Chand and D. A. Carnegie, “Development of a Navigation System for 

Heterogeneous Mobile Robots.” International Journal of Intelligent Systems 
Technologies and Applications, vol. 10, no. 3, pp. 250-278, 2011.  

 
J3. P. Chand and D. A. Carnegie, “A Two-Tiered Global Path Planning Strategy 

for Limited Memory Mobile Robots.” Robotics and Autonomous Systems. 
(under review) 

 
J4. P. Chand and D. A. Carnegie, “A Multi-Robot Task Allocation Technique 

Using Fuzzy Inference Systems," Robotica. (under review) 
 
 

9.7 Summary of Achievements (Contributions) 
 
This thesis has made a number of contributions to mobile robotics research. A 

hierarchical hybrid deliberative-reactive navigation system for heterogeneous mobile 

robots with limited sensing and processing capabilities has been developed. It is 

capable of offering a high degree of flexibility for navigation in known and unknown 

environments. While the system relies on a number of empirically tuned parameters, a 

fixed set of parameters has been functional in the various robot and environment 

configurations tested. A reactive controller comprising a modified dynamic window 

method (velocity space technique) and a polar histogram (directional method) 

outperforms reactive control that relies only on the dynamic window method. The 

developed reactive controller is able to offer similar performance to hybrid 

deliberative-reactive navigation when utilised in unknown environments. This 

removes the need for periodic path planning when employing hybrid navigation in 

unexplored obstructed environments. Subsequently, this can be beneficial in a multi-
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robot system where paths are planned on other mobile robots due to processing 

constraints. 

 
A novel global path planning technique that utilises the memory of a computationally 

powerful robot but executes entirely on a limited memory mobile robot has been 

developed. This allows global path planning to be decentralised in a hierarchical 

heterogeneous multi-robot system instead of relying on a single computationally 

powerful robot. The two-tiered A* based path planning strategy is able to achieve 

superior or comparable execution times to non-memory constrained path planning 

when small sized local maps (such as 64 KB or 128 KB) are employed in large global 

environments (such as 38.15 MB). In large global environments, the distance 

traversed by a robot can be greater than the communication range. This would require 

additional communication nodes or relocation of the computationally powerful robot 

when replanning is needed. Reduced search space of the memory constrained 

planning technique at higher obstacle densities (≥ 20%) can potentially affect obstacle 

clearance. However, when obstacles are sufficiently large to block some local map 

boundaries, the back tracking algorithm can find a path through alternative local maps 

as long as exit points exist in them. This technique for global path planning is unique 

when compared to other memory constrained path planning methods reported in the 

literature. 

 
Furthermore, a novel reduced human user input task allocation and feedback 

coordination mechanism for the efficient execution of a global task by limited 

capability mobile robots has been successfully developed. It is well suited for 

hierarchical heterogeneous multi-robot systems. The task allocation process has the 

advantage of employing fuzzy inference systems to permit simplified human user 

inputs (such as “low”, “medium”, or “high”) for physical robot capability 

requirements at the task specification stage. This is unlike other task allocation 

methods reported in the literature that require more detailed expert knowledge for 

specifying tasks. However, additional effort is required by an expert user to design the 

reduced human user input system. A simple greedy technique allows tasks to be 

allocated quickly.  
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The success of task allocation is monitored with a feedback system that detects and 

corrects abnormalities during task execution thus improving the performance of task 

execution. This mitigates the potentially sub-optimal initial greedy allocations and 

handles unexpected robot failures (such as hardware failure or failures due to 

inaccurate task specification). The developed feedback system is robust to weight and 

threshold variation within the tested limits. This allows weights and thresholds to be 

intuitively selected without negatively affecting performance. Additionally, 

dependence on communication can be varied as the feedback system is robust to 

monitor time interval variation within the tested limits. An expert user is expected to 

“calibrate” a robot’s performance only when the task type is altered. Hence, the 

developed task allocation and feedback coordination strategy has the ability to specify 

tasks in a generic format such that non-expert human users can adapt and utilise 

multi-robot systems. 
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