
Empirical Analysis of
Schemata in Genetic

Programming

by

Will Smart

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy
in Computer Science.

Victoria University of Wellington
2011

Abstract
Schemata and buiding blocks have been used in Genetic Programming
(GP) in several contexts including subroutines, theoretical analysis and
for empirical analysis. Of these three the least explored is empirical anal-
ysis. This thesis presents a powerful GP empirical analysis technique for
analysis of all schemata of a given form occurring in any program of a
given population at scales not previously possible for the kinds of global
analysis performed.

There are many competing GP forms of schema and, rather than choos-
ing one for analysis, the thesis defines the match-tree meta-form of schema as
a general language expressing forms of schema for use by the analysis sys-
tem. This language can express most forms of schema previously used in
tree-based GP.

The new method can perform wide-ranging analyses on the prohibitively
large set of all schemata in the programs by introducing the concepts of
maximal schema, maximal program subset, representative set of schemata, and
representative program subset. These structures are used to optimize the
analysis, shrinking its complexity to a manageable size without sacrific-
ing the result.

Characterization experiments analyze GP populations of up to 501 60-
node programs, using 11 forms of schema including rooted-hyperschemata
and non-rooted fragments. The new method has close to quadratic com-
plexity on population size, and quartic complexity on program size. Ef-
ficacy experiments present example analyses using the new method. The
experiments offer interesting insights into the dynamics of GP runs includ-
ing fine-grained analysis of convergence and the visualization of schemata
during a GP evolution.

Future work will apply the many possible extensions of this new method
to understanding how GP operates, including studies of convergence, build-
ing blocks and schema fitness. This method provides a much finer-resolution
microscope into the inner workings of GP and will be used to provide ac-
cessable visualizations of the evolutionary process.

Acknowledgments

Thank you to my supportive family (yes Frida, new members too) and
chiefly my wonderful Jen. Many thanks to my father Robin for much ap-
preciated help preparing the final document. And many thanks to my
mother Janet for help preparing of the final student.

Very special thanks to my supervisors Mengjie Zhang and Peter An-
dreae whose wise councel and unflagging support has been crucial to the
completion of this thesis.

iii

iv

Contents

1 Introduction 1
1.1 Motivators of this thesis . 1
1.2 Goals of this thesis . 5
1.3 Contributions . 6
1.4 Structure of this thesis . 7

2 Background 9
2.1 Overview of machine learning 9

2.1.1 Information given to the algorithm 10
2.1.2 Data partitions for supervised learning 11

2.2 Main learning paradigms . 12
2.3 Overview of evolutionary computation 13

2.3.1 General concepts . 13
2.3.2 General algorithm . 14
2.3.3 Aspects of EC . 15
2.3.4 Common forms of EC 17

2.4 Overview of genetic programming 18
2.4.1 Representation of individuals 19
2.4.2 Tree-based GP individuals 20
2.4.3 Generation of an individual 20
2.4.4 Generation of the initial population 20
2.4.5 Genetic operators on individuals 21
2.4.6 Current developments in genetic programming . . . 21

v

vi CONTENTS

2.5 Overview of schemata in GAs 22

2.5.1 GAs form of schema 23

2.5.2 GAs schema theory . 23

2.5.3 The building block hypothesis 25

2.6 Overview of schema theory in genetic programming 25

2.6.1 Variants of GP schema theorems 26

2.6.2 Current research of schema theory in GP 29

2.6.3 The building block hypothesis in GP 30

2.6.4 Theoretical research in building blocks in GP 33

2.6.5 Current issues with schema theory in GP 34

2.7 Empirically identifying or using schemata in GP 35

2.7.1 Using Schemata to improve or analyze GP 35

2.7.2 Schemata as subroutines in GP 38

2.7.3 Current issues with empirical use of schemata in GP 43

2.8 Summary . 43

3 The match-tree form of schema language 45

3.1 Chapter introduction . 45

3.2 The problems with GP schemata 46

3.3 What is a schema? . 47

3.3.1 GAs schemata . 48

3.3.2 GP schemata . 48

3.4 Schema in this thesis . 49

3.5 Match-tree schemata . 49

3.5.1 A straw-man general form of schema 50

3.5.2 Matching behaviour in rooted-fragments 52

3.5.3 The match-tree form of schema 54

3.5.4 Label-match functions 55

3.5.5 Child-match functions 56

3.6 A matching algorithm . 57

3.6.1 Child-selection functions 58

CONTENTS vii

3.7 Potential child-match functions 60

3.8 The match-tree form of schema language 62

3.8.1 Match-tree form representation 63

3.8.2 Character string representation 64

3.8.3 Example match-tree forms 65

3.9 Chapter summary . 66

4 Maximal schemata 69

4.1 Chapter introduction . 69

4.2 The problem stated . 70

4.2.1 Example 1: restrictive-ordered subtrees 70

4.2.2 Example 2: rooted-ordered-fragments 70

4.2.3 Other mitigation methods in GP 73

4.3 The new method . 73

4.3.1 Maximal program subsets 75

4.3.2 Representative program subsets 75

4.3.3 Maximal schemata . 76

4.3.4 Representative sets of maximal schemata 77

4.3.5 Maximal and representative pairs 78

4.3.6 How many? . 79

4.4 Analysis using the new method 80

4.4.1 Program subset analysis 80

4.4.2 Schema analysis . 83

4.5 Lattice forms of schema . 85

4.6 Conjunctive forms of schema 88

4.6.1 Conversion to conjunctive forms of schema 90

4.7 De-rooted conjunctive forms of schemata 90

4.7.1 Example one . 92

4.7.2 Example two . 92

4.8 Chapter summary . 93

viii CONTENTS

5 Algorithms of the new method 95

5.1 Chapter introduction . 95

5.1.1 Schema components 98

5.2 GetAnnotatedDAG-rooted: overall algorithm 100

5.3 GetMaximalDAG: maximal pairs as a DAG 102

5.3.1 GetMaximalDAG common outer function 104

5.4 GetSchemaComponents: schema components 106

5.5 AddMeets: get meets from mapping 109

5.5.1 IntersectMeet: exhaustive intersection 111

5.5.2 PromoteIncrement . 117

5.6 GetEdges: edges of the DAG 126

5.7 GetSchemaTree: tree representation of a schema 128

5.8 Counts of subschemata and subsets 131

5.9 De-rooted conjunctive forms 134

5.10 Chapter summary . 138

6 Characterizing experiments 141

6.1 Chapter introduction . 141

6.2 Experimental setup . 141

6.2.1 GP engine settings . 142

6.2.2 Schema engine settings 145

6.3 Lines of verifying experiments 147

6.4 Equivalence of different addMeets variants 148

6.5 Characterizations with default parameters 150

6.5.1 Numbers of representative pairs 151

6.5.2 Time taken . 158

6.5.3 Output file size . 164

6.5.4 Memory used . 168

6.6 Comparing the different algorithms 171

6.7 Characterizations by varying single parameters 176

6.7.1 Population size . 176

CONTENTS ix

6.7.2 Program size . 178
6.7.3 Function arity . 180

6.8 Discussion . 184
6.9 Chapter summary . 186

7 Efficacy experiments 189
7.1 Chapter introduction . 189
7.2 Experimental setup . 190

7.2.1 Generation populations 191
7.3 Number of schemata of each size 191
7.4 Largest matched schemata by k programs 194
7.5 Average size of maximal schemata 202
7.6 Similarity between programs 208

7.6.1 Non-determinism of the program ordering 215
7.7 Clustering programs . 220

7.7.1 Non-determinism of the program ordering 228
7.8 Discussion . 230
7.9 Chapter summary . 233

8 Conclusions 235
8.1 Specific conclusions . 236
8.2 Other observations . 240
8.3 Discussion of the uses of this research 242
8.4 Directions for future work . 244

x CONTENTS

Chapter 1

Introduction

Genetic programming (GP) [41] is an automatic learning method used to
obtain computer programs which approximately solve a given task and
which are the progeny of successive populations of ancestors using ran-
dom programs as a starting point. GP is an evolutionary algorithm de-
rived from Genetic Algorithms (GAs) and automatic programming. It is the
focus of this thesis.

1.1 Motivators of this thesis

A range of motivators inspired this particular topic. Firstly, I chose the
topic of genetic programming for its flexibility and power.

GP shows promise

Since its inception GP has been used with considerable success on a wide
range of machine learning problems due to its powerful evolutionary search,
flexibility of configuration and expressive representation of solutions. GP
now has several devoted international conferences and, from designing
robots [13, 122] to schedules [72, 7], GP has met considerable success in
attempts to solve a great many machine learning tasks.

1

2 CHAPTER 1. INTRODUCTION

GP works as an evolutionary algorithm applying genetic operators suc-
cessively to populations of genetic programs, directed by a fitness function
which measures how good each program is. These three italicized main
components produce many parameters, both numeric and algorithmic,
which grossly affect the performance of GP for any given task. For GP
researchers, this process of setting many parameters is both a blessing and
a curse giving both flexibility and at times excessive dimensionality.

Thus one thesis motivator is the promise of GP and another is that we
don’t know very well how to improve it.

We would like to better understand genetic programming

Genetic programming, like many other machine learning paradigms, in-
creases in power from year to year by incremental improvements to the
way it works. Often the relevant researcher bases these improvements on
instinct alone. Sometimes, however, it is the results of analysis of GP that
motivates improvements to GP. In the former, improvements share simi-
larity with blind luck. In the latter, improvements could be considered to
follow more sound science. Analysis of GP is therefore very desirable in
the process of improving GP.

In order to analyze GP a researcher might look at the fitnesses of pro-
grams in evolution and their lineage. Alternately given a set of programs
the researcher may want to determine why the best program is the best
and the worst is the worst. In doing so the researcher would look to a
finer grain than the program itself by looking for subprograms or patterns
within each program. In GP, these patterns are schemata (note that the
words “schemata” and “schemas” are interchangeable).

There are a number of methods to analyze schemata in theoretical evo-
lutions but far fewer for empirical analysis. This thesis will do the latter
by creating a powerful method for the empirical analysis of GP schemata.
Thus three major thesis motivators are the desirability, difficulty and scarcity
of this kind of analysis tool in GP.

1.1. MOTIVATORS OF THIS THESIS 3

There are few empirical GP schema analysis methods

Much past research analyzes GP by looking at the propagation of schemata
through GP evolution and, of this past research, most has focused on
schema theory. Through research in schema theory the research commu-
nity has a variety of complicated formulae predicting the multiplicity of
a particular schema or the value of a particular population measurement,
based on information from the given current population.

But GP is stochastic. Evolution forms an initial population randomly,
then repeatedly processes it by partly-random operators, before produc-
ing the final output. Analysis of such a system theoretically is complex.
Schema theory has typically overcome this complexity by producing equa-
tions predicting one generation in advance, which must be repeatedly
evaluated to predict further in advance, with the complexity of the evalu-
ation increasing markedly with each generation. Often the analyses have
been forced onto toy problems or systems of limited practical use for in-
stance infinite populations [67] or linear trees [65].

Empirical analysis bypasses many of these problems by reporting on
the propagation of schemata as seen in GP evolution. However empirical
analysis of GP schemata comes with one large problem of its own.

Numbers of schemata in GP populations make global empirical analy-
ses impractical

With previous methods, if a researcher wishes to perform an analysis on
the set of all schemata that occur in any program or programs of a given set
then they need to keep the form of schema simple or the size of the set of
programs small. There have been a number of tools developed to analyze
GP schemata empirically. But for what may be considered “interesting”
schemata, for instance fragments or hyperschemata, the number of distinct
schemata in a population of programs makes this kind of global analysis
of schemata impractical.

4 CHAPTER 1. INTRODUCTION

For example, there are around O(22d
) distinct schemata of the com-

monly used form fragment occurring in a typical single full binary pro-
gram tree of depth d. Such a tree of depth eight may contain about 2×1045

distinct schemata of that form and a tree of depth nine would contain or-
ders of magnitude more. Previous empirical research along these lines has
employed two techniques to avoid this complexity problem:

• Use a restricted form of schemata and/or scale of GP system, then
perform this kind of global schema analysis.

Such research is by its nature suited to very small scale GP systems
or forms of schema that are possibly of limited interest. An example
is study of numeric terminals [130, 131].

• Analyze a small subset of the set of all schemata. An example is the
analysis of only the best-of-run program [48].

Such research relies on sampling, random or otherwise, and the re-
searcher’s prior knowledge. When dealing with an understudied
research area such as GP schemata the prior knowledge may be hard
to come by.

Research falling into this category also depends on a large enough
sample size. The space of GP schemata, however, is heavily biased
toward large schemata, making even very large sample sizes too
small. For instance if we were to randomly sample fragments from a
uniform distribution in our depth eight binary tree then the number
of samples would need to be very large to for us to sample even one
fragment with less than five nodes.

This thesis presents a method for global empirical analysis of complex
schemata in non-toy sized GP populations.

There are many possibilities for what a GP schema may look like. Thus
the final thesis motivator is the unfortunate multiplicity of GP forms of
schema.

1.2. GOALS OF THIS THESIS 5

There is no language to represent a form of schema

GP schemata take many forms; from time to time GP schemata have been
defined as: numeric constants [18, 130, 131], subtrees [105], clipped sub-
trees [6], sets of subtrees [41], fragments [61], unordered-fragments [114],
multi-sets of fragments [70], hyperschemata [85] and others. A researcher
about to embark on schema research and eager to properly cover the space
of schemata faces the daunting prospect of writing algorithms and code
for all these forms of schema and more as they come up.

Therefore this thesis defines the match-tree form of schema language, a
language able to express forms of schema precisely. Most previously used
forms may be expressed in this language.

1.2 Goals of this thesis

The first goal of this thesis is to:

Provide a method to perform efficient and useful analysis on all the
schemata occurring in an input set of genetic programs.

Achieving this goal is of great interest to the GP community. Such an
analysis method would be used to test systems in practice and comple-
ment the theoretical knowledge of schema theory.

This goal has some further qualifications:

1. Usefulness: Some of the analyses enabled by the method are useful
to researchers and the research community.

2. Globality: The method provides analysis on all schemata of the given
form in the given programs. The result is not dependent on random
numbers or selective sampling.

3. Complex forms: The method provides analysis on complex and in-
teresting forms of schemata.

6 CHAPTER 1. INTRODUCTION

4. Larger-than-toy scale: Though no attempt is made to analyze large
populations, the method should be able to analyze all schemata in
100 seven-deep programs. The analysis should be available on real
world, non-toy problems.

Achieving this higher goal will involve achieving subsidiary goals:

• Unfortunately, there are many forms of GP schema in the literature
and most are incompatible with each other. Thus in order to provide
coverage to analyze a wide range of forms of schema, a subsidiary
goal defines our use of “schema” by defining a language to describe
“forms of schema”:

Provide a language for forms of GP schema unifying common
forms of GP schema.

and

Build a new analysis method to be compatible with this form of
schema language.

• A subsidiary goal to test the efficacy of the analysis method:

Characterize the method by using it for GP analysis in a range
of situations.

The second goal is to develop an implementation of the new method in
C++.

1.3 Contributions

This thesis presents a range of new methods, analyses and structures which
are important contributions to the GP community by being newly intro-
duced in this thesis, and being potentially very useful to the researchers
and users of GP:

1.4. STRUCTURE OF THIS THESIS 7

• The thesis defines a very general form of schema (the Match-tree Form
of Schema), and language for specifications of this form of schema
(the Match-tree form of schema language). These allow both far greater
precision, to the point of machine-readability, in definition of forms
of schema and more easy comparison of systems conforming to the
schema form language.

• The thesis introduces the concept of maximal schemata and algorithms
using them for the empirical analysis of the relationship between
genetic programs of any given population and the schemata they
match. The empirical analysis is exhaustive, providing a determin-
istic method to represent each schema in the population with the set
of programs it occurs in. Together the algorithms provide such ex-
haustive empirical analysis at a much larger scale than previously
possible, allowing GP researchers to analyze larger scales of evolu-
tion without the selection of schemata that was previously required.

• An implementation of these algorithms in C++ has been made avail-
able to the GP community.

This thesis has shown how to perform empirical analysis on schemata in
GP populations at a scale previously prohibitive for many types of analy-
sis. Previous approaches were typically hard-coded to one or two forms.
By using the match-tree form of schema language, analysis by the new
method is applicable across a wide range of forms of schema, allowing
experiments showing that different forms have widely different character-
istics.

1.4 Structure of this thesis

After this introduction this thesis presents an overview of relevant back-
ground to machine learning, GP and GP schemata. Chapter 3 defines the

8 CHAPTER 1. INTRODUCTION

match-tree form of schema and the match-tree form of schema language.
Chapter 4 introduces the core idea of the analysis method: representative
pairs. It also presents algorithms which use these representative pairs to
answer analysis questions about a GP population. Chapter 5 presents al-
gorithms to find the representative pairs for a large number of the forms
possible using the match-tree form of schema language.

Chapter 6 presents the results of verification experiments. Chapter 7
presents the results of experiments showing the usefulness of the method
in practice. Chapter 8 presents the conclusions of this thesis, and gives the
research directions I would like to see explored in future research.

Chapter 2

Background

This chapter presents the current state of the art in this thesis’ problem
domain.

The chapter starts with a very broad overview of machine learning and
evolutionary algorithms. It then presents summaries of relevant current
work in genetic programming (GP), schemata in genetic algorithms and
GP and with most specificity empirical work on schemata in GP.

2.1 Overview of machine learning

This thesis defines a tool for the analysis of genetic programming, which
is an evolutionary algorithm and a machine learning method.

At a high level, an intelligent machine could be expected to modify its
behaviour given new information about its environment or information
about a change in its environment. Machine learning is the computing dis-
cipline to allow this intelligent modification of machine behaviour, based
on environmental input. Machine learning may be seen to derive high-
level “knowledge” about a given set of data and use that knowledge to
make decisions, although it must be noted that this high-level knowledge
may not be in any way human-readable.

9

10 CHAPTER 2. BACKGROUND

2.1.1 Information given to the algorithm

While the problem space for machine learning is vast, the overall data flow
is most typically one of the following:

• Supervised learning.

The input to a supervised machine learning algorithm is a set of ex-
amples of both input and corresponding desired output. Using these
examples it must be able to produce output of a similar quality given
new input.

For example, a supervised machine learning algorithm may be given
one hundred waveforms of Bob speaking and one hundred of Sally
speaking. For each it is told who was behind the microphone. Given
a new waveform it must then recognise who is speaking.

• Unsupervised learning.

Unsupervised machine learning algorithms are only given input data
and produce output by exposing a particular structure in the data.
The input data instances are not labelled or predefined.

For example, the trainer gives an unsupervised machine learning al-
gorithm one hundred waveforms of Bob speaking and one hundred
of Sally speaking. By identifying that half of the input waveforms
featuring slower speaking tone and speed (those of Bob), the algo-
rithm may associate a new (low toned) waveform with Bob’s previ-
ous waveforms.

• Reinforcement learning.

Reinforcement algorithms depend on feedback about their perfor-
mance. The algorithm must accumulate the feedback over time, anal-
ogous to learning through doing.

For example, a reinforcement machine learning system controls an
elevator. Though the elevator algorithm is not told directly which

2.1. OVERVIEW OF MACHINE LEARNING 11

floor it should have chosen to go to last, the system provides the
elevator algorithm with feedback on the quality of its choices.

Hybrid

Naturally there are a great many combinations of the above strategies.

2.1.2 Data partitions for supervised learning

Typically supervised machine learning systems train using a dataset par-
titioned into a training set and a test set. Sometimes a validation set is also
used. The machine learning algorithm receives three types of input.

• Training set.

The training samples are patterns with both the input data to be
recognised and the respective desired output data. The training set
provides the learning algorithm with a measure of how good any
prospective solution is. The final solution should perform well on
the training set. A supervised learning system will typically tend
to try to exploit the previously tested prospective solutions which
performed well on the training set.landscape which - making up the
training set.

• Validation set.

The validation set, if used, is logically part of the training set and
aims to avoid over-fitting which is analogous to a student rereading
past exams and solving them with precision then proceeding to fail
on the new material of the exam. This part of the training set is kept
at arm’s length to the training process, although not as strictly as the
test set. Performance on the validation set is a useful indicator of
how well the algorithm will do on the test set rather than the specific
items it must learn.

12 CHAPTER 2. BACKGROUND

• Test set.

The test samples also have both input data and desired output de-
fined but are used differently to the training samples. The learning
algorithm may only use the desired output for each pattern to test
the quality of a prospective solution. The measure of quality is never
used as part of the search for better solutions but rather as a test
measuring the quality of the solutions.

• Eventual use.

The eventual end of the system is patterns provided by the real world
for which there is input data but no known desired output.

2.2 Main learning paradigms

The following are four of the many paradigms of machine learning:

• Case-based [1].

Case-based machine learning algorithms compare training data di-
rectly with test data, using flexible matching methods. Popular case-
based machine learning methods are nearest neighbour [16] and near-
est centroid.

• Connectionist [23] – a form of hill-climbing search.

Connectionist methods represent their solution as a network of nodes
and edges. Starting from an unrefined network, the learning algo-
rithm refines the weights on the edges or parameters associated with
the nodes. Input samples, when passed through the refined network,
will produce close to the desired output.

The most common connectionist learning method is neural network [10].

• Evolutionary [115] – a form of hill-climbing beam search based on
the Darwinian principle of natural selection.

2.3. OVERVIEW OF EVOLUTIONARY COMPUTATION 13

A number of individuals are kept in one or more populations with the
names belying the biological inspiration for this paradigm. A fitness
function obtains the fitness of a given individual, which is a measure
of how “good” the individual is at producing the desired output for
each input sample in the training set.

The algorithm aims to improve the quality of successive populations
by applying genetic operators to the individuals of previous popula-
tions and keeping those new individuals which have improved fit-
ness.

This thesis’ topic, genetic programming, descends from genetic algo-
rithms [34] which is an evolutionary algorithm using evolutionary
search.

2.3 Overview of evolutionary computation

Evolutionary Computation (EC) has its origins in the 1950s [22]. This sec-
tion describes features of EC relevant to its specialization GP.

2.3.1 General concepts

EC passes a number of concepts down to GP:

• Individuals: a candidate solution of some form which may transform
input samples into something like the desired output.

• Fitness: a measure of how good a given individual is at transforming
the training set samples into their desired outputs.

• The population: a set of individuals.

• Genetic operator: an operator which produces one or more individu-
als, given one or more individuals. Genetic operators create new in-

14 CHAPTER 2. BACKGROUND

dividuals semantically close to previous individuals that were found
to perform well on the training data.

• Selection mechanism: a mechanism which selects individuals based
on fitness. The selected individuals are passed as input to the genetic
operators. Selection mechanisms typically give greater numbers of
offspring to the fitter individuals which is basic to Darwinian natural
selection.

• Generation: the period over which the system produces a new pop-
ulation by applying genetic operators to the previous population.

• Evolution: the period of the entire process until the final generation.

2.3.2 General algorithm

The general algorithm of EC is as follows:

1. Initialization: a population is made from scratch. Typically the indi-
viduals in the population are randomly created, although they may
also incorporate material of previous evolutions or prior knowledge
on the part of the user.

2. Refinement: successive populations are created, each from its prede-
cessor.

Each step of the refinement has several steps:

• Evaluation: the fitnesses of individuals in the population is as-
sessed.

• Selection: the better individuals are passed to the genetic oper-
ators for mating.

• Application of the genetic operators: a new population is formed
from the output of the genetic operators given the selected in-
dividuals as input.

2.3. OVERVIEW OF EVOLUTIONARY COMPUTATION 15

3. Final solution individual: the evolution will be brought to an end
according to some early-stopping criteria. An example is to end the
evolution after some number of generations show no improvement
in best individual fitness. Typically the very best fitness individual
found during the run or in the final population will be used as the
output of the EC algorithm as a whole.

2.3.3 Aspects of EC

EC provides a very basic algorithm and is typically specialized for actual
use. This section lists some parameters common to most implementations
of EC variants and common settings.

Representation of individuals

Each individual instantiates an entire prospective solution to a particular
problem. Therefore the representation used to express individuals, which
are the candidate solutions, has often been a focus of research aiming to
improve EC as a whole. A change in the representation of individuals has
flow on effects to the EC algorithm’s genetic operators and its method to
derive fitness from individuals.

Variously, individuals may be represented as vectors of real numbers
as in evolutionary programming [22] and evolutionary strategies [22], vec-
tors of bits as in genetic algorithms [34], graphs of nodes [55, 21], trees of
nodes as in tree-based GP [41], or lists of instructions as in linear GP [11].

Fitness function

The EC fitness function derives a fitness from an individual by compar-
ing the evaluated output of the individual for each pattern in the training
set and the respective pattern’s desired output. Often the fitness function
returns the fraction of correctly identified samples or a representation of

16 CHAPTER 2. BACKGROUND

distance from the ideal output (in which case it is referred to as an evalua-
tion function).

The design of a fitness function is crucial to the performance of any EC
system using it. The combination of problem and fitness function forms a
fitness landscape as the space of fitnesses for all possible programs. Some
such landscapes are smooth with a clear local indication of how to improve
any proposed solution.

Parent selection mechanism

The following are often used to select parents in EC systems:

• Roulette wheel selection/Proportional selection [41] - each individ-
ual has a probability of being selected in proportion to its fitness.

• Rank selection [41] - each individual has a probability of being se-
lected in proportion to its rank. That is for N individuals, the pro-
gram ranks count from one for the worst to N from the best.

• Tournament selection [41] - selection is a two step process: first it
samples a set of individuals from the population randomly with no
reference to fitness into the tournament. Next the individual of the
tournament with best fitness is chosen.

While these mechanisms are for parent-selection some systems also have
child-selection mechanisms which select which generated children are kept
for the next generation.

Genetic operators on individuals

Though intrinsically linked to the representation of individuals used, typ-
ically there are three genetic operators:

• Reproduction or elitism - reproduction copies individuals unchanged
to the next population. With use of reproduction of the best individ-

2.3. OVERVIEW OF EVOLUTIONARY COMPUTATION 17

ual it may be ensured that the best individual in the next generation
is not worse than that of the current generation.

• Mutation - one parent is partially altered in a random way to produce
one child for the next population. Mutation introduces new material
and is often used to increase population diversity.

• Crossover - two or more parents mix to produce offspring. No new
random material is introduced as with mutation. Crossover may
combine the good elements of existing individuals to produce bet-
ter child individuals.

2.3.4 Common forms of EC

There are several main offshoots of EC, each being a discipline in its own
right.

• Genetic algorithms (GAs) [34] - GAs is an EC method originating in
the 1960’s in which the representation of individuals, chromosomes, is
as vectors. Typically chromosomes are fixed-length vectors of bits or
bit-strings.

In GAs, mutation and crossover typically preserve the position in
the chromosome of parts of the chromosome passed from parent to
child, thus crossover or recombination involves choosing the source
parent for each element of the chromosome and mutation involves
choosing whether to randomly assign each element.

A key feature of GAs is the high emphasis placed on crossover.

• Evolutionary Strategies (ES) [22], Evolutionary Programming (EP) [22]
- both originated around 1964 in parallel from different communities.

The representation of individuals used in both ES and EP is as vec-
tors of real numbers. ES uses these vectors directly as solutions, for

18 CHAPTER 2. BACKGROUND

instance as parameters to a model. EP interprets the solutions as
finite-state-machines.

Both ES and EP have mutation as the key genetic operator with crossover
used less or not at all.

• Genetic Programming [41] - described in the next section.

• EC also has other forms, including learning classifier systems [112],
swarm intelligence (particle swarm optimization [15], ant colony op-
timization [20], artificial immune systems [19]), and others.

2.4 Overview of genetic programming

Genetic Programming (GP) is similar to a specialization of GAs with the
representation of individuals as computer programs or genetic programs.
But, through a very active research community, GP has become very dif-
ferentiated from GAs. The precise early roots of GP are hard to distin-
guish. In 1954, Nils Aall Barricelli used programs as the representation for
evolutionary algorithms and during the 1960s, 1970s and 1980s the core
ideas and mathematics behind GP were developed by various researchers
including: Turing [118], Price [95] and Holland [34]. Researchers to ap-
ply early versions of tree-based GP include: Forsyth [25], Cramer [17], De
Jong [35] and Bickel and Bickel [9]. Despite this early work, Koza [40, 41]
originated many of the standard constructs still found in today’s canonical
GP.

The broader method of GP has the key feature of complex representa-
tions for individuals. Historically these representations described simpli-
fied runnable computer programs but the term “numerical expression” is
often more apt than “program” since the programs often involve few of
the typical constructs found in computer programs; typically these genetic
programs use no loops or subroutines. However voluminous research has
focussed on the best way to add such constructs [69, 14, 54].

2.4. OVERVIEW OF GENETIC PROGRAMMING 19

2.4.1 Representation of individuals

GP features an ever growing set of representations for individuals. While
GAs typically use bit-strings, GP researchers are perhaps freer to invent
more complex representations. Despite the name, some modern represen-
tations of genetic programs bear no resemblance to computer programs
of any sort. Some commonly used representations for genetic programs
include:

• Tree [41] - the structure for the original genetic programs was as Lisp
S-expressions or trees of functions and terminals, used in tree-based
GP, and this form is still most popular.

• Grammar tree [123] - distinct from tree-based GP is grammar-based
GP. Each individual is a partial derivation tree, which may be used
to derive a tree-based GP genetic program.

• Linear [11] - each individual in Linear GP (LGP) is a sequence of in-
structions, similar to those of assembly language. LGP uses a register
set as both input and output.

• Graph [55, 21, 66] - each individual is a graph of functions and ter-
minals, more generally than the trees of tree-based GP. LGP genetic
programs may also be interpreted as graphs.

• Final representation - recently, GP researchers have been foregoing
the step from genetic program to final output and have been evolv-
ing genetic programs of the final representation directly. An example
is the evolution of electronic circuits [43].

This thesis focuses on tree-based GP only. The sections after this one and
the remaining thesis, exclusively reference tree-based GP.

20 CHAPTER 2. BACKGROUND

2.4.2 Tree-based GP individuals

A genetic program in tree-based GP is a tree of functions and terminals.
Functions are the internal nodes of the tree and terminals are the leaf nodes
of the tree. The tree structure of a genetic program means that any number
of inputs may be arbitrarily processed by component functions and one
output produced. The GP system may evaluate the tree in the same way
as a Lisp program is evaluated.

The functions and terminals of a program tree may be evaluated to
produce an output. Terminals have no children and their output values
depend on stored value, as in the case of numeric terminals, or informa-
tion from the “world”, as in the case of feature terminals. Functions have
children and use the outputs of those children to determine their own out-
put. An algorithm may evaluate each node by ensuring children evaluate
before parents. The evaluated output of the root node is the output of the
genetic program as a whole.

2.4.3 Generation of an individual

There are a variety of ways to generate the tree for a genetic program,
including:

• Full - randomly assign the nodes of each level, starting at the root.
If the desired depth is d, then all nodes at depths less than d are
functions and all nodes at d are terminals.

• Grow - similar to full, but nodes at depths less than d may also be
assigned as terminals with a given probability.

2.4.4 Generation of the initial population

There are a variety of ways to generate the initial population of genetic
programs, including:

2.4. OVERVIEW OF GENETIC PROGRAMMING 21

• Half-and-half [41] - this method generates half of the genetic pro-
grams of the population using full and the other half by grow.

• Ramped [41] - this method varies the desired depth of the genetic
programs linearly from some minimum for the first genetic program
to some maximum for the last genetic program.

• Ramped half-and-half [41] - a commonly used combination of “ramped”
and “half-and-half”

2.4.5 Genetic operators on individuals

Publications have focussed on improving the genetic operators in GP [47,
133] but the original set of operators is still most common:

• Subtree mutation - produces a single child from the single parent
with one randomly selected subtree replaced by a randomly gener-
ated subtree.

• Subtree crossover - produces two children from the two parents, each
sourced from alternate parents. Crossover first selects a location in
the tree of each parent and produces two children each with the main
body of one parent with its selected subtree replaced by the selected
subtree of the other parent.

2.4.6 Current developments in genetic programming

GP is being actively developed in several ways:

• Co-evolution [127, 27] - uses two or more concurrent evolutions, in
which each evolution depends on each other for its fitness function.
That is, each population learns off the other.

• Multi-objective [73, 24] - in which the fitness function produces a
vector of numbers, rather than a single real-valued fitness.

22 CHAPTER 2. BACKGROUND

• Parallelization [26, 44] - GP need not simply repeatedly produce one
population from the last. Recent research has focussed on paralleliz-
ing GP over multiple populations.

• Variation of parameters during evolution [119, 33] - The optimal set-
ting for each of the many parameters to GP need not be constant
through each evolution or between evolutions. Research has focussed
on adjusting parameters during evolution.

• Bloat control and removal of underused code [120, 125] - bloat or the
tendency of genetic programs in later generations to be larger, has
long been a problem in GP.

• Utilizing GPUs (GPGPU) [50, 68] - a new topic in GP is the use of
highly parallel architectures such as GPUs which are most often as-
sociated with graphics.

• Analysis of GP - to direct the improvements to GP a large amount of
recent research focuses on the analysis of GP:

– Building blocks - hypothesized as a loose entity by Goldberg in
1985 [29], the term building-block has come to mean any one
of many concrete structures found in genetic programs. Much
recent research uses building-blocks to analyze improvements
in performance.

– Research of schemata and building-blocks in GP [39, 117, 45, 36]
- research looks to schema theory to explain the power of GP.

2.5 Overview of schemata in GAs

In the 1970s, researchers started looking to explain the power of Genetic
Algorithms. John Holland presented a persuasive argument in his book [34],

2.5. OVERVIEW OF SCHEMATA IN GAS 23

stating that GAs do not simply sample a set of chromosomes in search-
space but perform a far greater parallel search of the patterns common to
chromosomes. He called the patterns schemas. A common definition for
a schema is as a specification of a set of points in search-space that share
some syntactic characteristics.

2.5.1 GAs form of schema

For bit-string chromosomes a schema or “similarity template”, is a string
of symbols taken from the alphabet 0,1,# [34]. The schema represents the
set of bit-strings that match the schema symbol by symbol for every sym-
bol in the schema that is not #. So the schema 0101#1# represents the set of
bit-strings 0101010, 0101011, 0101110, 0101111.

The number of non-# symbols in schema H is its order orO(H). The dis-
tance between the furthest two non-# symbols in schema H is its defining-
length or L(H).

2.5.2 GAs schema theory

Typically research on schemata in GAs has been largely theoretical making
up schema theory. Less numerous has been research identifying or using
schemata from GAs chromosomes in runs of evolution.

GAs exhibit inherent parallelism

Holland proposed that GAs derive a great amount of their power by per-
forming a search on not only chromosomes but also schemas. Each schema
has an expected payoff, similar to a chromosome’s fitness, which is defined
as the average fitness of all possible chromosomes containing the schema.
When assessing a chromosome for fitness, the fitness adds new informa-
tion about the expected payoff of all schemas it contains. The probability
of each schema propagating to the next generation is thus affected by the

24 CHAPTER 2. BACKGROUND

assessment of the chromosome’s fitness, much like the probability of the
chromosome contributing to the next generation. Since each chromosome
of length N contains 2N schemas, the assessment of one chromosome’s fit-
ness alters 2N distinct, if not independent, variables, each of which affects
the make-up of the next population. Holland termed the simultaneous
processing of this large number of schemas inherent parallelism [34].

However in a population of chromosomes some schemas are certain to
occur more than once. The number of schemas sampled by a population
of M chromosomes is not O(M · 2N) as might be supposed but is in fact
only O(M3N) [29].

Holland’s schema theorem

Holland presented in [34] an equation specifying a lower bound on the
expected number of chromosomes containing a schema in the next gen-
eration in terms of the number of chromosomes containing the schema in
the current generation, the fitnesses of the chromosomes in the population,
and other pieces of information obtainable from the population:

E[m(H, t + 1)] ≥

m(H, t) · f(H, t)

f̄(t)
· (1− pm)O(H) ·

[
1− pc

L(H)

N − 1

(
1− m(H, t)f(H, t)

Mf̄(t)

)]
where m(H, t) is the number of chromosomes matching schema H at time
t, f(H, t) is the mean fitness of chromosomes matching schema H at time
t, f̄(t) is the mean fitness of chromosomes in the population, pm and pc are
the probabilities of mutation and crossover per bit respectively, N is the
length of the chromosomes and M is the number of chromosomes in the
population.

In order from left to right the terms of the right hand side deal with:
the frequency of the schema in the population, the effects of selection, the
effects of mutation and the effects of crossover.

The formula given by Holland gives only an lower bound. Practically,

2.6. OVERVIEW OF SCHEMA THEORY IN GENETIC PROGRAMMING25

this causes the formula to be of limited use in reliably predicting the ex-
pected number of instances of a schema in some cases when the value
produced is far below the actual expected value, due to the simple model
of evolution used in the formula. This prediction error increases exponen-
tially as predictions are made further into the future. In addition, Hol-
land’s schema theorem counts only the genes it disrupts, not the genes it
creates, making it less reliable for predicting the actual behaviour of a GAs
population.

2.5.3 The building block hypothesis

Building on the Holland’s schema results, Goldberg proposed an ambi-
tious theory on how GAs work [29], calling it the Building Block Hypothesis
(BBH). The hypothesis states that GAs work by combining short, highly-fit
schemas of low order called building blocks into larger schemas potentially
of higher fitness. These larger schemas combine into higher-order schemas
and eventually a solution.

Goldberg inferred from schema theory that these high-performance,
short-defining length, low-order building blocks would be sampled in the
population in numbers increasing at least exponentially.

2.6 Overview of schema theory in genetic pro-

gramming

Research applying the GA schema theorem to GP started in about 1992.
But the variable-length representation of programs in GP gave difficul-
ties not present when dealing with the fixed-length bit-strings typically
found in GAs. Early work includes that of Altenberg and Ballard [4, 3],
O’Reilly and Oppacher [70], Whigham [124], Poli and Langdon [85, 86]
and Rosca [106]. Subsequently, the basic GP schema theorem has been ex-
tended in many directions and the following subsections describe some of

26 CHAPTER 2. BACKGROUND

these variants.

2.6.1 Variants of GP schema theorems

Innovations in schema theory for GP varied along a few basic lines as fol-
lows:

Different forms of GP schema

Koza presented GP’s first form of schema in his 1992 founding work [42].
He described the form of schema as follows:

“A schema in genetic programming is the set of all individual
trees from the population that contain as subtrees one or more
specified trees. A schema is a set of LISP S-expressions sharing
common features.” [42]

An example schema by this definition is shown in figure 2.1(a). A key
feature of Koza’s definition is that schemas are complete subtrees. By way
of example for a program to be a member of the schema defined by the
single S-expression (IF 1 2 3), it must contain a subtree exactly matching
(IF 1 2 3). Incomplete trees such as (IF # 2 3) where # is a wild card and can
match any valid subtree, are not allowed.

O’Reilly and Oppacher [70] proposed another more general form of
schema that allowed these incomplete subtrees. These schemata were de-
fined as follows:

“A GP schema H is a set of pairs. Each pair is a unique S-
Expression tree or fragment and a corresponding integer that
specifies how many instances of the S-Expression tree or frag-
ment [a program instantiating H must contain].”

where a fragment is a program tree with # or don’t care added to the set
of possible terminals. An example of this form of schema is shown in
figure 2.1(b).

2.6. OVERVIEW OF SCHEMA THEORY IN GENETIC PROGRAMMING27

Figure 2.1: Previously defined forms of schemata in GP

While this is a powerful definition of GP schema and allows for a great
number of program patterns and potential building blocks to be defined
in terms of a set of fragments, producing a schema theorem using this
definition of schema proved difficult with only a basic theorem presented
in [70]. Note that O’Reilly and Oppacher did not consider program trees to
be fragments but defined fragments as requiring at least one node that is
a #. In this document this requirement is removed and the set of program
trees is a subset of the set of fragments.

Whigham produced a form of schema for his Context-Free-Grammar
based Genetic Programming (CFG-GP) in [124]. Each schema is a partial
derivation tree for the grammar used to create individuals. An example of
Whigham’s schema is shown in figure 2.1(c).

28 CHAPTER 2. BACKGROUND

Rosca and Ballard in [108] presented a definition of schema for ordi-
nary tree-based GP, based on that of O’Reilly and Oppacher:

“A rooted-tree schema or tree-schema of order k is a rooted and
contiguous tree fragment specified by k function and terminal
labels” [108].

An example schema by this definition is shown in figure 2.1(d). Poli and
Langdon in [85] further developed the schema of Rosca and Ballard: where
rooted-tree schemas make use of the # node, which can replace any valid
subtree, the hyperschemata of Poli and Langdon also make use of the =
node, which can replace any single node, be it a function or terminal. An
example hyperschema is shown in figure 2.1(e).

Different values being measured

Early on in the study of schema theories in GP, the difficulty in finding
exact equations describing transmission probabilities of schema led to re-
search into finding other related quantities.

In 1998, Poli, Langdon, and O’Reilly [88] investigated the variance
of schema transmission or the certainty from run to run of a particular
schema’s transmission probability in lieu of the actual probability itself.
The same paper investigated the extinction probability of schemas, which
was found to be higher than expected for even high-fitness schema. For
example, a high-fitness schema has a 50% probability of being broken-up
after two generations.

Exactness

Most schema theorems provide only a lower bound on the expected num-
ber of instances of a schema in the next generation. But recently exact
schema theorems have been developed for various configurations of GP:
Most notably, in [77, 80, 90, 89, 91, 83, 92, 79], Poli described exact schema

2.6. OVERVIEW OF SCHEMA THEORY IN GENETIC PROGRAMMING29

theorems for his hyperschema form of schema and various configurations
of GP operators.

2.6.2 Current research of schema theory in GP

Over the past few years, several researchers have been active in improving
and applying GP schema theory.

In 1997, Haynes [31, 32] attempted to bridge the gap between the rela-
tively sound schema theory of GAs and the more tenuous schema theory
of GP, by proposing phenotypical building blocks for a graph based GP. The
system evolved phenotypical building blocks as an intermediate represen-
tation able to produce the actual solution graph. The phenotypical build-
ing blocks were closer to the phenotype or behaviour of the program than
the genotype or structure of the program which is most often evolved in
GP. Haynes concluded that this work reconciled previous GP observations
of recombination with the theoretical work of O’Reilly and Oppacher.

Riccardo Poli has co-authored several papers on the subject. In the 1998
paper [87], Poli and Langdon presented the first of a line of schema the-
orems. The paper developed a schema theorem for hyperschemata using
point crossover and point mutation. Poli, Langdon, et al. extended this
work considerably, developing new schema theorems for variations of the
GP algorithm [76, 75, 82, 90, 80, 78, 81, 92, 82, 91]. Recent extensions in-
clude the formulation of exact schema theorems for GP involving subtree
crossover, using Poli’s hyperschema.

Li et al. [53] present a method for evolving schemas directly. The method
encodes each population as an instruction matrix from which individu-
als can be extracted. If an extracted individual has good fitness, it passes
its fitness back into this instruction matrix, making extractions of similar
individuals more likely in the future. In similar work Shan et al. [111]
used a grammar model to guide the construction of population individ-
uals, by using fitnesses of previous individuals. Both methods showed

30 CHAPTER 2. BACKGROUND

significantly improved performance over canonical GP on the problems
tested.

McPhee et al. [65, 63, 64] used recent results in schema theory to find
the size bias of subtree crossover and mutation operators on linear pro-
gram representations. The paper constructed the simple “one-then-zeros”
task in which all programs are variable length bit-strings and a program
gains high fitness only if it consists of a one followed by all zeros. Sub-
tree crossover was found to increase the size of programs on average and
subtree mutation was found to increase or decrease the size of programs
toward a point of equilibrium. This research presented a practical way to
use schema theory in designing operators but the relevance of results was
limited by the simplicity of the representation and task used.

Mitavskiy [67] extended previous work of Poli, Stephens, Wright and
Rowe [94], developing schema theory for GP based on Geiringer’s Theo-
rem. Geiringer’s theorem provides a limit reached by repeated crossover
in an infinite population. Mitavskiy provided a version of this theorem
for nonlinear GP with homologous crossover in a finite population but no
selection. The paper reached no firm conclusions but suggested further
work would extend to infinite populations with selection.

2.6.3 The building block hypothesis in GP

Since GP was conceived, researchers in GP have analyzed the predictions
of the BBH when applied to the new representation of individuals in GP.
There exist several arguments for and against the GP BBH, many of which
also apply to the GAs BBH.

Arguments against the BBH in GAs and GP

In [70], O’Reilly formulates a schema theorem for GP and summarizes
some previously recognized basic failures of the GAs BBH and some as-
sumptions present in deriving the GP BBH from the GAs BBH:

2.6. OVERVIEW OF SCHEMA THEORY IN GENETIC PROGRAMMING31

• As stated in [30, 126] and others, schema theory in GAs fails to take
into account the interactions of schema in evolution, something that
is core to the BBH, thus the BBH is not supported by schema theory.
This applies equally to GP.

• All individuals in a population of GA chromosomes share the same
set of features, differing only in the expression of each feature. How-
ever GP genetic programs not only differ in the exact set of features
used but generate arbitrary high-level features from this set of base
features. This means the behaviour of schemas in GP may be very
different from the behaviour of schemas in GA as the two may de-
scribe quite different structures. This indicates translation of the GAs
BBH which is founded on GA schemas, to the GP BBH which is
founded on GP schemas, may be difficult.

• The BBH relies on schemas having a stable fitness, but there may be
high variance in the fitness of individuals sampling a schema, mak-
ing it hard to identify the true fitness of the schema from only the few
individuals sampled during evolution. In addition, convergence in
the population makes it more difficult to find the true fitness of a
schema since individuals sampling the schema become more similar
in fitness.

• GA schema theory only predicts the next population’s make-up, yet
is the basis for the BBH which looks forward many generations, pre-
dicting exponential growth of some schema. The BBH assumes that
the conditions for a schema to grow in one generation will be present
for future generations, which is not ensured by the schema theory
formulae.

• GP building blocks may only occur at certain times during the run
as building blocks, by definition, must be resistant to disruption. For
example, a building block in one generation may cease to be a build-

32 CHAPTER 2. BACKGROUND

ing block in later generations if the programs containing it have de-
creased in size, increasing the building block’s chance of disruption.

• The BBH prediction that schemas may be combined to form schemas
of higher fitness relies on independence of subcomponents of the in-
dividual. Especially in GP, there is little basis for belief in this inde-
pendence of sub-solutions in creating a solution.

To make progress in determining the validity of the BBH in GP, empirical
evidence must be compiled by measuring schema statistics in actual GP
evolutions. This could verify the validity of the schema theory in predict-
ing schema frequencies past the next generation or could show that such
predictions are subject to large errors. Such measurements could also mea-
sure transition of schemas from parents to children in genetic operators in
the context of an evolution.

Arguments for the BBH in GAs and GP

In GAs, Goldberg has proven [29] that the BBH is a natural consequence of
schema theory, on the assumption that it can be used iteratively to make
long term predictions. The formulae of schema theory simply state that
schemas of small order and high fitness increase in the population expo-
nentially as evolution progresses. While schema theorems have typically
given only lower bounds on the number of instances of a schema in the
next population, exact formulae are available for some GP setups [77, 81,
90, 89, 91, 83, 92, 79], making predictions for the number of instances of a
schema in future generations more accurate.

Arguments against the transposition of the GAs BBH to a GP platform
typically centre on the different nature of schemas in GP, compared to
schemas in GAs. In [85, 84] Poli and Langdon developed a schema theory
for GP using one-point crossover and the hyperschema form of schema.
They concluded that their schema theorem was a more natural counter-
part to Holland’s schema theorem for GAs [34] than previous GP schema

2.6. OVERVIEW OF SCHEMA THEORY IN GENETIC PROGRAMMING33

theorems. They also concluded that some difficulties found applying the
BBH to GP with standard crossover may be alleviated when using one-
point crossover.

2.6.4 Theoretical research in building blocks in GP

Ryan et al. [109] proposed the existence of competitive rooted building
blocks. In contrast to the building blocks of the BBH which do not gener-
ally compete with each other, these blocks are of high fitness only when
occupying the root node of a program and so must compete with each
other for this position.

Sastry et al. [110] developed a theory on the supply of building blocks
in GP. They developed formulae giving lower limits on the minimum pro-
gram depth and population size in order to guarantee expression of all
building blocks, using formulae giving the expression of building blocks in
the simple “ORDER” task. An expressed building block in an individual
was defined as a block placed in such a way as to contribute positively to
the fitness of the individual.

Diada et al. [18] reduced the complexity of building block analysis in
GP by considering only the very simplest of potential building blocks:
Ephemeral Random Constant terminals (ERCs). They concluded that de-
spite their simplicity, the ERCs did exhibit characteristics of building blocks.
But they found that the utility of each ERC varied considerably during
evolution and concluded that the nature of GP building blocks is quite
different from their DNA analogue with GP building blocks far more tran-
sitory in their use.

Other research has used building blocks as a model in determining
why some problems are difficult to solve in GP [52, 51].

Poli and Stephens [93] presented a thorough generalization of the Build-
ing Block Basis (BBB) of GAs to GP. The tensor mathematical construct was
used as a more elegant way to deal with the highly complicated formula

34 CHAPTER 2. BACKGROUND

involved in the schema theory, leading to a formulation of building blocks
as pairs of conjugate schemata.

There remain reasons to believe building blocks propagate in GP popu-
lations in a way similar to predictions of the BBH. But there are also several
persuasive arguments why GP could not support building blocks that act
in this way. There continues to be a lack of solid evidence for or against
the existence and nature of building blocks in GP.

2.6.5 Current issues with schema theory in GP

Schema theory is provably correct in its predictions: given information
about the current population, it can predict properties of schema frequen-
cies in the next population, after the effect of genetic operators. But there
are several major issues with relying on schema theory to predict the make-
up of future populations:

• Even exact schema theorems can only predict the expected frequency
of a schema as it progresses from generation to generation. But the
pressures on the schema, for instance its fitness in relation to other
schemata in the population, may change from generation to genera-
tion in unexpected ways and many of these factors are terms of the
schema theorem formulae. Thus even exact schema theorems cannot
reliably make exact predictions of the frequency of a schema past the
next generation.

• There is a trade-off between complexity of the model of GP used and
ease of deriving and using the schema theorems for the model of GP.
Simple schema theorems tend to use models of GP simplified by for
example removing mutation [74, 80, 75], using restricted representa-
tions [65, 63, 90] or only finding a lower bound on the number of in-
stances of the schema [34, 75]. More interesting GP models produce
complex schema theorems that are difficult to produce and use.

2.7. EMPIRICALLY IDENTIFYING OR USING SCHEMATA IN GP 35

• Schema theory is hard to apply to new variants of the GP algorithm;
each change to the algorithm must be matched with careful analysis
of the mathematical basis for the change. Unusual variants of the
algorithm may have no easily derived schema theorem at all.

2.7 Empirically identifying or using schemata in

GP

In a general sense, all GP systems actively use schemata as an essential
part of their algorithm; crossover can be seen as combining GP schemata
more naturally than combining genetic programs since some parts of the
genetic programs are thrown away. Similarly mutation may be seen as
adding to a GP schema. But beyond this ubiquitous use of GP schemata,
little GP research has involved their explicit identification and/or use.

There may be many reasons to identify schemata in GP:

• To measure things about the evolution, population or genetic pro-
gram in order to analyze GP

• To measure things about the evolution, population or genetic pro-
gram in order to improve GP

• To use the schema directly as a kind of program subroutine

2.7.1 Using Schemata to improve or analyze GP

As early as 1994, O’Reilly et al. [71] were defining building block functions
as explicit schemata in GP evolutions. The goal was to answer questions
surrounding the BBH in GP. While this working report defines the struc-
ture of a building block function, it reaches no conclusions of the BBH by
their use.

36 CHAPTER 2. BACKGROUND

Some other early work in the area includes Rosca’s extraction of the
values of important terms in his schema theorem from actual popula-
tions [101] and analysis of several run statistics by looking at rooted-tree-
fragments during evolution [108]. While Rosca used a large population
size, each experiment either analyzed the best-in-run individual in detail
or presented a more basic statistic, such as average fragment size, over
the whole population. Rosca concluded that the rooted-tree schema was a
powerful analysis technique and presents insight into the mechanisms of
GP at work.

In 1997, Poli and Langdon [84] performed empirical experiments, track-
ing creation and transmission of all hyperschemata in populations of Boolean
programs. The paper put constraints on the scale of the GP system: pro-
grams could not exceed three or four nodes deep, the population was set
at fifty programs and only crossover and reproduction were used. As ex-
pected, crossover was found to be innovative and destructive by counter-
acting reproduction and maintaining diversity in the population.

Angeline [5] performed analysis comparing various forms of GP crossover,
concentrating on their effect on the schemata in the programs of the pop-
ulation. The paper concluded that crossover could be described more as
a population-limited macro-mutation operator than as an engine for com-
posing building blocks.

Veraria et al. [121] presented empirical analysis of the subtree schemata
introduced by Koza [41]. The research analyzed the effects of selective
crossover on the schemata in the population, using the royal road task. The
paper concluded, through the use of schemata in the analysis, that the new
form of crossover has no positional bias.

Langdon and Banzhaf [48] presented an analysis of schema repetition
in best-of-run genetic programs from evolutions on two benchmark prob-
lems. They found that the solution programs contained large repeated
patterns and suggested that these patterns were both larger and fitter on
the whole problem than the classic concept of GA building-blocks.

2.7. EMPIRICALLY IDENTIFYING OR USING SCHEMATA IN GP 37

Wilson and Heywood [128] built on work by Langdon and Banzhaf
in [49], analyzing repeated blocks of instructions in linear genetic pro-
grams. Experimental results suggested the existence of re-usable mod-
ules or building blocks in the population. While this research was directly
looking for schemata in the population, it constrained the form of those
schemata to contiguous blocks of nodes.

Majeed [56, 58] defined a schema as a subtree of a set maximum depth.
All such schema that occurred in at least half of the population in the last
generation of evolution were found. The paper analyzed the schema for
one hundred runs of a evolution on a symbolic regression problem. While
no firm conclusions were reached, the paper noted that the fitness of a
schema in one run seemed independent of the fitness of the same schema
in other runs.

Wong and Zhang [130, 131] empirically analyzed the schemata in GP
evolutions for a very simple form of schema: numerical nodes. The re-
search analyzed the effects of program simplification on schema disrup-
tion by tracking each schema as it is passed from parent to child during
evolution. It concluded that the simplification both disrupted existing
schemata and created new schemata. Wong and Zhang also concluded
that further research needed to verify the results using a more general
and more complex form of schema than the one used. Building on this
research, Kinzett, Johnston and Zhang [37, 38] analyzed the effect of pro-
gram simplification on the survival of schemata in GP evolutions. The
schemata analyzed were subtrees clipped to depth two or three and at each
generation, the inclusion of every possible such building block in the pop-
ulation was presented graphically. Kinzett and Zhang concluded that this
research confirmed the earlier conclusions of Wong and Zhang, and that
while program simplification disrupts building blocks, it also constructs
new building blocks. Further work [39] on a similar vein concluded that
while program simplification reduced the diversity of the population this
did not lead to worse accuracy at the classification task.

38 CHAPTER 2. BACKGROUND

McPhee et al. [61, 62] empirically analyzed rooted-tree-fragments in
GP, by looking at their semantic contexts. A semantic context for a fragment
was termed fixed if all parameters to the fragment were introns (that is,
have no effect on the evaluated result of the program) and compatible if the
fragment and a target fragment could match by setting their respective
parameters correctly. Two run statistics were measured: the percentage
of fixed contexts and the percentage of compatible contexts. Each value
was an average over every fragment in any program. A Boolean task with
a limit of one don’t-care node per context, was used in order to limit the
complexity of the analysis. The research concluded that for this task the
majority of crossover events performed no useful search since the context
they affected was fixed.

McKay et al. [60] analyzed building blocks in GP using compression
on each generation’s population. Further work by McKay et al. [59] also
looked at the flow of building blocks from one generation to the next.
While neither paper reached firm conclusions to do with GP, both found
the compression technique to be powerful in the analysis of building blocks.

Tanji and Iba [117] presented Program Optimization by Random Tree Sam-
pling (PORTS) as a system for preserving tree-fragments in evolution, based
on the fragments’ differential fitnesses. The paper concluded that while
competitive in performance with standard GP, PORTS is more able to pre-
serve tree-fragments.

We have also contributed to the literature with papers leading to this
thesis [113, 114].

2.7.2 Schemata as subroutines in GP

The use of subroutine or function calls is basic to most widely-used com-
puter languages. Subroutines extend the power of the language consid-
erably, by allowing the solution of a given task to delegate its work to
lower-level solutions for subtasks of the main task. This allows the solu-

2.7. EMPIRICALLY IDENTIFYING OR USING SCHEMATA IN GP 39

tion to the main task to be simpler than if it had attempted to solve the
task without relying on other modules.

Schemata, essentially defined as “parts of genetic programs” are a closely
related concept to program subroutines. There have been several attempts
to incorporate subroutines into the GP representation. Some of these meth-
ods have gained reasonable performance increases, while others have been
less successful. The following sections describe the current existing meth-
ods at evolving programs with subroutines. While this thesis does not
develop subroutines in GP, their use in the literature is relevant as back-
ground.

Automatically defined functions

The first method of using subroutines in GP was the GP with Automatically
Defined Functions (GP-ADF) technique introduced by John Koza in [41].

When using GP-ADF, a genetic program takes the form of a n-tuple
with program trees as entries. The first entry is the Result Producing Branch
or RPB. The other entries in the tuple are Automatically Defined Functions
or ADFs.

Variable nodes augment the terminal sets of the ADFs and ADF nodes
augment the function sets of the RPB and ADFs such that the RPB or an
ADF may use an ADF node to call any ADF that occurs later in the tuple.
This means that the RPB may call an ADF using an ADF node, effectively
inserting its program tree into the RPBs program. The arguments to the
ADF node replace the variable nodes to the new subtree. In a similar way,
an ADF can call another ADF, though ensuring ADFs can only call other
ADFs that are later in the program tuple ensures no recursion.

In [41], Koza introduced ADFs and tested them on a range of tasks such
as the n-parity problems, regression and the Santa-Fe ant-trail. Since then,
ADFs have become a highly popular method and variations of ADFs have
been used in a variety of contexts.

• Brock [12] used the ADFs evolved in a run of evolution as a starting

40 CHAPTER 2. BACKGROUND

point for the ADFs of future runs. As may be expected this practice
improved performance, but the performance increase was significant
only when the ADFs selected from the initial evolution were of suf-
ficient usefulness to the programs in further evolutions. The task
used was the n-parity problem and the ADF resulting in a perfor-
mance increase was a solution to the 2-parity problem. This ADF is
easily used by programs to solve higher order parity problems. The
method had weaknesses: the hand-selection of good ADFs from the
previous evolution and the need to run this previous evolution in
full before the method may be engaged.

• Wong et al. [129] emulated the action of ADFs in a more general
system using logic grammars. The paper used the logic grammar
system to evolve a program for calculating the dot product of vec-
tors. Compared to a standard ADF system, the grammar based sys-
tem found a solution program very quickly and repeatably. But the
grammar was hand designed for the problem.

• Spector [116] defined Automatically Defined Macros (ADMs). An
ADM is essentially the same as an ADF but expands as a macro in
the caller program before it is evaluated. The paper compared two
methods on a range of problems and ADMs were found to reach a
solution faster than ADFs in many cases, although the quality of the
ADF solution was often better.

• Ahluwalia [2] modified the GP-ADF algorithm by placing the RPBs
of the programs in one population and each type of ADF into an-
other, separate population. The populations evolved in parallel with
the ADFs receiving fitness based on their use in RPBs and higher-
level ADFs. In contrast to GP-ADF, Ahluwalia forced the ADFs in
each population to perform the same job as others in the popula-
tion. The method was also combined with Module Acquisition in
a method called EDFs. EDFs outperformed both standard GP and

2.7. EMPIRICALLY IDENTIFYING OR USING SCHEMATA IN GP 41

GP-ADF on two classification problems.

• Rodrigues et al. [97] extended Context-Free Grammar GP (CFG-GP) [123]
by enabling the grammars to use ADFs. In a comparison, GP-ADF
and the new method (GGGP with ADFs) performed much the same
as each other and better than standard GP.

• Langdon [46] used a GP system with ADFs to evolve various func-
tions on stacks and queues. The base functions indexed memory
directly. The solutions were found to be correct but sub-optimal.

Other research on subroutines in GP

Banzhaf et al. [8] introduced a method for effectively evolving large ge-
netic programs of several levels, from low-level modules to the high-level
outer procedure. In essence this method was a modified crossover oper-
ator. Crossover was applied to the different levels separately with parent
programs and subtrees being selected based on a differential fitness, de-
termined by measuring the effect of replacing the subtree by a constant.
Banzhaf et al. compared the method to standard GP on four continuous
regression problems and two n-parity problems and showed an increase
in performance on all problems.

Angeline and Pollack [6] described Module Acquisition. They defined a
GP module as the portions of a subtree, from a genetic program, that are
within a specified depth of the root of the subtree. Thus for a subtree that
does not exceed the set depth, the module is simply the subtree itself. For
a subtree that has branches exceeding the set depth, the module contains
the subtree “clipped” to the set depth with unique variable names placed
under the links broken by the clipping process. The method added two ge-
netic operators to the GP system: compression and expansion. In order to
evaluate a program, the module nodes within it are recursively expanded
and the resulting tree is evaluated. The method evolved programs to solve
two separate tasks: the tower of Hanoi with four disks on the initial stack

42 CHAPTER 2. BACKGROUND

and tic-tac-toe. Angeline and Pollack concluded that despite the frequent
use of modules in programs, they were not examples of modular program-
ming, noting that they shared “. . . more commonality with the distributed
representations of procedural knowledge found in connectionist networks.”
The paper noted interesting emergent behaviour in the strategies used by
the programs in solving the tasks. But no comparison was made to other
methods or canonical GP.

Roberts et al. [96] developed Subtree Encapsulation as a similar method
to Module Acquisition. In this method the depth limit of modules is re-
moved so that all modules are subtrees and the compressed modules take
no arguments.

Adaptive Representation through Learning (ARL) [105, 103, 104, 98,
100, 99, 107, 102] is a method developed by Rosca and Ballard during 1994
to 1997. Blocks in ARL are similar to the modules from Module Acquisi-
tion, but while the position of a module in the program is not constrained,
ARL blocks are made from complete subtrees of a set depth. ARL ob-
tains each block by replacing all terminal nodes in the subtree with vari-
able nodes. Where module acquisition selects a module by randomly se-
lecting a subtree in the population and making a module from it, ARL
identifies all blocks of a set depth in the population and evaluates their
fitness. It then uses this information to select only fit blocks. ARL assigns
each block’s fitness using either a specialized block-fitness function or a
differential fitness function which measures the average change in fitness
between a parent(s) and child(ren) in applying a genetic operator, where
each parent does not contain the block but each child does.

Evolution progresses in epochs, each of which lasts some number of
generations. At the end of each epoch, ARL appends the function set with
atomic functions formed from the blocks that have highest fitness in that
epoch. ARL has been applied to a range of problems but showed great-
est performance improvement on the n-parity problem, where a natural
block-fitness function consists of testing the block on lower order parity

2.8. SUMMARY 43

problems.
Woodward [132] presented theoretical results of the use of subroutines

or modules in GP. He concluded that the size of a solution program in GP
is independent of the primitive set, if modules are allowed. This is in con-
trast to the case without modules, where the complexity of the primitive
set may affect the minimum possible size of a solution.

2.7.3 Current issues with empirical use of schemata in GP

Limited progress is being made in GP schema literature. While schema
theory has proven difficult to extend and may produce results which are
hard to interpret in real systems, the empirical study and use of schemata
in GP evolutions suffers from a number of quite different complaints:

• Representation of a schema - the community needs a unifying form
of schema and a set of tools for the use of that form of schema. The
exact form of GP schema to use in experiments is far from clear and
there are many studies in the literature and a great many more po-
tentials which could be made by mix-and-match.

• Limits on scalability with expressive schemata - many of the empir-
ical studies of schemata in GP use subtrees as their form of schema,
others use terminals. It would be better to use a more expressive
form of schema but doing so may often be prohibitively expensive.

2.8 Summary

This chapter presents an essential background to machine learning, evolu-
tionary computation, GP and schemata in GP. A summary of the current
state of affairs, relevant to this thesis topic, is as follows:

• GP has emerged as a popular and powerful algorithm in evolution-
ary computation which is a form of machine learning.

44 CHAPTER 2. BACKGROUND

• Schemata have been referred to in the GP literature in several con-
texts: schema theory, subroutines in GP and empirical study of GP
using schemata.

– The form of schema used by each researcher follows no partic-
ular rule. A number of distinct entities have been used as GP
schemata and no common tool-set has allowed researchers to
compare their results between previous forms of schema.

– Schema theory has yielded interesting results but it is unclear
how these theoretical results relate to practice. The community
needs more powerful tools analyzing schemata in practical GP
evolutions.

– The empirical study of GP using schemata suffers from an ex-
plosion of complexity when dealing with interesting schemata
in interesting scales of evolution. Typically researchers avoid
this difficulty by studying simple forms of GP schema.

This thesis provides two improvements on this situation:

• An advanced language for forms of schema. This language may de-
scribe many previous forms of schema.

• A set of algorithms and tools for analyzing schemata in a given pop-
ulation of genetic programs.

The next chapter begins the new work by defining our new form of schema
language: the match-tree form of schema language.

Chapter 3

The match-tree form of schema
language

3.1 Chapter introduction

For this thesis to be able to effectively analyze schemata occurring in GP
populations, it must first clearly identify what is being analyzed. Thus this
chapter addresses the question: what is a GP schema? While the question
of what a GP schema looks like has been posed many times in the GP lit-
erature, no standard form of schema has emerged; this is in stark contrast
to genetic algorithms where similarity template schemata [34] are typically
used. The current state of the art in GP is a plurality of many incompatible
forms. With the previously used GP forms of schema as a foundation, this
chapter builds a single framework describing very rich sets of schemata,
called match-tree schemata. This chapter also provides a mechanism for
their specialization so that many new and existing forms of GP schema
can be described as explicit specializations of the general form. The newly
presented mechanism and representation of schema form is the match-tree
form of schema language.

45

46 CHAPTER 3. THE MATCH-TREE FORM OF SCHEMA LANGUAGE

3.2 The problems with GP schemata

There are potentially as many forms of GP schema as there are types of
patterns, limited only by researchers’ imaginations.

As noted in chapter 2 in the context of Genetic Algorithms (GAs) the
similarity template is typically used for schema research. This is not so of
GP; the word schema in the context of GP though simple in its basic defini-
tion has on occasion meant: numeric terminals, subtrees, fragments which
may possibly be rooted, rooted hyperschema, unordered fragments. In
addition, all of these may be wrapped up into sets or multisets, limited to
particular depth constraints or a range of other transforms. Each variation
yields another slightly incompatible form of schema.

This multiplicity of GP forms of schema is problematic:

1. It is hard to make analysis tools that work on all forms of schemata
since each form is incompatible with the other forms.

2. Research using one form of schema is hard to compare against re-
search using a different form. To compare such research we need to
settle on a common form of schema. Doing so may affect the experi-
mental results and will involve a partial reimplementation of one or
other of the experimental systems.

3. Few of the possibly useful forms of schema have been defined. Re-
searchers must either conform to one of a set of very specific forms
of schema or make their own slightly incompatible form, adding to
the problem.

Another problem, related to those above, is that definitions of schema of-
ten lack precision. Definitions for even simple forms of schema have de-
ceptive room for interpretation.

Because there is no agreement for a precise language for forms of schema,
previous definitions of schemata typically rely on a great deal of informa-
tion being implicit in the definition.

3.3. WHAT IS A SCHEMA? 47

Some basic examples of the peculiar matching characteristics that are
implicit in the definitions of various GP schemata follow:

• Numeric terminals may typically match an interval of values, rather
than a particular value: for instance a numeric terminal node of
value 2.0 in a schema will typically be matched by a program node
of value 2.00001.

• Schema functions often impose an order on matches to their child
arguments, although this is seldom described in the schema form
definition; for instance the program subtree (+ 1 2) will typically not
match the “subtree” schema (+ 2 1).

• Additional program children, after the last schema child, may or
may not invalidate a match; for instance, does the program subtree
(+ 1 2) match the “fragment” schema (+ #)?

The community needs a language for forms of schema precise enough that,
when specifying a forms of schema, none of these essential details could
be left out. Such a language could solve many of the above problems, if it
were machine readable and experiments on schemata in GP could be run
using any specified form of schema.

3.3 What is a schema?

A schema in GP is a pattern specifying a component or part of a program
that can occur in many different programs. This thesis will say a program
matches a schema when the schema occurs in the program. For example,
Koza [42] defined his schemata as sets of subtrees; a program matches the
schema if and only if it contains each member of the set as a subtree.

GAs schemata are inherently different from GP schemata.

48 CHAPTER 3. THE MATCH-TREE FORM OF SCHEMA LANGUAGE

3.3.1 GAs schemata

A typical GA schema is a chromosome with an additional don’t care symbol
in the alphabet [34]. An individual matches the schema if for each bit in
its chromosome the corresponding schema bit has the same value or is a
don’t care.

Disregarding the fitness function, typically each bit of a GA chromo-
some is independent of the others; one bit may flip without affecting other
bits. Therefore, it makes sense that the don’t care bits of a similarity tem-
plate cover one bit each and are independent of each other.

One may imagine a different scenario in which the GA system ignores
each second bit based on the value of the previous bit. In this case a differ-
ent schema representation might arise, enforcing don’t care bits wherever
bits will certainly be ignored since the value of those bits is never impor-
tant they could be ignored safely. Since the bits of this second representa-
tion are no longer independent this second representation benefits from a
more complex schema representation.

The case for greater complexity of schemata is strong in the context of
GP.

3.3.2 GP schemata

One may imagine a particular GP system where program trees have a fixed
shape and all nodes are independent. An example is complete trees of
depth 3 where the range of values each node may take is independent of
the value of any other node. In this system a good form of schema may
be similar to the basic GAs form: a schema is a full binary-tree of depth
three on a primitive set including an additional don’t care primitive which,
being placed at any node in the schema tree, specifies the equivalent node
of a matching program may be of any value.

But typically GP implementations are very different to this simple sys-
tem and program nodes may be highly dependent on each other: The very

3.4. SCHEMA IN THIS THESIS 49

existence of each child node depends on the type of the parent node. For
instance, changing the node to a terminal removes any children. This de-
pendence of nodes leads to the benefits of the many complex forms of GP
schema.

3.4 Schema in this thesis

This thesis adds to the multiplicity of forms by defining a new form of
schema, the match-tree form of schema. But this thesis defines this form of
schema specifically for use by a very new and highly useful structure: the
match-tree form of schema language. Rather than adding to the problem, the
match-tree form of schema provides unification of many previous forms
of schema.

The match-tree form of schema describes a very rich set of schema. As a
very general form it subsumes many of the forms of schema from the liter-
ature and lots of others that could be invented. It captures a general notion
of a “program component”. The match-tree form of schema language is a
language for specifying useful, meaningful subsets of match-tree schema.
Indeed, many forms of schema from the literature may be represented in
this language.

By being implemented using the match-tree form of schema, rather
than any single form, the analysis tool provided by this thesis avoids all of
the problems raised in earlier sections.

3.5 Match-tree schemata

The match-tree form of schema is a very general form of schema which is
to be specialized for actual use. In particular, it is more general than the
forms of schema used in the literature, so let us create a candidate form.

50 CHAPTER 3. THE MATCH-TREE FORM OF SCHEMA LANGUAGE

3.5.1 A straw-man general form of schema

Table 3.1 re-examines most previously defined forms of schema in tree-
based GP, excluding those incompatible with standard tree-based GP.

Table 3.1: Forms of schema used in relevant tree-based GP research

Used by Schema is a Collection type
Name of schema collection of. . .

Daida et al [18] Numeric Terminal Singleton
Ephemeral Random Constants
Koza [42] Subtree Set
Schemata
Rosca et al [108] Fragment Singleton
Rooted-tree schemata
Smart and Zhang [114] Unordered-fragment Singleton
Unordered-fragment schemata
O’Reilly and Oppacher [70] Fragment Set of pairs
Schemata <Fragment, count>
Poli et al [85] Hyperschema Singleton
Hyperschemata

Singleton schemata

All schemata in table 3.1 are some sort of collection of: numeric termi-
nal, subtree, fragment, unordered fragment or hyperschema. For the most
part, these basic forms follow a natural hierarchy.

The hierarchy of the items in the “Schema is a collection of. . . ” column:

1. A numeric terminal is a terminal.

3.5. MATCH-TREE SCHEMATA 51

2. A terminal is a subtree of depth one.

3. A subtree is a fragment without don’t care terminal (“#”) nodes.

4a. A fragment is a hyperschema without don’t care function (“=”) nodes.

4b. A fragment may be represented by an unordered-fragment with use
of singleton “argn” functions.

Therefore, all numeric terminals, terminals, subtrees and fragments are
hyperschemata. In addition all numeric terminals, terminals, subtrees and
fragments may be represented as unordered-fragments.

So this section briefly defines another form of schema, called “unordered-
hyperschemata”:

ıAn unordered-hyperschema is a hyperschema with no regard
paid to the order of any function node’s children.

With this definition, the list has a final item:

5. Any unordered-fragment or hyperschema may be represented as an
unordered-hyperschema, possibly using singleton “argn” functions
to enforce the order of some or all functions’ arguments.

Therefore, all schemata in the “Schema is a collection of. . . ” column of
table 3.1 may be represented by unordered-hyperschemata.

Collections of base schemata

Note that even unordered-hyperschemata would not generalize over the
schemata used by Koza [42]. For that sets of unordered-hyperschema are
required.

Finally, noting that the schema of O’Reilly et al may be alternately ex-
pressed as multisets of fragments which is a form of schema that meets
our stated goal of being able to specialize to any of the forms of schema in
the literature is: multisets of unordered-hyperschemata.

52 CHAPTER 3. THE MATCH-TREE FORM OF SCHEMA LANGUAGE

Straw man cut down

This newly defined form of schema is of very limited use, presenting us
immediately with one important problem: it is brittle. It is likely that some
researchers will invent a form of schema not “covered by” this definition,
for instance by introducing don’t care functions which may match more
than one program node at a time. In response the fragile method must
define a new, even more general form of schema.

So what form of schema is not only more general than known forms
but also the forms yet to be invented. This thesis’ answer, the match-tree
form of schema, lies close to the concept of object-orientated programming.
Each node of a match-tree schema encapsulates functions which deter-
mine whether it occurs at a given program node. Thus where previous
schema nodes had only properties, like a label, match-tree schema nodes
also have behaviour, like which program nodes labels they can match.

Match-tree schemata are very general and will be more resistant to the
whims of future schema researchers than any previous form of schema.

3.5.2 Matching behaviour in rooted-fragments

To illustrate the matching behaviour required by a schema node, this sec-
tion gives the example of rooted-fragments. Any particular rooted-fragment
occurs in a program if for each node in the fragment there is a correspond-
ing node in the program such that the mapping of schema nodes to pro-
gram nodes obeys certain rules:

1. Children map to distinct children:

• If a fragment node s maps to a program node p, then the chil-
dren of s map to children of p.

• No two or more children of s map to the same child of p.

• All children of s map to some child of p.

3.5. MATCH-TREE SCHEMATA 53

• It may be the case that the ithchild of the schema node must map
to the ithchild of p in which case the fragment is ordered.

2. Program node and schema node have the same label, except for don’t
cares: if a schema node s maps to a program node p, then either s is
a don’t care node or the label of s is the same as the label of p.

3. Don’t care schema nodes have no children.

4. The root schema node maps to the root program node.

These rules exactly specify the rooted-fragment form of schema and one
can imagine tweaks which would generalize to hyperschemata by relax-
ing rule three or specialize to subtrees by removing the “except for don’t
cares” from rule two.

Other than rule four which can be shared by all forms of schema by
clever use of a root schema node there are two forms of matching be-
haviour on display: rule one, which determines acceptable mappings of
a schema node’s children and rules two and three, which determine how
the schema node’s properties must match the program node’s properties.

Therefore, each match-tree schema node has two functions which de-
termine its behaviour:

• Label-matching: the label-match function determines a schema node’s
matching behaviour based on the type of a given program node. For
instance, some schema nodes will only match feature nodes and oth-
ers will only match arithmetic functions.

• Child-matching: the child-match function determines a schema node’s
matching behaviour based on which children or descendents of a
given program node match which children of the schema node. For
instance, a schema function node s may require the first child of a
potentially matching program node p match the first child of s and
the second child of p match the second child of s and so on for all

54 CHAPTER 3. THE MATCH-TREE FORM OF SCHEMA LANGUAGE

schema nodes, additional program nodes may be ignored or it may
be required that the schema node and program node have the same
number of children.

The following subsection describes the match-tree form of schema in de-
tail.

3.5.3 The match-tree form of schema

Each match-tree schema is a tree of nodes. Each match-tree schema node
s has a label s.v and three associated functions:

• s.fn is a label-match function to determine whether a given schema
node label matches a given program node label.

• s.fc is a child-match function to determine whether a given schema
node’s children match a given program node’s descendents.

• s.fcs is a child-selection function used for optimization which is de-
scribed in section 3.6.1.

General concept: how a program matches a match-tree schema

As a concept, each schema a duality: the schema can be viewed either
as a component which may be shared between programs or as the set of
programs sharing this component. Therefore, a schema may be defined
by a function taking a program which determines whether the schema
occurs in the program. With match-tree schemata, this function produc-
ing a Boolean value indicating whether a given program matches a given
schema may be implemented by a recursive procedure using the label-
match and child-match functions of the schema nodes.

The subtree rooted at a schema node s is said to occur at a program
node p if two conditions are met:

3.5. MATCH-TREE SCHEMATA 55

• The label-match function s.fn(Ls, Lp) returns true, indicating that
the program node label Lp matches the schema node label Ls. For in-
stance, an addition program node matches an addition schema node
and would also match a don’t care schema node.

• The child-match function s.fc returns true, indicating that the sub-
tree rooted at the program node matches the schema node’s children.
s.fc can involve finding a match between child nodes of the schema
node and nodes of the subtree rooted at the program node and en-
suring that the structure of the children of the schema node matches
the structure of the corresponding program nodes.

This formulation covers a wide range of schemata including ordered frag-
ments and unordered fragments. It also ensures that the matching be-
haviour is made explicit in the schema definition.

3.5.4 Label-match functions

For a schema node s, s.fn is a Boolean valued label-match function of the
form:

fn(Ls, Lp)→ B

where Ls is a schema node label and Lp is a program node label.
fn tests whether the given labels match. The schema node s matches a

program node having labels Lp only if fn(s.v, Lp) = true.
Two useful label-match functions are:

• Exact match (“!”): returns true if and only if the two label argu-
ments have the same value.

A exact match label-match function with prefix v is referred to in this
thesis by a schema node with label “v!”.

• Don’t care with prefix (“#”): returns true if and only if the program
node label starts with the schema node label.

56 CHAPTER 3. THE MATCH-TREE FORM OF SCHEMA LANGUAGE

A don’t care label-match function with prefix v is referred to in this
thesis by a schema node with label “v#”.

3.5.5 Child-match functions

For a schema node s, s.fc is a Boolean valued child-match function of the
form:

fc(s, p,M)→ B

where s is a schema node, p is a program node and M is a set of pairs of
matching program nodes and schema nodes.

fc tests if the children of a given match-tree schema node s match the
descendents of a given program node p. The third argument of fc is a set of
pairs (M) associating children of s with matching nodes from the subtree
at p. M includes a pair < sc, pd > only if the child sc of s occurs at the
program node pd in the subtree rooted at p.

fc may be used to specify a wide range of child-matching behaviour.
The following are examples of child-match functions that could be used as
s.fc for some schema node s:

• Same number of children: returns true if and only if the program
node p has the same number of children as s.

• Children at same indexes: returns true if and only if p has at least
the same number of children as s and for each i’th child si of s and
the i’th child pi of p, < si, pi > is in M .

• Distinct children match: returns true if and only if for each child si

of s there exists a distinct child pj of p such that < si, pj > is in M .

• Distinct descendents match: returns true if and only for each child
si of s there exists a distinct descendent pj of p such that < si, pj > is
in M .

3.6. A MATCHING ALGORITHM 57

3.6 A matching algorithm

This subsection describes an algorithm which determines whether a given
program subtree matches a given match-tree schema subtree using the
functions at each node in the schema subtree.

A program node p matches a schema node s if its label matches and its
children match.

• To determine if the label of a program node p matches that of a
schema node s, the algorithm evaluates s.fn(s.v, p.v), where p.v is
the label of node p. A result of true would indicate a match, whereas
a result of false indicates that the program node and schema node
have incompatible labels.

• The matching algorithm uses s.fc to determine if the descendents of
p, and possibly including p itself, match the children of s.

– s.fc requires as input s, p and a set of the matches of p’s descen-
dents to s’s children.

If s has no children, then the final argument is empty. If s

has children, then the algorithm recursively determines which
nodes in the subtree at p match each child of s and constructs a
set of matching pairs which is passed as the third argument of
s.fc.

Thus through this recursive procedure the algorithm determines if any
given program subtree matches any given schema subtree. Finally, a given
program matches a given schema if and only if its root subtree matches the
schema’s root subtree.

The algorithm is given in pseudocode 3.1. BasicMatches algorithm
does not exploit an optimizations which would increase its efficiency con-
siderably. The algorithm constructs pairs of schema node children and
program node descendents, even if the child-match function will not use

58 CHAPTER 3. THE MATCH-TREE FORM OF SCHEMA LANGUAGE

FUNCTION BasicMatches(Schema subtree s, Program subtree

p)

IF s.fn(label of root of s, label of root of p) = false

RETURN false

ELSE

M is a set of pairs from {< SN , PN >} initially empty

FOR EACH child sc of s

FOR EACH descendent subtree pd of p including p itself

IF BasicMatches(sc, pd)

M = M ∪ {< sc, pd >}
RETURN s.fc(s, p,M)

END

Pseudocode 3.1: BasicMatches

them. The optimization uses child selection functions to only construct
pairs that might be used.

3.6.1 Child-selection functions

It is often the case that a schema node’s child-match function ignores some
elements of the set of pairs passed as its third argument. For example, a
given child-match function may only ever look at the pairs containing di-
rect children of p and ignore those of deeper descendents. Other child-
match functions only ever look at pairs of children at the same index,
matching first program child with first schema child, second with second,
and so on. Child-selection functions use knowledge of this behaviour to
improve the efficiency of the matching algorithm without affecting the ac-
tual matching behaviour.

3.6. A MATCHING ALGORITHM 59

A child-selection function fcs is of the form:

fcs(s, p)→ {< SN , PN >}

where s is a schema node, p is a program node, SN is the space of schema
nodes and PN is the space of program nodes.

The child-selection function s.fcs which is derived from child-match
function fc will, given a program subtree p, return the pairs of schema
nodes an program nodes that are “of interest to” s.fc.

The algorithm is given in pseudocode 3.2. In the above pseudocode,

FUNCTION AdvancedMatches(Schema subtree s, Program

subtree p)

IF s.fn(label of root of s, label of root of p)

M is a set of pairs from {< SN , PN >} initially empty

FOR EACH pair < s′, p′ >∈ s.fcs(s, p)

IF AdvancedMatches(s′, p′)

M = M ∪ {< s′, p
′ >}

RETURN s.fc(s, p,M)

ELSE RETURN false

END

Pseudocode 3.2: AdvancedMatches

instead of recursing on each pair with a child of s and a descendent of p,
the child selection function s.fcs gives the set P ′ which includes only those
pairs which could potentially affect the output of the child-match function
s.fc. The match function recurses on only these “interesting” pairs.

The optimizations do not affect the output of the function and a call to
AdvancedMatches returns exactly the same result as an equivalent call
to BasicMatches. By the definition of child-selection function, the set
returned by s.fcs has all pairs which may affect the output of the child-
match function s.fc. Thus if M is the set of pairs with a descendent pd of

60 CHAPTER 3. THE MATCH-TREE FORM OF SCHEMA LANGUAGE

p and a child sc of s such that pd matches sc, then s.fc(s.fcs ∩M) which is
the effective operation of this function will always equal s.fc(M) which is
the effective operation of BasicMatches. Therefore AdvancedMatches
produces the same output as BasicMatches.

3.7 Potential child-match functions

There is no limit on the potential complexity of child-match functions. This
thesis defines only a small subset of these possibilities, including the fol-
lowing:

• Child at index matches – “cind”: returns true if and only if each
schema node child matches the program node child at the same in-
dex. That is, p must have at least as many children as s and for each
node si, the ithchild of the implicit schema node s, < si, pi >∈ M ,
where pi is the ithchild of p.

– The corresponding fcs returns the set of pairs < si, pi > with si

from the first child to the last child of s and pi is the correspond-
ing child of p.

• Child at index matches, same number of children – “cindx”: re-
turns true if and only if the above “cind” function would return true
and p and s have the same number of children. Thus p has as many
children as s, each of which matches the schema child at the same
index.

– The corresponding fcs is the same as for the “cind” function.

• Distinct children match – “cdist”: returns true if and only if p has
at least as many children as s and there is some order of all children
of p as pi, i ∈ {1, 2, 3, . . .} such that for si, the ithchild s, it is true that
< si, pi >∈ M . Thus the relative order of the program node chil-
dren and the schema node children is unimportant but there must

3.7. POTENTIAL CHILD-MATCH FUNCTIONS 61

be a one-to-one mapping from some subset of the program node’s
children to all of the schema node’s children.

– As any pair of program node child to schema node child could
potentially affect the result of the function, the corresponding
fcs returns the set of all pairs < sc, pc > where pc is a child of p

and sc is a child of s.

• Distinct children match, same number of children – “cdistx”: re-
turns true if and only if the above, “dist”, function would return true
and p and s have the same number of children. Thus p has as many
children as s and there is a one-to-one mapping from the children of
p to matched children of s.

– The corresponding fcs is the same as for the “cdist” function.

• Label, index pairs match – “cpind”: returns true if the schema node
children of each label match in order the program node children of
the same label: for each child si of the schema node if si is the kthchild
with the label si.v and pj is the kthchild of the program node with
label si.v then < si, pj > is in M .

If all labels of the schema node children are different then “cpind” is
equivalent to “cdist”. The all labels of the schema node children are
the same then “cpind” is equivalent to “cind”.

– The corresponding fcs will sort the children of p and s by label
and return corresponding pairs.

• Label, index pairs match, same number of children – “cpindx”:
fc(p, M) returns true if and only if the above, “cpind”, function would
return true and p and s have the same number of children.

– The corresponding fcs is the same as for the “cpind” function.

62 CHAPTER 3. THE MATCH-TREE FORM OF SCHEMA LANGUAGE

• Descendents match – “desc dmin dmax”: defined for dmin, dmax ≥ 0,
fc(p, M) returns true if and only if for each child sc of s, there is a
pair < sc, pd > in M , where pd is a descendent of p in the depth range
[dmin, dmax] with depths starting from 0 at the root.

– The corresponding fcs returns the set of pairs < sc, pd > where
sc is a child of s and pd is a descendent of p in the function’s
depth range as above.

• Distinct descendents match – “ddist dmin dmax”: is similar to the
“desc dmin dmax” function but requires that each child of s be matched
by a distinct descendent of p. It shares the “desc dmin dmax” func-
tion’s fcs function.

• Match any – “any”: fc simply returns true without looking at its
arguments.

– The corresponding fcs returns an empty set since no pair would
ever affect the fc’s output.

3.8 The match-tree form of schema language

A schema is a set of programs which share the same pattern. A “form of
schema” is a set of schemata that share the same kind of structure. For
example, rooted-ordered-fragments is a particular form of schema. Many
researchers have defined forms of schema.

The match-tree form of schema, given in the previous sections, is an
extremely general form of schema and would not be useful directly for an
analysis of GP programs. This thesis makes no commitment to any sin-
gle more specific, and therefore more useful, form of schema but instead
provides a language for forms of schema by which a variety of forms of
schema can be defined.

3.8. THE MATCH-TREE FORM OF SCHEMA LANGUAGE 63

The match-tree form of schema language is a language for specifying forms
of schema as subsets of the match-tree form of schema. This language rep-
resents match-tree forms by vectors of disjunctive node patterns expressed
as strings. Just as a program matches a match-tree schema, a match-tree
schema is said to belong to a match-tree form. Specifically, a match-tree
schema belongs to a match-tree form if there is an ”acceptable“ mapping
from its nodes to the nodes of the match-tree form. The process is similar
to how a program matches a match-tree schema, but the rules for deter-
mining which mappings are acceptable are very different.

3.8.1 Match-tree form representation

A match-tree form is defined by a vector of disjunctive node patterns. Each
node pattern can be viewed as a pattern for schema nodes. A schema
belongs to a match-tree form if the root node of the schema node agrees with
the first node pattern. Each disjunct has the same general format.

The disjuncts

Which match-tree schema nodes agree with a particular disjunctive node
pattern of a match-tree form node pattern is dependent on information
contained in each disjunct. Each such disjunct t is associated with the
following fields:

• t.v is a node label

• t.fn is a label-match function.

For a schema node to agree with a disjunct t, s.fn(s.v, p.v) =⇒
t.fn(t.v, p.v) for any program node label p.v. That is, there may be
no program node label which the schema label-match function ac-
cepts but that the form label-match function rejects.

• t.fc is a child-match function.

64 CHAPTER 3. THE MATCH-TREE FORM OF SCHEMA LANGUAGE

For a schema node to agree with a disjunct t, s.fc(s, p,M) =⇒ t.fc(s, p,M)

for any program node p and set of pairs M . That is, there may be no
possible arguments which the schema child-match function accepts
but that the form child-match function rejects.

• t.cnum is a range on the whole numbers, for instance [0, 0] or [1,∞].

t.cnum specifies a range on the number of children of a schema node.
For a schema node to agree with a disjunct t, then the number of
children of the schema node must be within t.cnum

• t.cindex is the index of some node pattern of the match-tree form. For
a schema node s to agree with a disjunct t, each of the children of s

must agree with the disjunctive node pattern at index t.cindex of the
match-tree form containing t.

3.8.2 Character string representation

The analysis tools described later in this thesis need a specification of a
match-tree form. For the purposes of being passed to the analysis tools,
each match-tree form may be represented as a string.

The form, as a vector of disjunctive node patterns D1, D2, D3, . . . , Dn, is
represented as “[1 : S(D1) 2 : S(D2) 3 : S(D3) . . . n : S(Dn)]” where S(D)

is the string representation of node pattern D. SD(D) for a node pattern D

with disjuncts {d1, d2, d3, . . . , dm} takes the form “(S(d1)S(d2)S(d3) . . . S(dm))”
where S(d) is the string representation of disjunct d. Sd(d) for a disjunct d

takes the form “< d.v, d.fn.name, d.fc.name, [d.cnum.min, d.cnum.max], d.cindex >”
where d.fn.name is a well-known name for the node-match function d.fn,
d.fc.name is a well-known name for the child-match function d.fc and
d.cnum = [d.cnum.min, d.cnum.max].

3.8. THE MATCH-TREE FORM OF SCHEMA LANGUAGE 65

3.8.3 Example match-tree forms

Table 3.2 lists various forms of schema reported in the research literature,
previously presented in table 3.1, and a match-tree form string representa-
tion for each. The table also lists newly created forms.

Table 3.2: Forms of schema used in relevant tree-based GP research and
equivalent match-tree forms

Daida et al – “Ephemeral Random Constants”
[1:(<,#,desc 0 ∞,[1,1],2>)

2:(<,isnumeric,any,[0,0],2>)]
Koza – “Schemata”
[1:(<,#,desc 0 ∞,[1,∞],2>)

2:(<,!,cindx,[0,∞],2>)]
Rosca et al – “Rooted-tree schemata”
[1:(<,#,any,[0,0],1> <,!,exact,[0,∞],1>)]
Smart et al – “Unordered-fragment schemata”
[1:(<,#,desc 0 ∞,[1,1],2>)

2:(<,#,any,[0,0],2> <,!,dist,[0,∞],2>)]
O’Reilly et al – “Schemata”
[1:(<,#,distdesc 0 ∞,[1,∞],2>)

2:(<,#,exact,[0,0],2> <,!,exact,[0,∞],2>)]
Poli et al – “Hyperschemata”
[1:(<,#,any,[0,0],1> <,!,exact,[0,0],1> <,#,exact,[1,∞],1> <,!,exact,[1,∞],1>)]
Thesis – “Multisets of unordered-hyperschemata”
[1:(<,#,distdesc 0 ∞,[1,∞],2>)

2:(<,#,any,[0,0],2> <,!,exact,[0,0],2> <,#,exact,[1,∞],2> <,!,exact,[1,∞],2>)]

Table 3.2 shows a few of the following constructs in the string repre-
sentations of match-tree forms:

66 CHAPTER 3. THE MATCH-TREE FORM OF SCHEMA LANGUAGE

• Setting the first node pattern to “1:(<,#,desc 0 ∞,[1,1],2>)”, makes
the form into a non-rooted form.

For example “[1:(<,#,desc 0 ∞,[1,1],2>) 2:(<,isnumeric,any,[0,0],2>)]”
(non-rooted numeric terminals) is the corresponding non-rooted form
for the match-tree form “[1:(<,isnumeric,any,[0,0],1>)]” (rooted nu-
meric terminals).

• Setting the first child of the root node to “1:(<,#,distdesc 0 ∞,[1,∞],2>)”
makes the form into a non-rooted multiset.

For example “[1:(<,#,distdesc 0 ∞,[1,∞],2>) 2:(<,isnumeric,any,[0,0],2>)]”
(multisets of non-rooted numeric terminals) is the non-rooted mul-
tiset of the match-tree form “[1:(<,isnumeric,any,[0,0],1>)]” (rooted
numeric terminals).

• “i:(<,#,exact,[0,0],i> <,!,exact,[0,∞],i>)” describes ordered fragments.
The first disjunct matches any terminal as a don’t care node and the
second disjunct matches any function or terminal of a particular value.

• “i:(<,#,any,[0,0],i> <,!,exact,[0,0],i> <,#,exact,[1,∞],i> <,!,exact,[1,∞],i>)”
describes one interpretation of hyperschemata. The first disjunct is
the don’t care terminal, the second disjunct is the non-don’t care termi-
nal, the third disjunct is the don’t care function and the fourth disjunct
is the non-don’t care function.

Alternately, hyperschema may be represented by “i:(<,#,any,[0,0],i>
<,!,exact,[0,∞],i> <,#,exact,[1,∞],i>)” but section 4.6 will show that
such a form would be non-conjunctive and relatively difficult for the
system described by this thesis to work with.

3.9 Chapter summary

Achieving the main thesis goal requires a precise definition of schemata
in the context of GP. But, even though much GP research has used the

3.9. CHAPTER SUMMARY 67

concept, the water is far from clear; the state-of-the-art in GP schemata
still consists of numerous, largely incompatible forms of schema.

One option is for this thesis to choose from amongst the forms of schemata
available, which would certainly involve choosing various forms of schema
with each requiring quite different implementations for experimentation.
This thesis chooses a second option: that this thesis define a “unifying”
form of schema, compatible with several other forms in the literature.
This chapter defined both the very general ”cover-all“ form of schema, the
match-tree form of schema, and a language for specifying subsets of this gen-
eral form called the match-tree form of schema language. The specified sub-
sets of the match-tree form of schema are called match-tree forms. This com-
bination of the very general match-tree form of schema and corresponding
match-tree form of schema language provide both flexibility in matching
behaviour and precision of definition.

Match-tree schemata have a very flexible matching mechanism: each
schema node independently specifies its matching behaviour. The move
is similar to the move to object-oriented code in that the node itself encap-
sulates behaviour as well as data. Each schema node s is associated with
functions which determine two types of behaviour:

• The first has been carried out implicitly by previous forms of schemata.
It is this behaviour that determines that a feature node does not
match an addition node but does match a don’t care node.

The schema node uses a label-match function and a label to make this
type of behaviour explicit in the definition of the schema.

• The second is largely missing from many previous definitions of GP
schemata. It is this behaviour that determines that in one instance
program (+ 1 2) does match schema (+ 2 1) and in another instance
it does not because the order of arguments differs between the pro-
grams.

68 CHAPTER 3. THE MATCH-TREE FORM OF SCHEMA LANGUAGE

The schema node uses a child-match function to make this type of be-
haviour explicit in the definition of the schema.

Previous forms of schemata have behaviours that are implicit or simply
unstated in their definitions, prompting questions such as:

• Do numeric terminals in fact match a range of labels?

• Does the order matter when matching children?

• Does it matter to a program node/schema node match that the pro-
gram node has more children than the schema node?

The reason for these behaviours being unstated may be linked to where
they are set: the definition of the form of schema. It is simply very dif-
ficult to cover all the details in the few sentences of the average schema
definition, therefore at times they are simply left out.

The match-tree form of schema language provides a language to pre-
cisely define a subset of the very general match-tree form of schema. This
allows each of the relevant forms of schema used in the GP literature to be
tabulated in table 3.2 represented as machine-readable strings as well as
many undiscovered forms.

The analysis tool developed in this thesis will require a form of schema
to be passed as an argument and in this respect the definition of the match-
tree form of schema language breaks new ground; not only do match-tree
schemata have a representation but so do match-tree forms of schema. Thus
for instance, a researcher may experiment with hyperschemata simply by
presenting an implementation with a string representing hyperschemata.

Building on this foundation, the next chapter presents the core of our
analysis method for match-tree schemata in populations of genetic pro-
grams: maximal schemata. Maximal schemata can be used as a proxy for
many types of analysis by efficiently grouping and counting schemata.

Chapter 4

Maximal schemata

4.1 Chapter introduction

This thesis develops a method to analyze schemata occurring in programs.
Key to the newly developed method is that the analysis is not of schemata
or of programs but of the relationship between schemata and programs.

This chapter precisely defines this core concept: the grouping and count-
ing of schemata that are in exactly the same set of programs or alterna-
tively, the grouping and counting of sets of programs matching the same
sets of schemata. Grouping schemata and sets of programs is of funda-
mental importance; the sorts of empirical analysis of schemata this thesis
aims for will involve dealing with prohibitively large sets of schemata. As
an example, even single programs commonly match more distinct hyper-
schemata than there are atoms in the universe. This chapter provides a
way to effectively analyze such sets of schemata by executing an equiv-
alent analysis of sets of structures which represent the prohibitively large
sets.

69

70 CHAPTER 4. MAXIMAL SCHEMATA

4.2 The problem stated

To analyze the programs matching each schema in a given set of schemata
a researcher identifies and performs analysis on each schema and its matched
programs. One implementation of such analysis iterates over the set of
schemata, performing analysis on each schema. This approach, referred to
here as the naive approach, is often impractical; there are often simply too
many schemata in the set of all schemata. The following subsections de-
termine upper bounds on how many schemata there could be in the case
of a trivial population, containing only one program, p, that is a full n-arity
tree of depth d, totalling N nodes for different forms of schema.

4.2.1 Example 1: restrictive-ordered subtrees

Suppose the schemata we are interested in are the restrictive-ordered-subtrees
of table 6.4 in chapter 6. To perform analysis on the schemata in our pro-
gram an analysis may iterate over the set of all schemata occurring in the
program. There would be a maximum of N subtrees with one rooted in
each node of the program. Therefore there would be a maximum of N

schemata, although there could be fewer if some subtrees were identical.
There would in all normal circumstances be a manageable upper limit on
the number of schemata produced.

The situation is similarly simple when looking at other basic forms of
schema, like numeric terminals.

But the case is more complex when looking at more interesting forms
of schema because there can be many more schemata of the form. The
following subsections present the case for fragments and hyperschemata.

4.2.2 Example 2: rooted-ordered-fragments

Let us look at a more complex form of schema: rooted-ordered-fragments.
This subsection derives a formula for Nrof (a, d) to calculate the maximum

4.2. THE PROBLEM STATED 71

number of rooted-ordered-fragments occurring in a program tree of depth
d and arity a. To do so it uses induction starting from the base case of a
tree of depth 1 with a single node. The inductive step obtains the value for
a tree of any depth, given the value for a tree of the previous depth.

Base case: tree of depth one

The number of rooted-ordered-fragments in a tree of depth one is two;
any fragment matching a single node is either the node itself or a don’t care
node.

Therefore, for any arity a: Nrof (a, 1) = 2.

Inductive case: deeper tree

Adding one level to the tree increases the number of possible fragments.

Consider each child branch of the root node of a program tree of depth
d and arity a. Each such child branch could match Nrof (a, d − 1) distinct
fragments. The root node of a fragment occurring in the program could be
a don’t care terminal or it could have children such that each child occurs in
the corresponding child of the root program node. These child fragments
are independent of each other, thus for depths greater than 1 the follow-
ing formula expresses the possible number of fragments occurring in the
program:

Nrof (a, d) =

{
2 (d = 1)

Nrof (a, d− 1)a + 1 (d > 1)

Plugging the values into a calculator produces some large numbers, given
in table 4.1. In general, the maximum number of rooted-ordered-fragments
occurring in a single program of arity a and depth d is in the order of 2ad−1 .
For anything but a small tree, that is less than six deep and has less than
three arity, the figures are too massive to allow the naive approach used
on subtrees in the previous section.

72 CHAPTER 4. MAXIMAL SCHEMATA

Table 4.1: Worst case numbers of fragments occurring in a single a arity
program tree of depth d.

Nrof (a, d) a = 2 a = 3

d = 1 2 2
d = 2 5 9
d = 3 26 730
d = 4 677 3.9× 108

d = 5 45833 5.9× 1025

d = 6 2.1× 1011 2.0× 1077

d = 7 4.4× 1022 8.5× 10231

d = 8 1.9× 1045 very large

For example, the naive analysis of the set of all fragments of a tree with
arity three and depth six which is a moderately sized tree by typical GP
standards, iterates over a set with close to as many members as current
knowledge places the number of hydrogen atoms in the observable uni-
verse at about 3 × 1079. Clearly, it would not be possible to increase the
depth to seven!

It should be noted that there may be and probably are fewer fragments
than this in any given program tree for the following reasons:

• The tree may not be “full”; there may be nodes at depth less than d

that have arity less than a.

• Some of the fragments may be identical and therefore some frag-
ments may have been counted twice or more. Thus the true value of
the count of fragments would be smaller than that produced by Nf .

But one can easily form a pathological program tree that matches exactly
Nrof (a, d) fragments as any complete tree in which each node has a distinct
label.

4.3. THE NEW METHOD 73

A program tree may match considerably more schemata of an expres-
sive form like hyperschemata than it does rooted-ordered-fragments.

4.2.3 Other mitigation methods in GP

Past literature analyzing schemata in genetic programming has used vari-
ous methods to avoid enumerating such large sets of schemata. Typically
these methods fall into one of two categories:

1. Use a simple form of schemata like subtrees, thereby reducing the
number of schemata. All schemata may then be enumerated using
the naive approach without incurring excessive cost.

2. Use a complex form of schemata but don’t enumerate them all. In-
stead, take a sample of the schemata of a size within computation
limits; the sample may be taken by random sampling or may be di-
rected toward schemata considered interesting.

Either of these methods is unacceptable here: the first would require the
use of too simple a form of schema, which would place considerable con-
straint on the scope of analysis done. The second may put considerable
constraint on the bias- and noise- immunity of analysis: which schemata
should be enumerated? Should it be the biggest? or “best”? If so, what
does “best” mean with reference to schemata? Should the analysis instead
take a random sample?

4.3 The new method

This thesis avoids the two methods above altogether, by using a third:

3. Group and count schemata which for the purposes of desired anal-
ysis are the same and enumerate all such groups. The method per-
forms analysis on only the group programs but produces results equiv-
alent to the possibly impractical naive approach.

74 CHAPTER 4. MAXIMAL SCHEMATA

Key to the new method is that it analyzes not schemata and not programs
but the relationship between the two; the new method analyzes either
schemata shared by given programs or the programs sharing a given schema.
For instance the multitude of schemata in a single genetic program is of
limited interest when enumerated but a researcher may be interested in
counting the number of schemata the program shares with other given
programs.

Let S(P, f) be the set of all schemata of form f occurring in each of a
set of programs P . Further, let P (s, P0) be the set of all programs from
population P0 matching schema s.

The first of this thesis’ groupings partitions schemata by their P (s, P0):

Group together schemata of a form f which occur in exactly
the same programs from the given population P0.

That is, group any two schemata, s1, s2 of form f for which P (s1, P0) =

P (s2, P0) into a representing datum Gs(P, f) where P = P (s1, P0) = P (s2, P0),
and each representing datum summarizes all the schemata which fall into
the group, that is the set of schemata {s ∈ f |P (s, P0) = P}. The nature of
this summary is a set of most specific schemata in the group and a count
structure of how many members of the group have specified properties.
An example would be a count of how many schemata there are of each
order.

The second grouping looks to the sets of programs matching given
schemata and in this case the new method groups sets of programs rather
than schemata.

Group together subsets of the given population P0 which match
exactly the same set of schemata of form f .

Let a program subset be a subset of an implicit population P0. In this group-
ing, the set of program subsets P(P0) is partitioned by S(P, f). That is, the
method groups any two program subsets, P1, P2 ⊆ P0 for which S(P1, f) =

4.3. THE NEW METHOD 75

S(P2, f) into a representing datum GP (S, P0) where S = S(P1, f) = S(P2, f)

and each representing datum summarizes all the program subsets which
fall into the group. The nature of this summary is its largest member and
a count of how many members of the group there are or alternatively a
count of how many program subsets there are of each cardinality.

Thus the new method needs structures able to adequately represent
a group of program subsets GP or a group of schemata Gs. This thesis
develops two structures to be used as base-level representatives: maximal
program subsets and maximal schemata.

4.3.1 Maximal program subsets

This thesis defines a maximal program subset as follows:

A maximal program subset Pm(s, P0) for some schema s and pop-
ulation P0 is the set of all programs from P0 which match s.

Thus a maximal program subset is a subset Pm of P0. It is maximal in the
sense that for any form f including the schema s and any program subset
P , P ⊃ Pm ⇔ S(P, f) ⊂ S(Pm, f) since some member of P doesn’t match
s and Pm must match any schema matched by a superset of Pm.

For analysis of a schema s, Pm(s, P0) provides adequate representation
of s’s occurs in relationship to the population P0. Indeed, the definition of
maximal program subset goes a way toward representing groups of pro-
gram subsets which match the same schemata. But there may be program
subsets which are not represented by maximal program subsets. A differ-
ent structure represents these program subsets: the representative program
subset.

4.3.2 Representative program subsets

This thesis defines representative program subsets as follows:

76 CHAPTER 4. MAXIMAL SCHEMATA

A representative program subset Pr(S, P0) for some set of schemata
S and population P0 is the set of all programs from P0 which
match every schema in S.

Thus the definition of a representative program subset, the programs of which
must match all of a set of schemata, is a generalization of the definition of a
maximal program subset the programs of which must match a single schema.
Any maximal program subset for some schema s and population P0 is a
representative program subset for the set of schemata {s} and population
P0. Though not always the case, for many forms of schemata including all
conjunctive forms of schemata any representative program subset for a set
of schemata S and a population P0 will be a maximal program subset for
a schema in S and population P0.

For any given program subset, there will be a representative program
subset that matches exactly the same set of schemata and this represen-
tative program subset could be found as Pr(S(P, f), P0), that is the set of
programs matching each schema occurring in P .

There is a subtle difference between maximal program subsets and rep-
resentative program subsets: for some representative program subsets P

and forms f , for each s ∈ S(P, f) there may be a superset of P such
that s occurs in all programs of the superset. Thus although P is rep-
resentative, it is non-maximal. An example uses subtree schemata: let
P0 = {A = (+ 1), B = (+ 1 2), C = (+ 2)} and f be the space of ordered-
subtrees rooted at depth>1. The program subset {B} matches subtrees
{1,2}, both of which occur in other programs. But no other program sub-
set matches both the subtrees 1 and 2. Thus P is representative but non-
maximal.

4.3.3 Maximal schemata

A maximal schema is a similar concept to a maximal program subset and
has the following definition:

4.3. THE NEW METHOD 77

A schema sm is a maximal schema with respect to some program
subset P and form of schema f , if sm is a schema of form f

that occurs in each program of P where no schema that is more
specific than sm also occurs in each program of P .

Thus a maximal schema is a schema of a given form f and occurring
in each program of some program subset P , which is maximal in the
sense that each schema that is more specific than sm occurs in fewer pro-
grams. That is for any set of programs P0 and schema s it is true that
s moreSpecificThan sm ⇔ P (s, P0) ⊂ P (sm, P0).

The previous subsection showed that for a given schema s and popu-
lation P0 there is a single maximal program subset Pm(s, P0). Often this
is the case for maximal schemata; for many interesting forms of schema,
including most used in this thesis’ analyses, there will always be exactly
one maximal schema for a given program subset. Typically such forms
are conjunctive as defined later in section 4.6. But this is not the case for
all forms of schema and there may be many maximal schemata of a given
form occurring in a single given program subset.

4.3.4 Representative sets of maximal schemata

Representative sets of schemata are to representative program subsets as max-
imal schemata are to maximal program sets. Where representative pro-
gram subsets represent program subsets which may not be represented
by any schema, representative sets of schemata represent schemata which
may have no unique most specific representing schema.

This thesis defines a representative set of schemata as follows:

A representative set of schemata Sr(P, f) is for some program sub-
set P and form of schema f the set of schemata which are max-
imal with respect to P, f .

While there may be no unique maximal schema with respect to a given
form f and program subset P , there is a unique representative set of schemata.

78 CHAPTER 4. MAXIMAL SCHEMATA

Exactly one representing set of schemata represents any one given schema
s of form f and this representing set of schemata may be found as Sr(P (s, P0), f).
That is the set of all maximal schemata with respect to the programs match-
ing the schema s and the form of schema f .

4.3.5 Maximal and representative pairs

For convenience when referring to the maximal and representative group-
ings, this thesis defines a maximal pair and a representative pair as follows:

A maximal pair rm = < sm, Pm >, said to be maximal with re-
spect to a population P0 and form of schema f , is a pair con-
taining a maximal program subset Pm and a maximal schema
sm, where Pm = Pm(sm, P0) and sm is maximal with respect to
Pm and f .

A representative pair rr = < Sr, Pr >, said to be representa-
tive with respect to a population P0 and form of schema f ,
is a pair containing a representative program subset Pr and
representative set of schemata Sr, where Pr = Pr(Sr, P0) and
Sr = Sr(Pr, f).

In addition, to support analysis we require that each representor group-
ing carry a count structure of its represented program subsets or schemata.
The format of this count structure depends on the type of analysis and in
the simplest case is a single count of how many program subsets are rep-
resented by each representative program subset or how many schemata
are represented by each representative set of schemata. In a more com-
plex case, which is used the experiments of this thesis, the count structure
has the count of represented program subsets of each cardinality or the
count of represented schemata of each order. Other more complex count
structures are also possible.

Thus this thesis constructs its representing structures as follows:

4.3. THE NEW METHOD 79

• Gs(P, f) = < Sm(P, f), Cs > where Sm(P, f) is defined above and Cs

is a count structure of represented schemata.

• GP (s, P0) = < Pm(s, P0), CP > where Pm(s, P0) is defined above and
CP is a count structure of represented program subsets.

Which may be combined into one overall representing structure for both:

• Gr = < rr, Cs, CP > where rr is a representative pair with respect to
P0 and f , Cs is a count structure of represented schemata and CP is a
count structure of represented program subsets.

4.3.6 How many?

It is very difficult to precisely specify how many maximal program subsets
or maximal schemata there are and this thesis makes no attempt at tight
analytical bounds on these values. Some very loose bounds are as follows:

• A bound on the numbers of maximal program subsets, representa-
tive program subsets and representative pairs is the number of pro-
gram subsets: 2|P0|−1.

• There may be more maximal schemata and maximal pairs than this,
though the number will be less than 2|P0|−1 × Nms, where Nms is the
maximum number of schemata in any representative set of schemata.

For many of the forms of schema used for this thesis’ experiments
Nms = 1 and for all of this thesis’ experiments Nms ≤ N where N is
the maximum number of nodes in a program tree. This thesis expects
that in most cases the bulk of program subsets and schemata will be
non-representative. That is, most program subsets will match exactly
the same set of schemata as some superset of the program subset
and most schemata will occur in the same programs as some more
specific schema.

80 CHAPTER 4. MAXIMAL SCHEMATA

• While, finding closer analytic bounds on the number of maximal and
representative structures is outside this thesis’ scope, chapter 6 at-
tempts to characterize the number of maximal pairs empirically.

4.4 Analysis using the new method

The new method presented by this thesis assumes one of two broad struc-
tures for the analyses performed:

• An analysis which analyzes each subset of the input set of programs,
aggregating some calculation on the most specific schemata which
occur in the programs of the program subset. Section 4.4.1 describes
this form of analysis.

• An analysis which analyzes each schema of a given form, aggregat-
ing some calculation on the subset of P0 matching the schema. Sec-
tion 4.4.2 describes this form of analysis.

These two structures cover a wide range of analyses. Crucially, most such
analyses may be refactored to have complexity dependent on the num-
ber of representative pairs, rather than the potentially massive numbers of
schemata or program subsets.

4.4.1 Program subset analysis

Often program subset analyses may be expressed similarly to pseudocode 4.1.
The analysis proceeds as an iteration over the power-set of P0. Each pro-

gram subset is analyzed using the size of the program subset and the most
specific schemata of the form that it matches. The results are aggregated
into the final analysis result. Constraints are placed on the types of analy-
sis possible, for example the program subset may not perform analysis on
its members’ fitnesses. But it is easy to think of interesting analyses which
fit this general framework.

4.4. ANALYSIS USING THE NEW METHOD 81

FUNCTION PSAnalysis(Set of programs P0, Form of schema f)

Initialize an aggregate A

FOR EACH P ⊆ P0

Compute a value v based on analysis of the

most specific schemata of form f occurring in all programs of P and

the cardinality of P

Aggregate v into A

RETURN A

END

Pseudocode 4.1: PSAnalysis

Using the new method’s representative groups, we may refactor the
algorithm of pseudocode 4.1 as having an outer loop over representative
pairs and an inner loop over program subset cardinalities. The function is
presented in pseudocode 4.2. The function operates as follows: the outer
loop iterates over each representative program subsets P .

Any program subset will be represented by some representative pro-
gram subset and the two will share the same set of schemata S. The inner
loop iterates over program subset cardinalities z. The analysis result for
cardinality z and schemata S is repeatedly aggregated into A, once for
each program subset of cardinality z that is represented by P . Thus rather
than a single loop with 2|P0| iterations, we have an outer loop with a rel-
atively small |P̂r| iterations and an inner loop limited to |P0| iterations.
For simple aggregates like max, min, sum, mean and variance, the final
aggregation over large numbers of represented program subsets may be
done in constant time with the complexity of the equivalent analysis hav-
ing the relatively small number of representative program subsets as its
largest term.

82 CHAPTER 4. MAXIMAL SCHEMATA

FUNCTION PSAnalysisMPS(Set of programs P0, Form of schema

f)

P̂r = representative program subsets with respect to P0, f

Initialize aggregate A

FOR EACH P ∈ P̂r

FOR EACH cardinality z of a program subset represented by P

Compute a value v based on analysis of the

most specific schemata of form f occurring in all programs of P

and the cardinality z

Aggregate v into A once per program subset of cardinality z

that is represented by P

RETURN A

END

Pseudocode 4.2: PSAnalysisMPS

4.4. ANALYSIS USING THE NEW METHOD 83

4.4.2 Schema analysis

An alternative to the above analyses is analysis of individual schemata
rather than program subsets. Pseudocode 4.3 presents a basic analysis
algorithm.

FUNCTION SchemaAnalysis(Set of programs P0, Form of

schema f)

S = the set of all schemata of form f

Initialize aggregate A

FOR EACH s ∈ S

Compute a value v based on analysis of

the subset of P0 matching s and

the order of s

Aggregate v into A

RETURN A

END

Pseudocode 4.3: SchemaAnalysis

The analysis proceeds as an iteration over the set of all schemata of the
form f . Each schema is analyzed using its order (number of non-don’t-
care nodes) and the set of matching programs from P0. The results are then
aggregated into the final analysis result. As for the previous subsection,
constraints are placed on the types of analysis possible, for example the
schema may not perform analysis on its depth. But here too it is easy to
think of interesting analyses which fit this general framework.

Using the new method’s representative groups, we may refactor the
algorithm of pseudocode 4.3 as having an outer loop over representative
pairs and an inner loop over schema orders. The function is presented in
pseudocode 4.4. The function operates as follows: The outer loop iterates
over each representative set of schemata S.

84 CHAPTER 4. MAXIMAL SCHEMATA

FUNCTION SchemaAnalysisMS(Set of programs P0, Form of

schema f)

Ŝr = representative sets of schemata with respect to P0, f

Initialize aggregate A

FOR EACH S ∈ Ŝr

FOR EACH order z of a schema represented by S

Compute a value v based on analysis of

the subset of P0 matching the schemata in S and

the order z

Aggregate v into A once for each schema of order z

that is represented by S

RETURN A

END

Pseudocode 4.4: SchemaAnalysisMS

4.5. LATTICE FORMS OF SCHEMA 85

Any schema will be represented by some representative set of schemata
and the two will share the same set of programs P from P0. The inner loop
iterates for each schema order z. The analysis result for cardinality z and
programs P is repeatedly aggregated into A, once for each schema of order
z that is represented by S. Thus rather than a single potentially expensive
loop, we have an outer loop iterating over a presumed relatively small set
of |Ŝr| items and an inexpensive inner loop limited by program size. As in
the previous subsection, for simple aggregates like max, min, sum, mean
and variance, the final aggregation over large numbers of represented
schemata may be done cheaply with the complexity of the equivalent anal-
ysis having the relatively small number of representative sets of schemata
as its largest term, rather than the number of all matched schemata.

4.5 Lattice forms of schema

For each maximal program subset P , Sr(P, f) is a non-empty set of max-
imal schemata belonging to form f that occur in the programs of a pro-
gram subset P . In important special cases of the form f it is the case that
|Sr(P, f)| = 1 for every program subset P .

This is always the case for a specific class of forms of schema used
widely in the remaining thesis. This thesis refers to forms in this class as
lattice forms of schema. Lattice forms of schema must have two specific
behaviours:

• The Directed Acyclic Graph (DAG) having as nodes the schemata of
the form f , with the addition of a schema s∞ (which occurs in no pro-
grams) and s0 (which is more general than any conceivable schema)
and having as edges the generality relation between those schemata,
must be a lattice. That is, it must have the following properties:

– For any two schemata sa and sb of the form, there must be a
join schema sa ∨ sb which is the unique most general schema of

86 CHAPTER 4. MAXIMAL SCHEMATA

the form more specific than both sa and sb. Note that the join
schema may be s∞. For any distinct sa and sb, sa ∨ sb is more
specific than both sa and sb and any other schema of the form
that is also more specific than both sa and sb will certainly be
more specific than sa ∨ sb.

– For any two schemata sa and sb of the form, there must be a
meet schema sa ∧ sb which is the unique most specific schema of
the form more general than both sa and sb. Note that the meet
schema may be s0. For any distinct sa and sb with a meet schema
sa ∧ sb, sa ∧ sb is more general than both sa and sb and any other
schema of the form that is also more general than both sa and sb

will certainly be more general than sa ∧ sb.

• For any population P0 and any two schemata sa and sb, it is true that
Pm(sa ∨ sb, P0) = Pm(sa, P0) ∩ Pm(sb, P0). That is, the join schema for
the two schemata must occur in any program from P0 matching both
sa and sb. Note that since it is more specific than sa and sb it could
not match programs not matched by both sa and sb.

These basic requirements have flow-on effects and dealing with lattice
forms of schema can be significantly easier than general forms of schema.
Useful properties include:

• |Sr(P, f)| ≤ 1 for any program subset P and form f .

To see that this is true, suppose for some program subset P , Sr(P, f)

has two members: sa and sb. The join schema sa ∨ sb is more special-
ized than both and matches all programs which match both sa and
sb and therefore matches all programs in P . Therefore neither sa nor
sb is maximal with respect to P and f since the more specific sa ∨ sb

could also be maximal with respect to P and f .

Alternately, it may be that no schemata match all the programs of P

and therefore Sr(P, f) = {}.

4.5. LATTICE FORMS OF SCHEMA 87

• If Pa and Pb are two maximal program subsets, then Pa ∩ Pb is either
empty or maximal.

As shown above, for any program subset P which matches any schema
of a given form f there is a unique maximal schema with respect to
P and f . Let sm(P, f) return this schema given a program subset and
a form, that is the only member of Sr(P, f).

Given two maximal program subsets Pa and Pb, the join maximal
schema sa∨b is sm(Pa, f) ∨ sm(Pb, f). To show that, if it is non-empty,
Pa ∩ Pb is maximal, it is enough to show that there is some schema
which occurs in all programs of Pa ∩ Pb but no other program of P0.
sa∨b is such a schema. By the second requirement of a lattice form of
schema, Pm(sa∨b) = Pa ∩ Pb. Note that since Pa is maximal it is true
that Pa = Pm(sm(Pa, f)), and similarly Pb = Pm(sm(Pb, f)). Therefore
Pa ∩ Pb is maximal. Note that the schema sa∨b is not necessarily a
maximal schema.

• If sa and sb are two maximal schemata, then if sa ∧ sb exists in the
form f , it is also maximal.

In order to show that sa ∧ sb is maximal, it is sufficient to show there
is at least one program subset which matches sa ∧ sb but no more
specific schema. This subsection shows that Pm(sa, P0)∪Pm(sb, P0) is
such an program subset.

By its definition, sa∧sb is the unique most specific schema more gen-
eral than both sa and sb. Since sa is maximal no superset of Pm(sa, P0)

matches any schema more specific than sa, and since |Sr(Pm(sa, P0), f)| =
1, all schemata other than sa occurring in all programs of Pm(sa, P0)

are more general than sa. Similarly for sb, also, all schemata other
than sb occurring in all programs of Pm(sb, P0) are more general than
sb.

Therefore, all schemata occurring in all programs in Pm(sa, P0) ∪
Pm(sb, P0) must be more general than both sa and sb. sa ∧ sb is the

88 CHAPTER 4. MAXIMAL SCHEMATA

unique most specific schema which is more general than both sa and
sb. Therefore sa ∧ sb is maximal since any other schema occurring in
Pm(sa, P0) ∪ Pm(sb, P0) must be more general than sa ∧ sb. Note that
Pm(sa, P0) ∪ Pm(sb, P0) is not necessarily maximal.

4.6 Conjunctive forms of schema

This thesis terms a specific subset of the class of lattice forms conjunctive
forms of schema. All of the forms used in this thesis’ experiments are either
conjunctive forms of schema or based on conjunctive forms of schema.

Conjunctive forms of schema are important since schemata may be rep-
resented as sets of schema components and this step is vital to the imple-
mentation of many of the algorithms of the new method. Conjunctive
forms of schema are relatively easy to work with, primarily since each
schema of a conjunctive form may be represented as a set and for any two
schemata of a conjunctive form there is a unique meet which may be easily
found as the intersection of the two schemata when represented as sets.

A form of schema f is “conjunctive” if:

• Each schema may be expressed as a set of schema components derived
from the form f .

Schema components may be said to occur in programs, just as with
schemata. Schema components may be more general, more specific
or take on any relation to any other schema component.

• A given schema occurs in a program p if and only if p matches each
schema component in the schema’s set of schema components.

• For any two schemata sa, sb with non-disjoint schema component
sets Ca, Cb there is either a schema in the form with Ca ∩ Cb as its
schema component set or there is no schema in the form with any
non-empty subset of Ca ∩ Cb as its schema component set.

4.6. CONJUNCTIVE FORMS OF SCHEMA 89

• For any two schemata sa, sb with non-disjoint schema component
sets Ca, and Cb, there is either a schema in the form with Ca ∪ Cb

as its schema component set or such a schema would occur in no
conceivable program.

All conjunctive forms of schema are lattice forms of schema:

1. For any two distinct schemata sa, sb with non-disjoint schema com-
ponent sets Ca, Cb, if a schema sc with schema component set Ca∩Cb

exists in the form then sa ∧ sb = sc, otherwise sa ∧ sb = s0.

• sc is the most specialized schema which is more general than or
equal to both sa and sb. Ca∩Cb is a subset of both Ca and Cb and
therefore sc is more general than sa and sb. All other schema for
which this is true must have schema component sets which are
subsets of Ca ∩ Cb. In the case that Ca ∩ Cb is not in the form,
there is no schema more general than both Ca and Cb and thus
s0 is used as a placeholder.

2. For any two distinct schemata sa, sb with non-disjoint schema com-
ponent sets Ca, Cb, if a schema sd with schema component set Ca∪Cb

exists in the form then sa ∨ sb = sd, otherwise sa ∨ sb = s∞.

• sa∨sb is the most general schema which is more specific than or
equal to both sa and sb. Ca ∪ Cb is a superset of both Ca and Cb

and therefore sd is more specific than sa and sb. All other schema
for which this is true must have schema component sets which
are supersets of Ca ∪ Cb. In the case that Ca ∪ Cb is not in the
form, there is no program which matches both Ca and Cb and
thus the only schema more specific than both is s∞.

3. The final requirement for the form to be a lattice form is for Pm(sa ∨
sb, P0) = Pm(sa, P0) ∩ Pm(sb, P0).

90 CHAPTER 4. MAXIMAL SCHEMATA

• Because sa ∨ sb = sa ∪ sb, the requirement follows logically: the
set of programs matching all schema components in both sa and
sb equals the intersection of the set of programs matching all
schema components in sa with the set of programs matching all
schema components in sb.

Some forms of schema lend themselves to this deconstruction into sets of
schema components:

• Rooted-ordered-fragments.

• Rooted-ordered-hyperschemata

Other forms of schema may not have an easy decomposition to schema
components:

• Any non-rooted schema, for instance: subtrees, numeric terminals
and ordered-fragments.

• Rooted-unordered-fragments. Unordered schemata are seldom con-
junctive.

4.6.1 Conversion to conjunctive forms of schema

Any non-conjunctive form of schema f has a corresponding conjunctive
form fconj where schemata of the form fconj are sets of schemata of the
form f . The schema components of the new, conjunctive form are the
schemata of the old, non-conjunctive form. Therefore, for instance, sets of
rooted-unordered-fragments is a conjunctive form of schema.

4.7 De-rooted conjunctive forms of schemata

Amongst the classes of non-conjunctive forms of schema, there is a rela-
tively easy special case: conjunctive forms of schema used in a non-rooted

4.7. DE-ROOTED CONJUNCTIVE FORMS OF SCHEMATA 91

way which are termed de-rooted conjunctive forms. Examples of de-rooted
conjunctive forms are: ordered-subtrees (the non-rooted form of ordered-
programs), ordered-fragments (the non-rooted form of rooted-ordered-
fragments) ordered-hyperschemata and many others. Each conjunctive
form of schema has a de-rooted conjunctive form.

In terms of match-tree schemata, a de-rooted conjunctive form fnr for
conjunctive form fr has all branches from fr but a new root branch, typi-
cally having a desc child-match function and pointing to fr’s root branch
in its cind member. The desc child-match function causes the root branch
of fr to be passed all subtrees of the input programs, rather than the root
programs, effectively making the form non-rooted by allowing the form
to match any subtree. The desc node may also filter the nodes to, for
instance, only those at a certain depth.

Thus the most part of the de-rooted conjunctive form is just the equiv-
alent conjunctive form with the only non-conjunctive part of the form be-
ing a node pattern with a single desc disjunct. In fact, given an input
set of programs P0, the maximal schemata of the de-rooted conjunctive
form with respect to P0 are almost exactly the same as the set of maxi-
mal schemata of the relevant conjunctive form with respect to S0, the set
of subtrees from P0 selected by the non-rooted form’s desc node child-
match function. There are, however, two key differences:

1. Each schema of the non-rooted form has a root node matching the
desc node, this descendent node is not featured in schemata of the
rooted form.

2. Some maximal schemata of the rooted form, run over subtrees, may
not be maximal in the non-rooted form.

This second condition may only occur in one case: where for some schema
s there is another maximal schema sm in the same programs and some
subtree of sm is the same as or more specific than s using the rooted form.

92 CHAPTER 4. MAXIMAL SCHEMATA

Where to the rooted form they are the quite different schemata since they
have different roots, to the non-rooted form s is more general than sm.

4.7.1 Example one

As an example, let the rooted conjunctive form be programs and let the
de-rooted conjunctive form be subtrees.

In a trivial case, the program set P0 has only one program: (+ 1).
Clearly, the maximal subtree is the program itself: (+ 1).

In order to use the algorithms of the previous sections, this simple anal-
ysis runs them on the subtrees of P0, S0 = {(+ 1), 1}. The maximal pro-
grams with respect to S0 are the subtrees themselves: {(+ 1), 1}.

A final step removes each entry that is a more general than another
entry, where the two are in the same programs. Thus removing the “1”
entry, the analysis arrives at the correct singleton set of maximal subtrees.

4.7.2 Example two

Let the conjunctive form be rooted-ordered-fragments with the de-rooted
conjunctive form being ordered-fragments. Let P0 have two programs:
P0 = {(+ 1 2 3), (+ (+ 1 a) a 3)}

The set of subtrees S0 is {1, 2, 3, a, (+ 1 2 3), (+ 1 a), (+ (+ 1 a) a 3)}
Running one of the previously described algorithms on S0 using the rooted-
ordered-fragment form the algorithm finds the following maximal schemata:
1, 2, 3, a, (+ 1 2 3), (+ 1 a), (+ 1 #), (+ # # 3), (+ (+ 1 a) a 3) and (+ # a)

Of these schemata:

• 2 and (+ 1 2 3) are in the first program only.

• 1, 3, (+ 1 #) and (+ # # 3) are in both programs.

• a, (+ 1 a), (+ (+ 1 a) a 3), (+ # a) are in the second program only.

4.8. CHAPTER SUMMARY 93

Thus the maximal ordered-fragments found after removing more general
schemata are (+ 1 2 3), (+ 1 #), (+ # # 3) and (+ (+ 1 a) a 3).

There is one maximal program subset, that with both programs, which
has more than one maximal schema which shows that the form used is
non-conjunctive.

An important example using this conversion is for non-rooted forms of
otherwise conjunctive forms of schema. Such forms are very seldom con-
junctive since they are non-rooted but may be made conjunctive by regard-
ing schemata as being sets of the non-rooted form. For instance, “sets of
ordered-fragments” is the set form of the non-rooted form of the otherwise
conjunctive form of “rooted-ordered-fragments”. This thesis terms such
forms de-rooted conjunctive forms of schema and are the only non-conjunctive
forms of schema used in this thesis’ experiments.

4.8 Chapter summary

This chapter presents the core concept of the new method: rather than re-
ducing the complexity of the population to analyze or the form of schema
to analyze, the new method reduces the algorithmic complexity of the
analysis algorithm. It presents algorithms dependent, not on the very
large sets of program subsets and schemata but on a presumed smaller
set of representative pairs. Each such representative pair could potentially
represent vast numbers of schemata and program subsets.

With certain restrictions on the type of analysis performed the chapter
refactored a naive analysis, that iterates over the prohibitively large set of
all schemata or program subsets, into an equivalent and achievable anal-
ysis of representative structures. The chapter defined general algorithms
for achieving this analysis. In addition, this chapter defined lattice, con-
junctive and de-rooted conjunctive forms of schema as useful classes of form
of schema.

The following chapter defines several algorithms used to find these

94 CHAPTER 4. MAXIMAL SCHEMATA

representative structures for a given population and a conjunctive or a de-
rooted conjunctive form of schema, and in doing so it completes the new
method.

Chapter 5

Algorithms of the new method

5.1 Chapter introduction

This thesis gives a method to analyze the match-tree schemata in sets
of GP programs. The previous chapter defined the concepts of maximal
schema, maximal program subset, representative program subset, representative
sets of subtrees. These structures enable the compression of large numbers
of schemata and program subsets in a population down to the ones re-
quired for typical analysis. This chapter presents algorithms to find these
maximal and representative structures from a set of programs and a form
of schema which is expressed as a match-tree form.

The combined system made up of the algorithms of this chapter takes
a form of schema and a population of programs as input and produces an
annotated DAG of maximal pairs as output. A flow diagram of this system
is given in figure 5.1 The diagram shows that there are several steps in
making the DAG and several classes of objects passed as input to and
produced as output from each of these steps. The objects include:

• f : a form of schema specified as a match-tree form. This main system
accepts only conjunctive match-tree forms. Section 5.9 gives an algo-
rithm which generalizes this system to include de-rooted conjunctive

95

96 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

Figure 5.1: A flow diagram of the functions (bold text) and classes of ob-
jects (text in ellipses) which are used to produce the annotated DAG of
maximal pairs.

5.1. CHAPTER INTRODUCTION 97

forms of schema.

• P0: a population to be analyzed. Together with the form of schema,
this specifies the input to the system.

• C0: a set of schema components. C0 is returned by GetSchemaCom-
ponents which is described in section 5.4. The ability to describe any
schema as a set of schema components is key to the new method.
C0 has all the schema components required to describe the maximal
schemata for form f and population P0.

• M : either a mapping from schema components to sets of programs or
a mapping from programs to sets of schema components. M serves
as a base for one of the AddMeets variants, which use it to construct
a meet-semi-lattice which has the maximal pairs as nodes.

• A set of maximal pairs, each with a maximal program subset and a
maximal schema. It is constructed by one of the variants of GetMax-
imalDAG of section 5.3, and has all maximal pairs with respect to f

and P0.

• R: an anti-transitive DAG of maximal pairs. R is constructed by ei-
ther GetMaximalDAG while creating the set of maximal pairs or Get-
Edges of section 5.6. While R has no transitive edges, it has a path
going from each maximal pair r to each maximal pair more general
than r.

• A schema tree for each maximal schema. GetSchemaTree of sec-
tion 5.7 constructs the tree from each maximal schema’s set of schema
components.

• A count structure for each maximal schema s counting the schemata
of each order that are generalizations of s. SubschemaCountBy-
Size of section 5.8 constructs this count structure from the maximal
schema’s set of schema components.

98 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

• A count structure for each maximal schema s counting the schemata
of each order that are represented by s.

• A count structure for each maximal program subset counting its sub-
sets of each cardinality. It is constructed by SubsetCountBySize of
section 5.8.

• A count structure for each maximal program subset counting the
subsets of each cardinality that it represents.

• The final annotated DAG of maximal pairs. Each maximal pair is
made up of a maximal schema and a maximal program subset. In
addition, each maximal schema s is annotated with:

– stree which is the representation of s as a tree.

– scfull which is a histogram of the number of subschemata of each
order.

– screp which is a histogram of the number of represented sub-
schemata of each order.

Each maximal program subset P is annotated with:

– Pcfull which is a histogram of the number of subsets of each or-
der.

– Pcrep which is a histogram of the number of represented subsets
of each order.

5.1.1 Schema components

Schema components in this thesis are rooted paths of schema nodes. Noting
that match-tree schemata are trees of schema nodes, any schema could be
constructed as the union of a set of schema components.

Each schema node s has a label s.v and several other fields as follows:

5.1. CHAPTER INTRODUCTION 99

• s.fdisjunct is the schema form disjunct used to make the schema node.
Each schema node is associated with a single disjunct, and all chil-
dren of the schema node are associated with a disjunct in the form’s
node pattern pointed to by s.fdisjunct.cindex.

• s.fn is a node-match function. In particular s.fn = s.fdisjunct.fn.

• s.fc is a child-match function. In particular s.fc = s.fdisjunct.fc.

• s.Psub is a set of program subtrees from programs in P0 matching s.
The label of the root node of each program subtree in s.Psub must
match s. That is for each program subtree p in s.Psub, if p.v is the la-
bel of the root of p then s.fn(s.v, p.v). The children of the root node
of each program subtree in s.Psub must match s if given some map-
ping from children of the schema node to descendents of the pro-
gram node. That is for each program subtree p in s.Psub, for some set
of pairs M s.fc(s, p,M).

• s.P is the set of programs from P0 containing the subtrees in s.Psub.

The set s.P with all programs from the population P0 which match
the schema component which ends in s. The set s.P was used in the
previous subsection to identify a mapping between programs and
schema components.

A useful duality emerges from the use of schema components: a program
subset is a set of programs, and a schema is a set of schema components.
Also, the programs that match a schema are found as the programs that
match each of the schema’s schema components, and the schema compo-
nents that occur in a program subset are found as the schema components
that occur in each of the program subset’s programs.

While there are typically many schemata, there are typically signifi-
cantly fewer schema components. For conjunctive forms of schema with
simple node-match functions subsection 5.4 presents an efficient algorithm

100 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

finding the schema components. The algorithm takes a form of schema
and a population of programs.

5.2 GetAnnotatedDAG-rooted: overall algorithm

Given a population P0 and a form of schema f , the GetAnnotatedDAG-
rooted algorithm presented in this section returns the annotated DAG of
maximal pairs. Each maximal pair is annotated with counts of its repre-
sented program subsets and its represented schemata and a tree repre-
sentation of its maximal schema. This algorithm works exclusively with
conjunctive match-tree forms of schema, although later in section 5.9 an al-
gorithm will generalize this algorithm to de-rooted conjunctive match-tree
forms of schema.

The algorithm, presented in pseudocode 5.1, outputs a DAG R of pairs.
Each pair r ∈ R has a maximal schema rs and a maximal program subset
rP . Further, each maximal schema s in any pair has a count of subschemata
scfull, a count of represented subschemata screp and a representation as a
tree stree. Each maximal program subset P has a count of subsets Pcfull and
a count of represented subsets Pcrep.

The operation of the GetAnnotatedDAG-rooted function is as follows:

• The function first passes the form of schema f and the population
P0 to the GetMaximalDAG algorithm, presented in section 5.3, pro-
ducing R as the DAG of maximal pairs with respect to form f and
population P0.

• The function finds Pcfull for each maximal program subset P having
a count of subsets of P of each cardinality. These counts are found
using SubsetCountBySize which is presented in section 5.8.

• Pcrep is found for each maximal program subset P as the count of
the subsets represented by P . A simple mechanism is used: any

5.2. GETANNOTATEDDAG-ROOTED: OVERALL ALGORITHM 101

FUNCTION GetAnnotatedDAG-rooted(f, P0)

// f is a match-tree form of schema

// P0 is a set of programs

R =GetMaximalDAG(f, P0)

FOR EACH < s, P >∈ R from small P to large P

Pcfull =SubsetCountBySize(P)

Pcrep = Pcfull −
∑

<s′,P ′>∈R,P ′⊂P P ′crep

FOR EACH < s, P >∈ R from large P to small P

stree =SchemaTree(s)

scfull =SubschemaCountBySize(stree)

screp = scfull −
∑

<s′,P ′>∈R,P ′⊃P s′crep

RETURN R

END

Pseudocode 5.1: GetAnnotatedDAG-rooted

102 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

subset that is not represented by some other subset of P must be
represented by P itself. Therefore Pcrep is found as the sum of P ′crep

over all maximal subsets of P subtracted from Pcfull.

• In a similar way, the function finds screp for each maximal schema
s as the sum of represented counts of maximal subsets subtracted
from a count of all subschemata scfull of s. Each scfull is found using
SubSchemaCountBySize which is presented in section 5.8.

• The function uses SchemaTree, which is presented in section 5.7, to
identify the tree representation of each maximal schema s.

GetAnnotatedDAG-rooted provides a way to obtain a DAG of maximal
pairs along with information about each maximal pair, given a conjunctive
match-tree form of schema and a population of programs. The following
sections describe the functions that this overall function depends on.

5.3 GetMaximalDAG: maximal pairs as a DAG

This section describes an algorithm that is core to the operation of the over-
all system. The algorithm constructs a DAG of the maximal pairs, given
a form of schema and a population of programs. There are several varia-
tions in how this task may be approached.

There are several options for the operation of GetMaximalDAG:

• 2 directions of a mapping between programs and schema compo-
nents. The mapping may be from programs to schema components,
or from schema components to programs.

• 2 variants of the AddMeets algorithm: IntersectMeet and PromoteIn-
crement.

• 2 ways to find the edges of the graph using GetEdges.

5.3. GETMAXIMALDAG: MAXIMAL PAIRS AS A DAG 103

But each combination of these options defines an exhaustive algorithm
which returns exactly the same DAG of maximal pairs.

The main four variations are called IntMPS, IntMS, ProMPS and ProMS.

The first two variations – IntMS (Intersect Maximal Schemata) and IntMPS
(Intersect Maximal Program Subsets) – use an exhaustive intersect approach.
The IntersectMeet algorithms find the meets, the intersections, of maximal
program subsets or maximal schemata, by starting from a base set of large
program subsets or schemata and exhaustively intersecting subsets of the
base set:

• IntMS-simple/IntMS using a mapping from program to schema com-
ponents, and IntersectMeet.

The IntMS algorithms start with a base set of large maximal schemata
and iteratively find smaller and smaller maximal schemata. This is
equivalent to finding larger and larger program subsets.

• IntMPS-simple/IntMPS using a mapping from schema components
to programs, and IntersectMeet.

The IntMPS algorithms start with a base set of large maximal pro-
gram subsets and iteratively find smaller and smaller maximal pro-
gram subsets. This is equivalent to finding larger and larger schemata.

The other two variations – ProMS (Promote Maximal Schemata) and ProMPS
(Promote Maximal Program Subsets) – use an increment-promote approach.
The PromoteIncrement algorithms work in the opposite direction to the
IntersectMeet algorithms, starting from small maximal program subsets
or schemata and successively adding to them:

• ProMS-simple/ProMS using a mapping from schema components
to programs, and PromoteIncrement. The ProMS algorithms start
with a base set of general maximal schemata and find larger and
larger maximal schemata. This is equivalent to finding smaller and

104 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

smaller program subsets. The algorithm also constructs each maxi-
mal schema’s respective maximal program subset.

• ProMPS-simple/ProMPS using a mapping from program to schema
components, and PromoteIncrement. The ProMPS algorithms start
with a base set of small maximal program subsets and find larger
and larger maximal program subsets. This is equivalent to finding
smaller and smaller schemata. The algorithm also constructs each
maximal program subset’s respective maximal schema.

It may be that a researcher desires only output nodes with specific prop-
erties, that is, researchers may wish to filter the output. Each base algo-
rithm has a direction, either progressing from large program subsets (small
schemata) to small program subsets (large schema) or vice-versa. Some
algorithms (ProMS and IntMPS) allow us to efficiently filter the output
to just the small maximal schemata and other algorithms (ProMPS and
IntMS) can efficiently filter the output to just the large maximal schemata.
Because of the way they work, the ProMS and ProMPS algorithms im-
plement this type of filter well while IntMS and IntMPS implement it less
efficiently.

5.3.1 GetMaximalDAG common outer function

The function GetMaximalDAG is presented in pseudocode 5.2. GetMax-
imalDAG operates as follows:

• First, it constructs the set of schema components to be used to make
the maximal schemata. This operation is highly dependent on the
form, and subsection 5.4 describes how to construct the schema com-
ponents for conjunctive forms of schema.

• The construction of each schema component also constructs the set
of programs from P0 it occurs in. The second step in the algorithm

5.3. GETMAXIMALDAG: MAXIMAL PAIRS AS A DAG 105

FUNCTION GetMaximalDAG(f, P0)

// f is a match-tree form of schema

// P0 is a set of programs

C0= GetSchemaComponents(empty path, P0, 1, f, 1)

M = a mapping A → {B}, which is either

a mapping from each p ∈ P0 to its matched schema components from C0 or

a mapping from each c ∈ C0 to its matching programs from P0

R = AddMeets(M)

IF elements of R are sets of B’s

R′ = {}
FOR EACH B ∈ R

A = {}
FOR EACH < a′ → B′ >∈M where B′ ⊇ B

A = A ∪ {a′}
R′ = R′∪ < A,B >

R = R′

IF R is a set, not a DAG

R =GetEdges(R)

RETURN R

END

Pseudocode 5.2: GetMaximalDAG

106 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

constructs a mapping M between programs and schema components
based on this set for each schema component.

In one alternative of GetMaximalDAG, M maps each program p from
P0 to the subset of C0 with elements that occur in p. In this case
the rest of the algorithm refers to programs as type “A” and refers
to schema components as type “B”. In the alternative of GetMax-
imalDAG, M maps each schema component c from C0 to the match-
ing programs of P0 that was constructed with c. In this case A’s and
B’s are reversed in the rest of the algorithm, which refers to schema
components as type “A” and refers to programs as type “B”.

Either of these alternatives results in the same final DAG of maximal
pairs.

• One of the variants of AddMeets from section 5.5 uses M to construct
either a set or DAG of either maximal pairs or maximal sets of B’s.

• If the return value R of the selected AddMeets variant is a set of max-
imal sets of B’s, then GetMaximalDAG uses a nested loop to extend
each maximal set of B’s with the matching maximal set of A’s, thus
creating a set of maximal pairs.

• If R is a set, then the edges required to make it an anti-transitive
DAG are added by GetEdges which is presented in section 5.6

Despite having several options for how it operates, the returned value of
GetMaximalDAG is always the same anti-transitive DAG of maximal pairs,
given the same form f and population P0.

5.4 GetSchemaComponents: schema components

The first operation in the algorithm GetMaximalDAG constructs a set C0

with schema components. This subsection presents a function GetSchema-
Components obtaining C0 using a recursive procedure to find all possible

5.4. GETSCHEMACOMPONENTS: SCHEMA COMPONENTS 107

paths of schema nodes from the root of a schema to some node in the
tree. The algorithm is initially called as GetSchemaComponents(empty
path, P0, 1, f, 1) where P0 is a population of programs and f is a match-tree
form of schema. The function accumulates a set C and after the function
returns C contains the schema components to be used for C0.

The algorithm works on each disjunct n of one of the disjunctive node
patterns of the form f . For each such disjunct, the algorithm adds a new
schema component c consisting of a new schema node s, based on the
disjunct n, appended to a supplied parent schema component cpar. Some
schema components may be more general than other schema components
but in the same programs, and these schema components are safely re-
moved since they are not needed; any maximal schema containing the
more general schema component would also contain the more specific
schema component.

GetSchemaComponents is presented in pseudocode 5.3. The opera-
tion of the function is as follows:

• The function contains an outer loop over all form disjuncts of the
given tree.

• Each such node n may form the basis of a schema node to be ap-
pended to the path cpar.

This part of the algorithm uses an operation derived from the node-
match function n.fn. The operation obtains the schema node labels
matching a given program node label p.v, that is the s.v’s such that
n.fn(s.v, p.v). This operation is dependent on n.fn.

– For the exact string match node-match function s.v = p.v.

– For the don’t care with prefix node-match function there is one s.v

for each possible prefix of p.v.

– For a plain don’t care node-match function s.v =“”.

108 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

FUNCTION GetSchemaComponents(cpar, P, iP , f, t)

// cpar is a schema

// P is a set of program subtrees

// iP is a schema node child index (as in cc is the iP
thchild of cp)

// f is a match-tree form

// t is a disjunctive node pattern in form f .

Let C be a global output set of schema components

S = {}
FOR EACH disjunct n in t

P ′ = each p ∈ P having a number of children in the range n.cnum

L = {}
FOR EACH program p in P ′

L = L∪ each schema node label v with n.fn(v, p.v)

FOR EACH schema node label v in L

v.P = {p : p ∈ P ′, n.fn(v, p.v)}
FOR EACH schema node label v in L

if no v′ ∈ L is more specific than v where v.P = v′.P

s.v = v

s.fn = n.fn

s.fc = n.fc

s.fdisjunct = n

s.Psub = v.P

s.P = programs from P0 containing the subtrees in s.Psub

S = S ∪ {s}
FOR EACH s in S

if no s′ ∈ S is more specific than s where s.P = s′.P and s.fc = s′.fc

c = s appended to cpar as child number iP

C = C ∪ c

FOR EACH ithpartition Pc of child nodes of nodes in s.Psub using s.fc

GetSchemaComponents(c, Pc, i, f, s.fdisjunct.cindex
thnode pattern in f)

RETURN C

END

Pseudocode 5.3: GetSchemaComponents

5.5. ADDMEETS: GET MEETS FROM MAPPING 109

– For other node-match functions the operation is more complex,
and it may even result in an infinite set. An example is when
numeric schema nodes which match a continuous range of pro-
gram node labels are used.

• v.P is the set of program subtrees matching each label v.

• The function creates schema nodes out of the most specific labels for
each distinct set of program subtrees

• The function creates schema components out of the most specific
schema nodes, appended to the parent schema component cpar. The
resultant schema component c is added to the output set C.

• For each such schema node s the function then uses an iterator de-
rived from the child-match function s.fc. This iterator is dependent
on the operation of the child-match function and steps through the
partitions of children for a given set of program nodes, at each child
index i. The following are examples of this operation:

– For the ordered cind child-match function the ithpartition has
the ithchildren of the program nodes.

– For the partly-ordered cpind child-match function each parti-
tion associates program node children that are the jthchild with
label v, for each possible combination of j and v

• The function recurses to find the possible extensions to the schema
component c.

5.5 AddMeets: get meets from mapping

The functions of this section, collectively called “AddMeets”, are given a
base mapping M ∈ A → {B} provided by GetMapping, where either A’s

110 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

are programs and B’s are schema components or vice-versa. Each variant
provides a meet-semi-lattice closure of the mapped-to sets of B’s as either
maximal program subsets or maximal schemata. In addition, some also
produce the maximal pairs and some also produce the edges of the DAG
containing these pairs.

There are two variants, each having a quite different mode of opera-
tion:

• IntersectMeet, presented in section 5.5.1, uses the intersection oper-
ator to find each meet set of B’s.

Any maximal set of B’s is the intersection of some sets mapped to in
M . IntersectMeet performs the intersection over all such combina-
tions of sets mapped to in M .

• PromoteIncrement, presented in section 5.5.2, uses a promote-increment
approach.

Adding any schema component to a maximal schema s and promot-
ing to its representing maximal schema leads to a maximal schema
which is more specific than s. Adding any program to a maximal
program subset P and promoting to its representing maximal pro-
gram subset leads to a maximal program subset which is a proper
superset of P .

The PromoteIncrement algorithms employ this promote-increment method
using a function which, given a maximal schema or maximal pro-
gram subset, finds all more specific maximal schemata or larger max-
imal program subsets respectively.

The makeup of this returned set may take one of three forms depending
on the function used:

• A set of sets, having the members of the meet-semi-lattice closure
of the sets mapped to in M . These are the maximal schemata or
maximal program subsets.

5.5. ADDMEETS: GET MEETS FROM MAPPING 111

• A set of pairs, having each member B of the meet-semi-lattice closure
of the sets mapped to in M , paired with the set of elements which in
M map to a superset of B. These are the set of pairs each with a
maximal schema and its matching maximal program subset.

• An anti-transitive directed-acyclic-graph (DAG) with each maximal
pair arranged either with a path from each schema to each more spe-
cific schema or with a path from each schema to each more general
schema.

5.5.1 IntersectMeet: exhaustive intersection

Summary

The algorithms of this subsection return, given a mapping of A’s to sets
of B’s, the meet-semi-lattice closure of intersections on those sets. That is,
the returned set has as a member the intersection of the mapped to sets in
each subset of the input mapping. Therefore, the returned set is a superset
of the set of mapped-to sets of the input mapping and contains the nodes
of a meet-semi-lattice by the subset relation. Though often implied, the
empty set is not stored in the output set.

This section describes two algorithms of varying efficiency:

• First, the simpler algorithm IntersectMeet-simple is presented.

• Next, IntersectMeet-hash is presented, being identical in input and
output but with an expected improvement in efficiency.

IntersectMeet-simple

This simpler implementation of IntersectMeet adds to an output set B̂,
which is initially empty, by two nested loops.

The combination of these loops provides the meets for each set B mapped
to in M with each meet made from intersections of previously seen B’s.

112 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

The function adds each such meet to B̂ which, at the start of the inner
loop, is the minimal meet-semi-lattice which is a superset of the set of pre-
viously seen B’s.

IntersectMeet-simple is presented in pseudocode 5.4. The operation of

FUNCTION IntersectMeet-simple(M)

// M is a mapping from A’s to sets of B’s

Set of sets of items B̂ = {}
FOR EACH mapping a→ B ∈M

Mark all mappings in B̂ as old

FOR EACH B′ ∈ B̂

IF B′ has been marked as old

B̂ = B̂ ∪ {B ∩B′}
B̂ = B̂ ∪ {B}

RETURN(B̂)

END

Pseudocode 5.4: IntersectMeet-simple

the function is as follows:

• The outer loop iterates over the members of the mapping M .

• For each mapped-to set B the inner loop iterates over each B′ in an
accumulated output set B̂.

• Given each combination of B and B′, the function simply adds their
intersection to the output set unless the B′ is “new” and B∩B′ would
equal B′.

• Lastly, each B is itself added to the output set at the end of its outer
loop.

5.5. ADDMEETS: GET MEETS FROM MAPPING 113

Let us assume that at the start of the inner loop the set B̂ holds the small-
est meet-semi-lattice which is a superset of that portion of the mapped-to
sets of M so far seen as B in the outer loop. The inner loop adds each
intersection of B with a member of this minimal meet-semi-lattice to B̂.
After this process B̂ must contain the meet between B and each previ-
ously found meet. Therefore B̂ has a meet between B and each subset of
the previously seen B’s.

The function does not add a set to B̂ unless it is the meet for some
subset of the mapped-to sets of M , therefore, after the function adds B

itself to B̂, B̂ is the smallest meet-semi-lattice which is a superset of that
portion of the mapped-to sets of M so far seen as B, including the current
B in the outer loop.

Therefore, the previously assumed loop invariant holds for the next
iteration of the outer loop.

The set B̂ would typically be implemented as a hash-set for fast member-
inclusion testing.

Complexity

Let the mapping M have |A|members and the mapped to sets in M be no
larger than |B|. The outer loop iterates over |A| sets of items. If R is the set
returned, the inner loop iterates through worst case |R| sets of items.

Each iteration of the inner loop performs an intersection of two sets
of items. If the size of the largest set is |B| then this process has worst
case complexity O(|B|). The result is added to a hash set with complexity
O(|B|) to calculate the hash value for the set of items and O(1) to add to
the hash set assuming no collisions.

Thus a worst case complexity for the algorithm is O(|A||R|(|B|+ (|B|+
1))) or about O(|A||B||R|).

114 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

IntersectMeet-hash

The operation of IntersectMeet-hash is similar to that of IntersectMeet-
simple. The function has two parts: a setup phase and a loop along the
lines of that in IntersectMeet-simple.

The setup phase assigns each B a random integer brandhash and the func-
tion later uses this integer to provide a fast way to test properties about the
intersection between two sets of items.

The looping phase iterates over the sets mapped to in M . For each such
member B the algorithm identifies each previously found meet B′ where
B′ 6⊂ B, B 6⊂ B′, B′ ∩ B 6= {}. The meet B′ ∩ B to the output set. The
key improvement of IntersectMeet-hash over IntersectMeet-simple is the
speedy test for these “interesting” meets and therefore the avoidance of
performing an expensive intersection for the many “uninteresting” mem-
bers of R. In particular, two methods should improve this algorithm’s
relative efficiency:

• The random integers assigned to each item may be used to very
quickly identify if a particular pair of sets of B’s have a meet of inter-
est.

• A hash set efficiently prevents any given meet from being identified
twice.

IntersectMeet-hash is presented in pseudocode 5.5. The operation of the
function is as follows:

• The initial setup phase of the algorithm sets up brandhash for each B as
a large random integer

In particular, brandhash must to be large enough that for any two sets
B1 and B2 expected in the output, in all but pathological cases:

∑
b∈B1

brandhash =∑
b∈B2

brandhash ⇔ B1 = B2.

The sum of these random hashes over the items making the intersec-
tion of two sets of items B and B′ will be zero if they are disjoint and

5.5. ADDMEETS: GET MEETS FROM MAPPING 115

FUNCTION IntersectMeet-hash(M)

// M is a mapping from A’s to sets of B’s

Set of sets of B’s B̂ = all mapped-to sets in M

FOR EACH b in any member of B̂

SET FIELD brandhash =large pseudo-random number
Set of sets of B’s R = {}
FOR EACH B ∈ B̂

FOR EACH B′ ∈ R

SET FIELD B′h = 0

FOR EACH b ∈ B

FOR EACH B′ ∈ R with b as a member

B′h = B′h + brandhash

Hash set of sets of items Hm = {}
FOR EACH B′ ∈ R

IF B′h 6= 0 ∧B′h 6=
∑

b∈B brandhash

IF no B′′ ∈ Hm has B′′h = B′h
IF no B′′ ∈ R has

∑
b∈B′′ brandhash = B′h

Hm = Hm ∪ {B′}
FOR EACH B′ ∈ Hm

R = R ∪ {B ∩B′}
R = R ∪ {B}

RETURN(R)

END

Pseudocode 5.5: IntersectMeet-hash

116 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

it must be that B ⊆ B′ or B′ ⊆ B if this sum is equal to the equiv-
alent sum over the items of B or B′ respectively. In addition, if the
sums for two meets are found to be the same, we may assume that
the meets themselves are the same.

Each of these cases indicates that the meet is “uninteresting” and the
lack of these conditions indicates it is “interesting”.

• The next phase of the algorithm iterates over each mapped-to set B

in M , with the aim to add B to a set R, as well as the meet of B with
each previous member of R. In this way IntersectMeet-hash works
similarly to IntersectMeet-simple.

• While IntersectMeet-simple found each meet explicitly, IntersectMeet-
hash does this in several steps:

– For each previously found meet B′, the hash for the meet of B

and B′ is found as the sum of brandhash for each item b in B ∩B′.

– The function adds to the hash set Hm each B′ which has a meet
indicating that: B and B′ are non-disjoint, neither B nor B′ is a
subset of the other and the meet would form an as yet uniden-
tified meet.

Since two sets of items B′, B′′ which have the same hash, that is
B′h = B′′h, will have the same meet with B therefore the hash set
stores only one set of B’s for each distinct B′h.

• Iterating through the set Hm, the actual meets are found and stored
in R.

Finally, the function adds B itself to R.

Complexity

Let the mapping M have |A|members and a limit of |B| on mapped-to set
size. Also let the output set have |R|members.

5.5. ADDMEETS: GET MEETS FROM MAPPING 117

The initial setup phase, assigning a random number to each B has com-
plexity O(|A||B|).

The main part of the algorithm is performed for each mapped-to set B

from mapping M , a total of |A| times.

Each B′ ∈ R has constant time initialization performed with complex-
ity O(|R|). The next loop, finding the B′h for each of these sets may be
implemented with complexity O(|R||B|).

Assuming constant-time additions to a hash set and tests for inclusion
of a hash in a hash set, the next loop over the members of R proceeds with
worst case complexity O(|R|).

The final inner loop proceeds in O(|R||B|) time since Hm may have at
most |R| members and identifying the meet B ∩ B′ has worst case com-
plexity O(|B|). No given meet may occur in Hm in more than on iteration
of the outer loop through B since each of these meets is new.

Summing up the algorithm has a total worst-case complexity of O(|A||B|+
|A|(|R|+ |R||B|+ |R|) + |B||R|) = O(|A||B|+ |A||B||R|+ |B||R|)

Comparing to the complexity of IntersectMeet-simple, we find the same
worst case complexity of |A||B||R|. Despite this, the algorithm is expected
to be more efficient in practice.

5.5.2 PromoteIncrement

The algorithms in this subsection find maximal program subsets and max-
imal schemata by exploiting a property of what this thesis means by “max-
imal”: any proper superset a of a maximal schema am is represented by a
maximal schema which is itself a proper superset of am. Similarly, any
proper superset a of a maximal program subset am is represented by a
maximal program subset which is itself a proper superset of am. By using
this property, combined with a method for “promoting” the schema/program
subset a to its maximal representative, the algorithms of this section may
efficiently find the desired set of maximal program subsets/schemata.

118 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

In terms of the meet-semi-lattice, the meet of a collection of sets is the
largest set which has each set in the collection as a superset, that is the
intersection of the sets. Any set which is a one-step addition to a given
meet is be represented by a proper superset of the original meet.

One considerable advantage of these algorithms over those described
previously in section 5.5.1 is that, with little extra complexity, they may ar-
range the output sets of maximal program subsets and maximal schemata
into an anti-transitive directed acyclic graph (DAG) with edges indicat-
ing a general/specific relation. The new method requires the edges of this
DAG in order to count the number of program subsets or schemata rep-
resented by each maximal program subset or maximal schema and this
count in turn allows more powerful analysis. By contrast, the algorithms
of section 5.5.1 require an additional expensive algorithm to identify the
edges in this DAG.

This section describes two algorithms equivalent in input and output:

• A simple algorithm, PromoteIncrement-simple.

• A more complicated algorithm, PromoteIncrement-hash with improved
complexity.

PromoteIncrement-simple

PromoteIncrement-simple is the simpler of the two algorithms utilizing
this promote/increment approach to finding the meet-semi-lattice of max-
imal schemata and maximal program subsets. The main function PromoteIncrement-
simple in turn calls a recursive function recurse on singleton set {a} for
each key a found in the given map M . recurse then promotes this single-
ton set to its representing maximal set, Am, which is stored in the output
set R. In the following increment step the recurse function recurses on
each possible one-step addition to the input singleton set A. Each one-
step-addition set is represented by a proper superset of the Am from the
calling instance of recurse.

5.5. ADDMEETS: GET MEETS FROM MAPPING 119

Thus recurse promotes the one-step-addition set and the resultant rep-
resenting set is added to R. recurse then recurses on each minimally larger
set.

PromoteIncrement-simple is presented in pseudocode 5.6. The opera-

FUNCTION PromoteIncrement-simple(M)

// M is a mapping from A’s to sets of B’s

Set of pairs R = {}
FOR EACH < a→ B >∈M

recurse({a})
RETURN(R)

END

FUNCTION recurse(A)

// A is a set of sets of A’s

initialize set Bm

FOR EACH a in A

Bm = Bm ∩ {b : b ∈ B, < a→ B >∈M}
FOR EACH b in Bm

Am = Am ∩ {a :< a→ B′ >∈M,B′ ⊇ Bm}
IF < Am, Bm >6∈ R

R = R ∪ < Am, Bm >

FOR EACH < a→ B >∈M where a 6∈ Am

recurse({a} ∪Am)

END

Pseudocode 5.6: PromoteIncrement-simple

tion of the PromoteIncrement-simple is as follows:

• The main function, PromoteIncrement-simple, presents the recursive
procedure with each singleton set of A’s.

120 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

• The recursive function, recurse takes a set of A’s, A, which is not
necessarily maximal.

• recurse then finds the maximal set of B’s for A as Bm.

• A similar operation finds the maximal set ofA’s for Bm. This process
produces Am which must represent A. The process also, usefully,
finds it’s mate Bm. If Am is a maximal schema, Bm will be the largest
program subset matching all schema components of Am. If Am is a
maximal program subset, Bm will be the largest set of schema com-
ponents occurring in all programs of Am.

• The recurse function recurses on one-step-additions to the maximal
set Am. It also restricts unnecessary repeated calls by testing whether
a given Am has previously been found and only recursing if it hasn’t.

Each of the initial singleton sets may or may not be maximal, but any set
of A’s that is maximal must be a superset of one or more of the singleton
sets. Any maximal set of A’s must either represent one of these single-
ton sets or must be a proper superset of a maximal set which represents
one of these singleton sets. Thus given that the function recurse finds all
maximal sets of A’s which are supersets of the input set, the outer call to
PromoteIncrement-simple will find all desired maximal sets of A’s.

Complexity

Let the mapping M have |A|members and a limit of |B| on mapped-to set
size. Also let the output set have |R|members.

The IF statement in recurse ensures that the function doesn’t recurse
unless Am is new to the output set, thus the statement after the IF is called
exactly |R| times. Therefore, recurse is called no more than |R||A| times.

Each call to recurse entails finding Bm (O(|A||B|)) then finding Am (also
O(|A||B|)). Thus the initial part of recurse, called |R||A| times, contributes
O(|R||A|2|B|) to the complexity.

5.5. ADDMEETS: GET MEETS FROM MAPPING 121

The statements after the if are called |R| times with O(|A|) each time
and thus do not contribute to the overall worst case complexity.

Thus the complexity of the call to PromoteIncrement-simple is O(|R||A|2|B|)
where there are |R|maximal pairs found, there are |A| A’s in M and there
are |B| B’s mapped to in M .

Let the mapping M have |A|members and a limit of |B| on mapped-to
set size. Also let the output set have |R|members.

The IF statement in recurse ensures that the function doesn’t recurse
unless Am is new to the output set, thus the statement after the IF is called
exactly |R| times. Therefore, recurse is called no more than |R||A| times.

Each call to recurse entails finding Bm (O(|A||B|)) then finding Am (also
O(|A||B|)). Thus the initial part of recurse, called |R||A| times, contributes
O(|R||A|2|B|) to the complexity.

The statements after the if are called |R| times with O(|A|) each time
and thus do not contribute to the overall worst case complexity.

Thus this complexity of the call to PromoteIncrement-simple is O(|R||A|2|B|)
where there are |R|maximal pairs found, there are |A| A’s in M and there
are |B| B’s mapped to in M .

PromoteIncrement-hash

PromoteIncrement-hash is similar in operation to the previously described
algorithm, also utilizing a promote/increment approach to finding the de-
sired maximal schemata and maximal program subsets. But the increment
step has been enhanced to improve the algorithm’s complexity.

As with PromoteIncrement-simple, the main function PromoteIncrement-
hash in turn calls a recursive function recurse on a number of base sets,
however, in contrast to the singleton sets used by PromoteIncrement-simple
PromoteIncrement-hash uses minimally maximal sets ofA′s, that is the small-
est maximal proper supersets of the input set, which are found using a
function findMinimals.

recurse is only ever called with a maximal set as input. It then finds

122 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

the respective maximal set of B’s as Bm, thus completing the maximal pair
< Am, Bm >. The returned set contains each such pair found. In the case
where the recurse function hasn’t yet been called with this Am, the func-
tion recurses on each minimally maximal proper superset of Am. These
supersets are found using the function findMinimals.

PromoteIncrement-hash is presented in pseudocode 5.7. The opera-
tion of PromoteIncrement-hash is as follows:

• The function is passed a mapping from A’s to sets of B’s, where ei-
therA’s are programs and B’s are schema components or vice-versa.

• As for the previously described IntersectMeet-hash function, each B
passed to the function via the mapping M is annotated with a “large
random integer”. This integer should be large enough that the sum
of the annotations for two typical sets of B’s will be equal only if the
sets are equal.

• The findMinimals function, presented in pseudocode 5.8, is used to
find the very smallest maximal pairs and the recurse function is used
to add these to the output DAG R and find all more general maximal
pairs if the A’s are program, or all more specific maximal pairs if the
A’s are schema components.

• The recurse function takes a maximal set of B’s as Bm and a pair rpar

as the parent if any of the maximal pair containing Bm.

• The function first checks whether the pair containing Bm exists in the
DAG. If it has, the function simply adds an edge to rpar from this pair
and exits.

• Otherwise, the maximal pair is new.

– The function finds the respective maximal set of A’s, Am, for
Bm.

5.5. ADDMEETS: GET MEETS FROM MAPPING 123

FUNCTION PromoteIncrement-hash(M)

// M is a mapping from A’s to sets of B’s

A0 = {a :< a→ B >∈M}
B0 = {b ∈ B :< a→ B >∈M}
FOR EACH b ∈ B0

SET FIELD brandhash = large random integer

Set of pairs R = {}
FOR EACH Bm ∈ findMinimals({}, B0)

recurse(Bm,null)

RETURN(R)

END

FUNCTION recurse(Bm, rpar)

// Bm is a set of B’s

// rpar is a pair with a set of A’s and a set of B’s

IF for some A′, < A′, Bm >∈ R

IF rpar is non-null, put edge from < A′, Bm > to rpar in DAG

ELSE

Am = ∩b∈Bm{a :< a→ B′ >∈M,B′ ⊇ Bm}
R = R ∪ < Am, Bm >

IF rpar is non-null, put edge from < Am, Bm > to rpar in DAG

FOR EACH B′m ∈findMinimals(Am, Bm)

recurse(B′m, < Am, Bm >).

END

Pseudocode 5.7: PromoteIncrement-hash

124 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

– It then adds an edge from the new pair to rpar if any.

– It then recurses on each maximal subset of Bm. These sets are
found using the findMinimals function.

Each such set is maximal, is a subset of Bm. Each set is also
minimally smaller, that is for each set B′m of B’s found by getMin-
imals, there is no other maximal set of B’s which is both a subset
of Bm and a superset of B′m.

The function findMinimals, used by PromoteIncrement-hash, is presented
in pseudocode 5.8. The operation of the function is as follows:

FUNCTION findMinimals(A, B)

// A is a set of A’s

// B is a set of B’s

FOR EACH a ∈ A0\A
SET FIELD ahash =

∑
b∈B∩B′:<a→B′>∈M brandhash

MAKE Â ∈ {{A}} as grouping of members of a ∈ A0\A by ahash value

Set of sets of B’s B̂ = {}
FOR EACH A′ ∈ Â

CHOOSE any a′ ∈ A′

B̂ = B̂ ∪ {B ∩B′ :< a′ → B′ >∈M}
Remove each member Bm from B̂ where ∃Bn ∈ B̂ : Bm ⊂ Bn

RETURN B̂

END

Pseudocode 5.8: findMinimals

• The function groups each a ∈ A0\Am by the subset of input set B to
which it maps in M .

As A is maximal and B has all B’s which are mapped to by all ele-
ments of A, there could be no such a which maps to all of B. Instead,

5.5. ADDMEETS: GET MEETS FROM MAPPING 125

the set for any given a is the maximal set of B’s for A ∪ {a}.

• Â groups possible a’s into those with different matched subsets of B.

• The construction of B̂ then explicitly finds each such subset of B.

• A final step removes members of B̂ which are subsets of some other
member of B̂.

Complexity

The main body of the recurse function executes exactly once for each max-
imal pair for a total of R times. It finds Am from Bm at a cost of O(|A0||B0|).
It then calls findMinimals.

The findMinimals function gets the hash values for the members of
A0\A at worst case complexity O(|A0||B0|). Done by a hash set, grouping
may be done in O(|A0|). Finding the maximal set of B’s for each mem-
ber of Â takes O(|B0|) and thus constructing B̂ has worst case complexity
O(|A0||B0|). The step removing subsets from B̂ may be done in O(|A0||B0|)
time by identifying the largest containing set in B̂ for each member of
A0\A.

Thus the call to recurse has worst case complexity O(|A0||B0|) and the
call to PromoteIncrement-hash has worst case complexity O(|R||A0||B0|)
where there are |R| maximal pairs, there are |A0| A’s in M and there are
|B0| distinct B’s in the mapped-to sets of M . The main body of the recurse
function executes exactly once for each maximal pair for a total of R times.
It finds Am from Bm at a cost of O(|A0||B0|). It then calls findMinimals.

The findMinimals function gets the hash values for the members of
A0\A at worst case complexity O(|A0||B0|). Done by a hash set, grouping
may be done in O(|A0|). Finding the maximal set of B’s for each mem-
ber of Â takes O(|B0|) and thus constructing B̂ has worst case complexity
O(|A0||B0|). The step removing subsets from B̂ may be done in O(|A0||B0|)

126 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

time by identifying the largest containing set in B̂ for each member of
A0\A.

Thus the call to recurse has worst case complexity O(|A0||B0|) and the
call to PromoteIncrement-hash has worst case complexity O(|R||A0||B0|)
where there are |R| maximal pairs, there are |A0| A’s in M and there are
|B0| distinct B’s in the mapped-to sets of M .

5.6 GetEdges: edges of the DAG

This section presents an algorithm to find the edges of a graph based on
the subset relation which are to be used alongside the variants of Ad-
dMeets which return a set of maximal pairs rather than the required DAG
of maximal pairs. Specifically, the nodes of the graph are input as a set
of maximal pairs and the output graph is an anti-transitive DAG where
there is a path from each maximal pair < s, P > to each other, more gen-
eral, maximal pair < s′, P ′ > where P ⊂ P ′ and therefore s ⊃ s′.

The algorithm assigns the edges from each maximal pair < s, P > in
turn, descending on program set size. An inner loop identifies each pro-
gram subset which is a superset of P and adds it as an outgoing edge from
< s, P > if none of its subsets is also a superset of P .

Since the outer loop moves from large program set size to small, the
edges from each maximal pair that has a superset of P as its program sub-
set must have been found by the time P is visited. The inner loop moves
from small program set size to large so that a basic marking scheme in-
hibits the addition of an edge from a node a to a node a if the edge from a

to a subset of b exists.
The function is presented in psuedocode 5.9. The algorithm uses

a count P ′share to test whether a given set P ′ is a superset of P , result-
ing in slightly improved efficiency over the use of a more standard sub-
set/superset test.

5.6. GETEDGES: EDGES OF THE DAG 127

FUNCTION GetEdges(R)

// R is a set of maximal pairs

FOR EACH < s, P >∈ R from large P to small P

FOR EACH < s′, P ′ >∈ R : |P ′| > |P |
SET FIELD P ′share = 0

SET FIELD P ′minimal =true

FOR EACH p ∈ P

FOR EACH < s′, P ′ >∈ R : p ∈ P ′ ∧ |P ′| > |P |
P ′share = P ′share + 1

FOR EACH < s′, P ′ >∈ R : |P ′| > |P | from small P ′ to large P ′

IF P ′share = |P |
IF P ′minimal =true

ADD EDGE from < s, P > to < s′, P ′ >

FOR EACH < s′′, P ′′ > with an incoming edge from < s′, P ′ >

P ′′minimal =false

RETURN R

END

Pseudocode 5.9: GetEdges

128 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

5.7 GetSchemaTree: tree representation of a schema

This section gives another core algorithm of the new method. The Ad-
dMeets algorithm produces as output a DAG of maximal pairs, each with
a set of programs and a schema represented as a set of schema compo-
nents. The algorithm of this section obtains a tree representation for the
schema of a maximal pair, given its set of schema components and its form
of schema.

The input to the original call to the GetSchemaTree function is a set of
schema components C each member of which was originally produced by
the GetSchemaComponents algorithm of the previous subsection. Each
schema component is in fact a path of schema nodes. The set of schema
components in C is produced by the AddMeets function as the set rep-
resentation of a schema and combine in the function of this subsection
to form the tree representation of the schema. It must be noted that not
all subsets of the complete set of schema components for a given form
and a given population makes up a valid schema. For example, if two
schema components from C0 have incompatible values, for instance “+”
for one and “-” for the other, at their root then they may not be combined
into a schema tree. However in no conceivable program would two such
schema components exist and therefore AddMeets would not produce any
one maximal schema that contains both.

The function given in pseudocode 5.10 takes two arguments: C and a
schema node cpar. C is assumed to form a valid schema. Given a parent
schema node in spar, the function finds all most specific schema compo-
nents which extend this parent. Initially the base level schema compo-
nents are used. It then recurses on each found schema component and the
final tree is the smallest tree of schema nodes which is more specific than
each passed schema component when viewed as a path of schema nodes.

The operation of the algorithm is as follows:

• The set Cch is formed as all schema components ending in a potential

5.7. GETSCHEMATREE: TREE REPRESENTATION OF A SCHEMA 129

FUNCTION GetSchemaTree(C, spar)

// C is a set of schema components. Each is a schema tree rooted path

// spar is a schema tree node

Cch = members of C with spar as the penultimate schema node

or singleton paths from C if spar =null

C ′ch = most specific members of Cch

Sch = final nodes in paths from C ′ch
(that is each path no more specific path in S′ch)

FOR EACH child sch in Sch

GetSchemaTree(C, sch)

IF spar 6=null
spar.children = Sch and is sorted and filtered based on spar.fdisjunct.fc

(e.g. if spar.fdisjunct.fc =cind, order by matching subtree child index)

ELSE RETURN the only member of Sch

END

Pseudocode 5.10: GetSchemaTree

130 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

child of spar. If this is the first call to the function, then Cch is formed
as the set of root level schema components.

• The set C ′ch is formed from Cch by removing schema components that
are more general than other schema components. The child index of
position of each node in each path of schema nodes matters in testing
whether it is more general than or more specific than another schema
node. During this step more-general schema components like don’t-
care nodes can be removed if there is a specific node like a “+” node
at the same position.

• The set Sch is formed as the end nodes of paths in C ′ch and thus forms
the children of spar ,although some may be discarded in a later step.

• The function recurses, thus finding for each child sch the set of chil-
dren sch.children. The children are in order as required by the child-
match function sch.fdisjunct.fc

• The children in Sch are either returned or they are sorted, filtered and
stored as the children of spar. On the outermost call to the function
for a valid schema this set will be a singleton containing the schema
tree. The sorting and filtering process depends on the child-match
function for the form disjunct which made the schema component
of spar, which is found as spar.fdisjunct.fc. Most child-match func-
tions in conjunctive schemata impose some order on the children of
a schema node. For example, it may impose the same order as the
children of matched program nodes. Some may impose filters. For
example, some child-match functions may disregard children after
the first empty child index. This step allows the child-match func-
tion to impose these kinds of specific behaviour.

Thus the function gives an efficient way to form the tree representation of
a schema from the set representation of the schema that was produced by
the AddMeets function.

5.8. COUNTS OF SUBSCHEMATA AND SUBSETS 131

5.8 Counts of subschemata and subsets

This section presents two algorithms, one to count subsets and another to
count subschemata.

The first function, SubsetCountBySize, provides a histogram by sub-
set size of the number of subsets of a given program subset. This value,
the number of subsets of a given set P that are of size i, is readily avail-
able mathematically as

(|P |
i

)
and SubsetCountBySize is accordingly sim-

ple. The function is presented in psuedocode 5.11. The second more

FUNCTION SubsetCountBySize(P)

// P is a set of programs

Array A

FOR i : 1 ≤ i ≤ |P |
A[i] =

(|P |
i

)
RETURN A

END

Pseudocode 5.11: SubsetCountBySize

complex algorithm, SubschemaCountBySize, provides a histogram, by
schema size, of the number of valid subschemata of a given schema. To
do this the function uses the previously defined GetSchemaTree to obtain
a tree representation of the given schema and then annotates each subtree
with the histogram of variations possible of that particular subtree. Thus
histogram obtained for the root is our desired output.

The histogram of variations for any subtree may be found using the
following:

• The histograms for the children of the subtree-root schema node n.

• The form disjunct nf used by the subtree-root schema node n.

132 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

• The alternate disjuncts which are more general than nf in the dis-
junctive node pattern from the form containing nf .

• The number of potentially matching node values more general than
s, using the disjuncts’ label-match functions.

• The type of child-match behaviour exhibited by the disjuncts.

Since this information does not depend on values of nodes in the schema
other than in the subtree at n, dynamic programming may be used, mov-
ing from the leaves of the schema tree to the roots, annotating each node
with a histogram, resulting in the desired histogram for the root.

The function is presented in psuedocode 5.12. The operation of the
function is as follows:

• The algorithm consists of a dynamic programming main function
SubschemaCountBySize which obtains the histogram for each sub-
tree by using the countForSubtree subroutine.

• countForSubtree obtains the histogram of subschemata for a given
tree or subtree t assuming that the histograms for child subtrees have
been found and the exact form disjunct which produced the schema
node at the root s of t is available as s.fdisjunct.

• The function loops over all possible more general schema nodes, in-
cluding combinations of:

– The match-tree form disjunct f .

– The node size z.

– The labels allowed by the disjunct’s label-match function.

– The children allowed by the disjunct’s child-match function.

• The function adds the count A′, taking into account all these factors,
to an overall count in A. Each count is a histogram with an integer
for each possible order of schema.

5.8. COUNTS OF SUBSCHEMATA AND SUBSETS 133

FUNCTION SubschemaCountBySize(t)

// t is a schema tree

FOR EACH subtree t′ of t from leaves to root

t′hist =countForSubtree(t′)

RETURN thist

END

FUNCTION countForSubtree(Tree t)

Array A

s = troot

FOR EACH disjunct f in the disjunctive node pattern containing s.fdisjunct

FOR EACH size z of schema node

Ns = number of nodes of size z allowed by label-match function f.fn . . .

which are the same as or more general than s

IF Ns > 0

FOR EACH combination T of child subtrees of s which . . .

. . . would be allowed by child-match function f.fc

Array A′

A′[z] = Sn

FOR EACH t′ ∈ T

FOR EACH k: A′[k] =
∑

i A
′[i]t′hist[k − i]

A = A + A′

RETURN A

END

Pseudocode 5.12: SubschemaCountBySize

134 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

Thus the function gives an efficient way to count the subschemata of a
given schema.

5.9 De-rooted conjunctive forms

It is important to note that the algorithms presented so far work exclu-
sively with conjunctive match-tree forms of schema as defined previously
in section 4.6. Non-conjunctive forms of schema prove relatively difficult
to work with for a number of reasons:

• Any set of schema of a conjunctive form has a single meet schema
which is the most specific schema of the form that is more general
than each member of the set. Sets of schemata of a non-conjunctive
form may have more than one most specific schema that is more gen-
eral than each member of the set.

Each conjunctive form of schema has a representation for schemata
where each schema is a set of schema components and, using this
representation, the meet schema for a given set of schemata is the
intersection of the members of the set. By contrast this is seldom the
case for non-conjunctive forms of schema. There seems no similarly
efficient way to find the meet schema or schemata of two or more
schemata for non-conjunctive forms.

• Where there is an efficient algorithm to find the string representation
of a schema of a conjunctive form, no efficient algorithm was found
to perform this task in general over non-conjunctive forms.

• Where there is an efficient algorithm to count the number of schemata
represented by a given maximal schema of a conjunctive form, no
efficient algorithm was found to perform this task in general over
non-conjunctive forms.

5.9. DE-ROOTED CONJUNCTIVE FORMS 135

Significant effort went into constructing a method to analyze non-conjunctive
forms of schema, resulting in a system able to find maximal schemata from
any match-tree form. But the method proved too inefficient and complex
to present here.

Amongst the classes of non-conjunctive forms of schema there is a rel-
atively easy special case: the de-rooted conjunctive forms defined in the
previous chapter. Finding the maximal schemata of a de-rooted conjunc-
tive form of schema f on population P0 may be treated as similar to finding
the sets of maximal schemata of the matching conjunctive form for f run
on the subtrees of P0. The GetAnnotatedDAG-de-rootedalgorithm, given in
pseudocode 5.13, performs this process and generalizes the GetAnnotatedDAG-
rooted algorithm to de-rooted conjunctive forms of schema. GetAnnotatedDAG-
de-rooted is given a de-rooted conjunctive form of schema as fnr and a set
of programs as P0. It finds the representative pairs with respect to a given
population P0 for de-rooted conjunctive forms of schema.

The function operates as follows:

• It uses GetAnnotatedDAG-rooted to find the maximal pairs Rr for
the relevant rooted-conjunctive form of schema fr with respect to
the subtrees Q0 of the programs in P0.

Each of the desired maximal schemata with respect to form fnr and
set of programs P0 may be found in Rr.

• Each maximal pair for the conjunctive form will have a schema sr

and a set of subtrees Qr of programs in P0. For each such sr the
algorithm finds as Pr the set of programs that match sr. This is found
as the subset of P0 with some subtree in Qr.

Pr will be returned as a representative program subset.

• GetAnnotatedDAG-non-rooted then uses the function AddMeets-DAG
described in subsection 5.5 to both group the schemata from the max-
imal pairs in Rr into those with the same Pr and to construct a meet-
semi-lattice from the program sets. This results in an anti-transitive

136 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

FUNCTION GetAnnotatedDAG-de-rooted(fnr, P0)

// fnr is a de-rooted match-tree form of schema

// P0 is a set of programs

LET fr be the rooted conjunctive form for fnr

n = desc node at root node of root branch of fnr

Q0 = subtrees of program in P0 at depth specified by n

Rr =GetAnnotatedDAG-rooted(fr, Q0)

M=Map: schema→ set of programs.

FOR EACH < sr, Qr >∈ Rr

Pr = the subset of P0 with each program having a subtree in Qr

ADD MAPPING sr → Pr to M

R =AddMeets-DAG(M , selected variant of AddMeets)

FOR EACH < S,P >∈ R from small P to large P

Pcfull =SubsetCount(P)

Pcrep = Pcfull −
∑

<s′,P ′>∈R,P ′⊂P P ′crep

FOR EACH < S,P >∈ R from large P to small P

Screp =
∑

s∈S:(@<S′,P ′>∈R:P ′⊂P,s∈S′) screp

REMOVE each s from S where ∃s′ ∈ S, s′ more specific than s

RETURN R

END

Pseudocode 5.13: GetAnnotatedDAG-de-rooted

5.9. DE-ROOTED CONJUNCTIVE FORMS 137

DAG of pairs, each with a set of schemata and a program subset. The
meet nodes added may be seen to represent sets of schemata but no
single schema on its own.

Though the call to AddMeets-DAG is expensive, it is essential since
the later steps in this algorithm require the graph R be a meet-semi-
lattice.

• The function finds the program subset counts in the same way as
GetAnnotatedDAG-rooted.

• The function finds the counts of schemata represented by a set of
schemata S as the sum of the counts of schemata represented by the
individual schemata in S.

• Members of S are then removed if they are more general than some
other member of S and therefore are not maximal since they are more
general than another schema that occurs in the same programs.

• In a final step, the most specific schemata from pairs with supersets
of P as their program subsets are added to S. This ensures that the
set S has all of the most specific schemata occurring in all its pro-
grams.

The inclusion of this step in the algorithm depends on whether the
desired schemata are really the sets of schemata, for example “sets
of subtrees”, in which case it should be included or if they are the
individuals in the sets of schemata, for example “subtrees”, in which
case it should be omitted.

• Thus this function provides a way to find the representative pairs
with respect to a population of programs and a de-rooted conjunc-
tive form of schema.

138 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

5.10 Chapter summary

This chapter has provided several algorithms involved in the new method
presented by this thesis. Each adds some component to the overall sys-
tem of enumerating the DAG of representative pairs given a population
and form of schema. This DAG contains all the representative program
subsets, representative sets of schemata, maximal program subsets and
maximal schemata.

The algorithms fall into several broad classes:

• Overall algorithms, presented in sections 5.2 and 5.9, which invoke
and coordinate the lower-level algorithms. One algorithm works
with conjunctive forms of schema and another works with de-rooted
conjunctive forms of schema. The representation of forms of schema
is as match-tree forms.

• Algorithms preparing a base mapping for which the meet semi-lattice
closure is the set of maximal program subsets or maximal schemata.

• Algorithms finding the meet semi-lattice closure of a given base map-
ping which are called the AddMeets variants.

• An algorithm finding the edges of an anti-transitive DAG based on
the subset relation, given this DAG’s nodes as sets.

• An algorithm finding the schema components of a given form, oc-
curring in a given population.

• An algorithm finding the tree representation of a schema, given its
schema components.

• Algorithms counting subsets and subschemata.

Together, these algorithms produce a DAG of representative pairs, which
may be used by the algorithms given previously in chapter 4. Of these, the

5.10. CHAPTER SUMMARY 139

core algorithms are the AddMeets variants. Each variant does the same
job and produces the same maximal pairs, but the different variants are
expected to have different complexity in practice. Part of the next chapter,
the first to show the new method in use, will compare the many options
for this part of the new method. The following two chapters will present
the results of numerous experiments using the new method.

Chapter 7 will demonstrate the efficacy of the new method using sam-
ple analyses. Beforehand, the following chapter will characterize how the
new method works in practice, over many values for several parameters
such as the population size, program size and AddMeets variant used.

140 CHAPTER 5. ALGORITHMS OF THE NEW METHOD

Chapter 6

Characterizing experiments

6.1 Chapter introduction

Previous chapters have presented a powerful new method for analysis of
GP schemata. Chapter 3 defined the new match-tree form of schema lan-
guage and later chapters defined a method to analyze match-tree schemata
shared between the programs of any given population.

This chapter aims to characterize the new method by assessing the time
requirements, the space requirements and the size of the output set, over
a range of parameter values like population size, program size and gener-
ation number.

6.2 Experimental setup

This chapter provides summaries of the results of many runs of the new
method’s algorithms, the “schema engine”, using as input populations
produced during evolution by a GP system, the “GP engine”.

To provide consistency between the different experiments, whenever
a parameter like program size was altered, the remaining parameters as-
sumed default settings. Table 6.1 on page 143 lists default GP engine set-

141

142 CHAPTER 6. CHARACTERIZING EXPERIMENTS

tings. Table 6.2 on page 145 lists default schema engine settings.

Each set of parameters was run over 50 randomized trials, achieved by
supplying an otherwise identical GP setup with different initial random
number generator seeds. All results presented are either the distribution
over all the trials, quartiles over the trials or the median of the trials if
only one value is given. The mean value is not given in the results pre-
sented here due to the existence for all parameter settings of outliers of
unknown value, typically at least one trial of the 50 would exceed the
“early-stopping” limits on the number of representative pairs or the time
allowed by the schema engine. The existence of outliers still allows for
the calculation of the distribution, median and quartiles of the trials but
disallows the accurate calculation of the mean and standard deviation of
the trials.

Some figures have ”run distribution” as the x axis label, which means
that the results of many runs were sorted, and the figure shows this as-
cending line of results from multiple runs.

6.2.1 GP engine settings

The GP engine served to provide the schema engine with the sorts of pop-
ulations that a typical GP system might produce as the target of analy-
sis. Table 6.1 tabulates the default settings used. The GP system used,
VGP4 which was written by and freely available from the author, uses
standard subtree crossover and mutation with the exception that crossover
produces one offspring rather than two. Which of the two children typi-
cally produced by crossover is randomly chosen. The two tasks include
the often used “Wisconsin Breast Cancer Database” dataset (“BCW”) and
a symbolic regression task “Sphere” chosen for its suitability for produc-
ing building blocks.

The “BCW” task is commonly used for testing genetic programming
systems as one of several “standard” datasets. Its use here is to show the

6.2. EXPERIMENTAL SETUP 143

Table 6.1: Common GP engine settings

Parameter Default value

GP system “Victoria Genetic Programming” (VGP4)

Task (fitness function) (BCW) Wisconsin Breast Cancer Database

– (January 8, 1991) (9 features, 699 patterns)

(Sphere) symbolic regression to x2 + y2 + z2

– (3 features, 2000 patterns)

Selection Tournament with size 4

Mutation Standard subtree, rate = 30%

Crossover Standard subtree, rate = 60%

Reproduction rate remaining 10%

Population size 101

Minimum program size 5 nodes

Maximum program size 60 nodes

Function set addition, subtraction, multiplication, division, if

Function arity (except if) 2.5. Half of the nodes have arity 2, and half arity 3

Terminal set Numeric and feature

Numeric terminal block size 0.1

performance of the system on real-world data. Several other commonly
used datasets could equally have been used.

The “Sphere” task involves producing the function close in phenotype
to F12 +F22 +F32 for three features and there are several partial solutions
of increasing fitness, especially including combinations of F12, F22, and
F32. The fitness function for the Sphere task randomizes the actual points
in feature space each generation so that no over-fitting could occur.

The GP engine used tournament selection with a tournament size of
four. Mutation rate and crossover rate were 30% and 60% respectively.
Elitism copied the top 10% of programs from any given generation to the

144 CHAPTER 6. CHARACTERIZING EXPERIMENTS

next.

The experiments use the unusual population size of 101 programs,
rather than 100. Other experiments also use population sizes like 51 and
501. The reasoning behind the extra 1 is to allow us to look at, for example
programs of rank 1, 26, 51, 76 and 101, while still including the best and
worst programs. For similar reasons each run recorded 101 generations
including the random initial as generation 0 then 1-100.

Since the arity of programs’ function nodes was a parameter changed
between runs and runs used an arities of up to four, programs were node-
limited rather than depth-limited; programs were subject to a minimum num-
ber of nodes of five and a default maximum number of nodes of 60 and
up to 80 in some experiments. Using a high arity even a small depth limit
could produce very large programs. The problem is avoided by using a
node-limiting setting.

The numeric terminal block size refers to the “quantum” of the random
number generator used to determine the value of an allocated numeric
terminal. For example, if the block size is 0.1 then the values 0.1 and 1.6
could be allocated, but not 0.35 or 1.601, although all these values would
be possible with a setting of 0.001.

The division function was protected with sufficiently small divisors
producing a quotient of zero. Along with addition and multiplication,
both the subtraction and division functions allowed more than two argu-
ments and in all these cases the operation associates from the left to right.
As an example the program (− 1 2 3 4) in Lisp syntax computes the ex-
pression (((1− 2)− 3)− 4).

The “if” function takes three arguments and returns the second argu-
ment when the first argument is negative and the third argument other-
wise. Experiments include this function in order to allow discontinuity in
the output of programs using it.

6.2. EXPERIMENTAL SETUP 145

6.2.2 Schema engine settings

While the GP engine aims to produce typical GP populations, the Schema
engine implements the new method presented in this thesis. The schema
engine was run on populations provided by the GP engine without ac-
tually influencing the production of those populations by the GP engine
in any way. The schema engine has a number of parameters and default
settings. Table 6.2 tabulates these parameters.

Table 6.2: Common schema engine settings

Parameter Default value

Schema engine PhDVgp2 (built for this thesis)

Label-match functions Don’t care with no prefix (written #)

Exact string match (appended !, e.g. “F1!”)

Child-match functions cind, cindx, cpind, any, desc1

Generation 0, 20 or 40

addMeets algorithm variant ProMP

Forms of schemata Rooted-ordered-fragments

Max. num. representative pairs 200000

The author developed the schema engine used, “PhDVgp2”, specifi-
cally for this thesis. PhDVgp2 is freely available under an open-source
licence. The schema engine allows forms to have two types of label-match
function and five types of child-match function:

• Don’t care label-match function: matches any program node.

• Exact string match label-match function: matches any program node
with the same value as a string other than the trailing exclamation
mark. For example the schema node “:1.0!” would match the pro-
gram node “:1.0” but not “:1.01” or “:1”.

146 CHAPTER 6. CHARACTERIZING EXPERIMENTS

• cind child-match function: schema node s matches any program
node p where p has at least as many children as s and each ithchild of
s matches the ithchild of p.

• cindx child-match function: schema node s matches any program
node p where p has the same number of children as s and each ithchild
of s matches the ithchild of p.

• cpind child-match function: schema node s matches any program
node p where p has at least as many children as s and for each label
v of a child node of s, the ithchild of s that has the label v matches the
ithchild of p that has the label v.

The cpind function gives a medium between the ordered behaviour
of cind and purely unordered behaviour, called partly-ordered behaviour.
Forms using cpind may still be conjunctive, where using purely
unordered child-match function typically leads a form to be non-
conjunctive.

• any child-match function: matches any program node.

• desc1 child-match function: schema node s matches any program
node p where the single child of s matches some descendent of p.
The depth at which this match may occur is within a given range
and some settings may allow p itself to be matched to the child of s.
In this thesis this depth range was set to admit any descendent of p

or p itself.

The desc1 child-match function was only ever used as the root node
of schemata, effectively making a form using it non-rooted. For ex-
ample prepending a desc1 node appropriately in the form repre-
sentation of rooted-ordered-fragments may produce the form repre-
sentation of ordered-fragments.

Many variants of the addMeets algorithm were implemented. Section 6.6
presents a comparison of the variants and other sections use the default

6.3. LINES OF VERIFYING EXPERIMENTS 147

variant of ProMP. Note that all variants would produce the same set of
representative pairs; changing the variant used should affect only the time
taken and the memory used.

For most experiments, a limit of 200,000 representative pairs was in
place. The schema engine stopped runs which exceeded this number and
assigned the data-point as “unknown but large”. A notable exception is
the experiments of section 6.6 where there was no limit of numbers of
representative pairs but rather a time limit of five minutes.

6.3 Lines of verifying experiments

This chapter has a number of experiments characterizing how this the-
sis’ methods work in practice. These experiments test the method in four
ways. The first set of experiments, presented in section 6.4, aim to ver-
ify that the many different variants of the addMeets algorithm agree, that
is, each algorithm to find the DAG of representative pairs given a form
and population finds exactly the same DAG of representative pairs as any
other variant given that form and population.

The second set of experiments, presented in section 6.5, characterize
the new method with default parameters. The parameters varied between
runs included the trial and the generation number. Several measures of
each combination of generation and trial are presented:

• Number of representative pairs.

• Time to find the representative pairs and breakdown of time taken
by each process.

• Memory required by each run of the schema engine.

• Size of result on disk and breakdown by type of object stored.

148 CHAPTER 6. CHARACTERIZING EXPERIMENTS

The third set of experiments, presented in section 6.6, compare the time
taken by the different addMeets-variant algorithms in finding each repre-
sentative pair DAG.

The fourth set of experiments, presented in section 6.7, characterize the
new method by varying a single parameter at a time, other than trial and
generation, including:

• Maximum program size (from 20 nodes to 80 nodes).

• Population size (from 26 programs to 501 programs)

• Function arity (from two to four)

6.4 Equivalence of different addMeets variants

The first set of experiments aimed to verify that each variant of the ad-
dMeets algorithm from section 5.3 of the previous chapter produced the
exact same DAG of representative pairs.

Each algorithm was run independently on over 3300 variations of pa-
rameters:

• 2 tasks (BCW and Sphere)

• 3 forms (rooted-ordered fragments, rooted-partly-ordered-subtrees,
rooted-ordered-hyperschemata)

• Populations from 11 generations from each run of evolution (the ini-
tial random population and populations from generations 10 to 100
in intervals of 10)

• 50 randomized trials supplying different random seeds to the GP
engine

Each run derived two hash values, each 64 bits, from its results:

6.4. EQUIVALENCE OF DIFFERENT ADDMEETS VARIANTS 149

1. A hash over the representative pairs, not including the DAG edges.

2. A hash over the representative pairs, including the DAG edges.

The first of these would be expected to be the same for two runs only if
they produced the same set of representative pairs, while the second of
these would be expected to be same for two runs only if they produced
the same DAG of representative pairs.

Eight algorithms were tested: ProMS, ProMS-simple, ProMPS, ProMPS-
simple, IntMS, IntMS-simple, IntMPS, and IntMPS-simple. To test the basic
algorithms, each algorithm was run, finding a set of representative pairs
then using two alternatives to find the DAG edges: CD and PD as defined
in section 5.6 of the previous chapter. In addition, the advanced algorithms
ProMS, ProMPS, IntMS, and IntMPS were run in a way optimized to find
the DAG edges along with the representative pairs.

Thus for each set of parameters the experiments of this section com-
pared 20 variants of addMeets: 8 algorithms, each with a CD variant and
a PD variant, plus 4 more advanced algorithms. Rather than a limit on the
number of representative pairs found, the experiments were early stopped
after five minutes. Algorithms which went over this time limit did not con-
tribute to the results. This time limit was seldom reached and only ever
for the difficult rooted-ordered-hyperschema form of schema.

The happy result is that there were no discrepancies between any of the
variants, either in representative pair set hash or representative pair DAG
hash; any two runs on the same set of parameters, where both runs fin-
ished, produced exactly the same DAG of representative pairs excepting
the negligible possibility of a hash collision. This is a good indication that
the variants would return the same result given new, unseen input. This
result could also be seen as an indication that the variants of the algorithm
work correctly since it is less likely they would all work incorrectly in the
same way.

150 CHAPTER 6. CHARACTERIZING EXPERIMENTS

6.5 Characterizations with default parameters

The second set of experiments saw the schema engine run with default
parameters over two tasks, two population sizes, eleven forms of schema
listed in table 6.3, 50 random seeds and 21 generations including the initial
random population then generations 5-100 in steps of five. In addition, for
five of the seeds the schema engine was run on each of the 101 generations.
Thus the schema engine was run a total of 63800 times, taking a matter of

Table 6.3: Forms used to characterize the method with default parameters

Form Match-tree Lisp representation

Ordered-programs [1:(<,!,cind,[0,∞],1>)]

Restrictive-ordered-programs [1:(<,!,cindx,[0,∞],1>)]

Rooted-partly-ordered-subtrees [1:(<,!,cpind,[0,∞],1>)]

Rooted-ordered-fragments [1:(<,#,any,[0,0],1> <,!,cind,[0,∞],1>)]

Rooted-restrictive-ordered-fragments [1:(<,#,any,[0,0],1> <,!,cindx,[0,∞],1>)]

Rooted-ordered-hyperschemata [1:(<,#,any,[0,0],1> <,#,cind,[1,∞],1>

<,!,cindx,[0,0],1> <,!,cindx,[1,∞],1>)]

Ordered-subtrees [1:(<,#,desc1,[1,1],2>) 2:(<,!,cind,[0,∞],2>)]

Restrictive-ordered-subtrees [1:(<,#,desc1,[1,1],2>) 2:(<,!,cindx,[0,∞],2>)]

Partly-ordered-subtrees [1:(<,#,desc1,[1,1],2>) 2:(<,!,cpind,[0,∞],2>)]

Ordered-fragments [1:(<,#,desc1,[1,1],2>)

2:(<,#,any,[0,0],2> <,!,cind,[0,∞],2>)]

Restrictive-ordered-fragments [1:(<,#,desc1,[1,1],2>)

2:(<,#,any,[0,0],2> <,!,cindx,[0,∞],2>)]

a few days on cluster of fifteen identical PCs.

This section lists the results, characterising the numbers of objects found
in subsection 6.5.1, the time it took to find them in subsection 6.5.2 and the
space consumed on disk in subsection 6.5.3, and in memory in subsec-

6.5. CHARACTERIZATIONS WITH DEFAULT PARAMETERS 151

tion 6.5.4.

6.5.1 Numbers of representative pairs

The new method summarizes the full set of schemata down to a set of
representative pairs. The number of such pairs affects both the size of
the summary produced by the new method on disk and the time taken to
analyze using the new method.

This subsection presents the results of experiments characterizing how
many representative pairs are typically produced by the new method. The
number of representative pairs for a given population and form of schema
is the same as the number of maximal program sets and is the same as
the number of maximal schemata if a rooted form is being used. Each
representative pair of a non-rooted form may hold more than one maximal
schema.

Figures 6.1, 6.2, 6.3, and 6.4 present plots for this value at generation 40
for eleven forms of schema.

Looking at these figures it is clear that the distribution for all schemata
is highly biased. Many runs had small numbers of representative pairs
and maximal schemata with a few having very large numbers. For the
rooted forms of schemata very few of the runs exceeded the upper limit of
200,000 representative pairs and those that did could at times have more
than 1,000,000 representative pairs. The non-rooted forms of ordered-
subtrees and restrictive-ordered-subtrees also have few large values. But
the distribution for non-rooted forms of schema is more biased with many
small and few large numbers of representative pairs.

The different forms of schema had very different numbers of repre-
sentative pairs with median values over 50 trials presented in table 6.4
on page 152. As expected, there are many more representative pairs for
non-rooted forms of schema than for rooted forms of schema. Also as the
complexity and expressiveness of a form of schema increases, for instance

152 CHAPTER 6. CHARACTERIZING EXPERIMENTS

Table 6.4: Median number of representative pairs found for different forms
of schema for population sizes 51 programs and 101 programs

Form Median representative pairs
51 progs 101 progs

Restrictive-ordered-programs 664 1,698
Ordered-programs 742 1,915
Restrictive-ordered-subtrees 3,620 15,784
Rooted-partly-ordered-subtrees 5,266 22,341
Rooted-restrictive-ordered-fragments 6,612 24,971
Rooted-ordered-fragments 6,893 27,681
Rooted-ordered-hyperschemata 19,453 109,747
Ordered-subtrees 19,875 ≥200,000
Partly-ordered-subtrees ≥200,000 ≥200,000
Ordered-fragments ≥200,000
Restrictive-ordered-fragments ≥200,000

6.5. CHARACTERIZATIONS WITH DEFAULT PARAMETERS 153

Figure 6.1: Distribution of numbers of representative pairs at generation
40, population 51, task BCW for three forms of schema.

154 CHAPTER 6. CHARACTERIZING EXPERIMENTS

Figure 6.2: Distribution of numbers of representative pairs at generation
40, population 51, task BCW for next three forms of schema.

6.5. CHARACTERIZATIONS WITH DEFAULT PARAMETERS 155

Figure 6.3: Distribution of numbers of representative pairs at generation
40, population 51, task BCW for next three forms of schema.

156 CHAPTER 6. CHARACTERIZING EXPERIMENTS

Figure 6.4: Distribution of numbers of representative pairs at generation
40, population 51, task BCW for remaining two forms of schema.

6.5. CHARACTERIZATIONS WITH DEFAULT PARAMETERS 157

from subtrees to fragments to hyperschemata, so too does the number of
representative pairs found.

One interesting feature of the data is the seemingly excessive number
of representative pairs of restrictive forms of schema, most noticed with
“restrictive-ordered-programs”. Logically, each maximal schema of this
form must be the same as one of the programs and thus there is a strict
limit on how many schemata there may be as it must be less than or equal
to the population size. Investigation shows that for the restrictive forms,
most representative pairs represented object subsets but no schemata of
the form. This is also seen with non-rooted forms, although for a very
different reason.

In the case of restrictive forms of schemata, the sets of schema com-
ponents held by these non-schema-representing representative pairs are
not valid as schemata since, even though there are programs which match
each schema component individually, no program matches the schema
made from the set as a whole. An example is the two programs (+ 1), (+ 2)

under the “restrictive-ordered-programs” form of schema. The set of schema
components {+} is the intersection of the sets {+, (+ 1)} and {+, (+ 2)}
and is found as part of the meet-semi-lattice, but this intersection describes
a schema “+” which does not occur in any of the programs in the popula-
tion although it would if the form where loosened to “ordered-programs”.
For the restrictive forms of schema, a great many of these representative
pairs with “invalid” schemata were found, while the numbers for “valid”
schemata was as times relatively small.

In the case of non-rooted forms of schemata, representative pairs may
be found which do not represent any schemata. However in these cases
the schemata occurring in each such representative pair’s program set are
“valid” but are simply represented by representative pairs which hold
more programs.

To show the trend over time, figures 6.5 and 6.6 present the quartiles
of the numbers of representative pairs for each generation from the initial

158 CHAPTER 6. CHARACTERIZING EXPERIMENTS

generation to the 100th, at intervals of five for six key forms of schema.
The five series of the graph are, from top, the maximum, third quartile,

median, first quartile and minimum results over fifty runs.

The figure shows a marked increase in the number of representative
pairs as the run goes on but generally this trend plateaus at about genera-
tion 30 to 40. This may be caused by the programs of the population shar-
ing more large schemata. Since the algorithms of the thesis‘ method search
for patterns that are common between programs, they must do more work
to process the later generations, in which programs share large schemata,
than to process early generations, in which few programs share even small
schemata. This increase in work is exhibited as an increase in the number
of maximal pairs.

It is interesting to note that, while the number of maximal subtrees
has plateaued by generation 20, the number of representative pairs for the
more expressive forms of schema continue to increase until later in the run.
Also, while the number of maximal subtrees stays relatively constant after
the initial increase, the numbers of the more expressive schemata can at
times vary markedly. For instance, the median number of rooted-ordered-
hyperschemata at generation 85 (11,812) almost halves the same statistic
for just 10 generations before (21,873).

For each of these figures, there is an equivalent figure for the sphere
task. These figures exhibit very similar overall trends and look very simi-
lar to the figures presented, so those figures are omitted from this thesis.

6.5.2 Time taken

This subsection aims to characterize how long the algorithm takes to per-
form each of the processes involved in finding the representative pair
DAG and annotate it with schema tree representations and represented
schema and program set counts.

Figures 6.7 and 6.8 presents stacked plots for these values at generation

6.5. CHARACTERIZATIONS WITH DEFAULT PARAMETERS 159

Figure 6.5: Distribution of the number of representative pairs over each
generation, population 51, task BCW for three forms of schema.

160 CHAPTER 6. CHARACTERIZING EXPERIMENTS

Figure 6.6: Distribution of the number of representative pairs over each
generation, population 51, task BCW for next three forms of schema.

6.5. CHARACTERIZATIONS WITH DEFAULT PARAMETERS 161

40 for six key forms of schema.
In the figures, the stacked plot shows the time taken by the following

sub-processes, from top down:

• Finding for each maximal program subset the count of represented
program subsets.

• Conversion from conjunctive form to de-rooted conjunctive form,
presented for non-rooted forms only.

• Finding for each maximal schema the count of represented schemata,
given the count of more general schemata.

• Finding for each maximal schema the count of more general schemata.

• Finding for each maximal schema the tree representation of that schema.

• Finding the maximal schemata and maximal program subsets as a
DAG, given a population and form of schema.

The figures clearly show that for the ProMS variant of the addMeets al-
gorithm used the time to find the DAG of representative pairs is not the
slowest part of the whole process and takes typically about 10% of the time
taken by the whole process. Instead, the sub-processes finding for each
representative pair histograms with counts of represented schemata and
program subsets were the most significant parts of the process in terms of
time taken. These two sub-processes most often took over half the time
taken by the process as a whole.

The sub-process finding the histogram of counts of more general schemata
for each maximal schema also took a significant fraction of the total time,
about twice to three times the fraction taken to find the DAG of representa-
tive pairs. The sub-process finding the tree representation for each schema
was relatively fast.

For the non-rooted forms, the most expensive part of the total process
was the conversion from the conjunctive form on subtrees to the de-rooted

162 CHAPTER 6. CHARACTERIZING EXPERIMENTS

Figure 6.7: Distributions of time taken by processes at generation 40, pop-
ulation 51, task BCW for three forms of schema.

6.5. CHARACTERIZATIONS WITH DEFAULT PARAMETERS 163

Figure 6.8: Distributions of time taken by processes at generation 40, pop-
ulation 51, task BCW for next three forms of schema.

164 CHAPTER 6. CHARACTERIZING EXPERIMENTS

conjunctive form on programs. This conversion entails running the ad-
dMeets function on the set of representative pairs for the conjunctive form
on subtrees and this proves to be a significant cost.

The total time has a similar distribution to that of the number of repre-
sentative pairs presented in the previous subsection. In fact, the number of
representative pairs is highly correlated to the time taken by the method.
Figure 6.9 presents a scatter plot of the time taken to find the full annotated
DAG of representative pairs, versus the size of this DAG with one point
per run each fifth generation. The figure shows high correlation between
the time take by the new method and the number of representative pairs
found. Typically the method took 15 seconds to find a total of 15,000 rep-
resentative pairs for all forms. If the total number of representative pairs
was greater, then the system required more time per representative pair.
For instance 22,000 representative pairs took on average about 30 seconds.
Similarly, the method proves more efficient when finding smaller DAGs
of representative pairs.

To show the trend over time, figure 6.10 presents stacked plots of the
medians over 50 trials of these values for each generation from the initial
generation to the 100th, at intervals of five for six key forms of schema.
The figure shows high correlation in outline to figure 6.5 from the previous
subsection. The figure also shows that the various sub-processes involved
in running the new method have similar complexity with respect to the
number of representative pairs found since each occupies a similar fraction
of the whole throughout the run.

6.5.3 Output file size

Each time the schema engine was run, an output file stored the popula-
tion, schema components and representative pairs as a DAG. This output
file contains enough information to allow analysis of the population and
form using the new method. This subsection aims to characterize the size

6.5. CHARACTERIZATIONS WITH DEFAULT PARAMETERS 165

Figure 6.9: Time taken to find representative pairs versus number of rep-
resentative pairs, population 51, task BCW for six forms of schema.

166 CHAPTER 6. CHARACTERIZING EXPERIMENTS

Figure 6.10: Time taken by processes over each generation, population 51,
task BCW for six forms of schema.

6.5. CHARACTERIZATIONS WITH DEFAULT PARAMETERS 167

Figure 6.11: Disk space used versus number of representative pairs, pop-
ulation 51, task BCW for six forms of schema.

168 CHAPTER 6. CHARACTERIZING EXPERIMENTS

of the output file produced by the new method as an indication of typi-
cal disk space requirements. Figure 6.11 presents a scatter plot of the un-
compressed output file size on disk, versus the number of representative
pairs with one point per run each fifth generation. The plots show propor-
tional correlation between the output file size and the number of repre-
sentative pairs. The per-maximal-pair disk usage ranges between about
480 bytes for ordered-subtrees to about 1,400 bytes for rooted-ordered-
hyperschemata. This difference reflects that each maximal schema stores
a set of schema components and the size of this set depends on the expres-
siveness of the form of schema; for ordered subtrees there are few schema
components and for rooted-ordered-hyperschemata there are many.

Typically the output files compressed to 10% of their original size un-
der the standard zip format compression. Also, some of the information
in the file could be superfluous in some setups. An example is where the
schema components are not stored since they would seldom be used in
analysis, which would result in significant savings in disk space.

6.5.4 Memory used

This subsection aims to characterize the maximum memory used by the
method as it finds the representative pairs DAG. As the addMeets algo-
rithm runs, it allocates memory to store the representative pairs and for
other uses. This subsection reports the maximum amount of memory thus
allocated during runs of the algorithm. Figure 6.12 presents a scatter plot
of the maximum memory allocated by the method to store representative
pairs and interim results during the sub-process of finding the representa-
tive pairs DAG, versus the number of representative pairs with one point
per run each fifth generation.

The figure shows that for rooted forms of schema, the memory allo-
cated is about 3,000 bytes per representative pair. But for non-rooted forms
there is no obvious correlation between RAM bytes and number of rep-

6.5. CHARACTERIZATIONS WITH DEFAULT PARAMETERS 169

resentative pairs. This is likely caused by the inclusion of a sub-process
changing the conjunctive form on subtrees to a de-rooted conjunctive form
on programs. This process returns a final set of representative pairs which
may be significantly smaller than the original set of representative pairs.
It may occur that before this sub-process the algorithm allocates a sig-
nificant memory for many representative pairs and after this sub-process
most representative pairs have been removed. Another effect of this two
step process is shown clearly by the plot for ordered-fragments, which
has a clear line of points at 200,000 representative pairs on the x-axis. The
system imposed the limit of 200,000 representative pairs on both the first
representative pairs sub-process, for the conjunctive form on subtrees, and
the second representative pairs sub process, for the de-rooted conjunctive
form on programs. This limit was often reached by the former even when
the latter would have resulted in fewer final representative pairs.

170 CHAPTER 6. CHARACTERIZING EXPERIMENTS

Figure 6.12: Memory (RAM) used versus number of representative pairs,
population 51, task BCW for six forms of schema.

6.6. COMPARING THE DIFFERENT ALGORITHMS 171

6.6 Comparing the different algorithms

The third set of experiments saw the method run with default parameters
but using different algorithms to find the representative pairs.

Figure 6.13 presents plots for the time taken to find the representative
pairs as an un-annotated DAG, without schema or program subset counts
or schema tree representations, for four optimized algorithms, at genera-
tion 40 for task BCW and three key forms of schema.

Figure 6.14 shows the equivalent plots for the Sphere task. The figures
shows that some algorithms were significantly faster than others. In par-
ticular ProMP is typically the fastest of the four, ProMPS being next, then
IntMPS with IntMP often significantly slower than the other three. This
justifies the use of the ProMP algorithm throughout the other experiments
of this chapter and the next chapter.

All four algorithms compared find both the representative pairs and
the edges between them as an anti-transitive DAG. These edges are most
easily found when using the “promote-increment” approach as used by
ProMP and ProMPS and causes slightly more slow-down of IntMP and
IntMPS. This slowdown may explain a little of the time difference between
the “promote-increment” algorithms and the “intersect” algorithms.

The difference between IntMP and IntMPS is most marked when us-
ing the rooted-ordered-hyperschemata form of schema, an effect caused
by the large numbers of schema components in this expressive form of
schema. As the numbers of schema components increases, the schema
component sets representing the maximal schemata also grow and per-
forming intersects on these sets is a major contributor to the complexity of
the IntMP algorithm. The difference is least marked for the rooted-partly-
ordered-subtrees form of schema where there are typically relatively few
schema components.

The difference is greater on the “BCW” task than on the “sphere” task
with the latter showing slightly less difference between the algorithms,

172 CHAPTER 6. CHARACTERIZING EXPERIMENTS

Figure 6.13: Time taken to find representative pairs as a DAG for different
algorithms, at generation 40, population 51, task BCW for three forms of
schema.

6.6. COMPARING THE DIFFERENT ALGORITHMS 173

Figure 6.14: Time taken to find representative pairs as a DAG for different
algorithms, at generation 40, population 51, task Sphere for three forms of
schema.

174 CHAPTER 6. CHARACTERIZING EXPERIMENTS

especially for the rooted-partly-ordered-subtrees form of schema.
Figure 6.15 shows the time taken to find the representative pairs as

an un-annotated DAG for different options of the ProMP algorithm. The
options given in the plots are:

• Set only: the time to find the set of representative pairs without ob-
taining the DAG edges.

• Get DAG from set (c): the time to find the set of representative
pairs, then obtain the DAG edges using GetEdgesS presented in sec-
tion 5.6 from chapter 5. This variant of the algorithm find the DAG
edges by identifying which schemata are subsets of which other schemata.

• Get DAG from set (p): the time to find the set of representative pairs,
then obtain the DAG edges using GetEdgesPS presented in sec-
tion 5.6 from chapter 5. This variant of the algorithm find the DAG
edges by identifying which program subsets are subsets of which
other program subsets.

• Set and DAG (optimized): the time to find the set of representative
pairs, as well as the edges, at the same time using an optimized al-
gorithm.

The figures show clearly that producing the DAG is an expensive task
when performed separately but may be efficiently integrated into the pro-
cess of finding the representative pairs themselves.

For the expressive rooted-ordered-hyperschemata form of schema, the
difference between the “Get DAG from set (c)” and “Get DAG from set
(p)” options is more marked than for the other forms. Similarly to the dif-
ference between the IntMP and IntMPS algorithms, this is likely caused
by the larger schema component sets for this more expressive form of
schema.

6.6. COMPARING THE DIFFERENT ALGORITHMS 175

Figure 6.15: Time taken to find representative pairs as a DAG for different
options of the ProMP algorithm, at generation 40, population 51, task BCW
for three forms of schema.

176 CHAPTER 6. CHARACTERIZING EXPERIMENTS

6.7 Characterizations by varying single parame-

ters

The fourth set of experiments aimed to characterize the new method over
various input parameters, including: population size, program size in
nodes and function node arity. The method was run with default settings
other than the one changed parameter for all combinations of: two tasks,
one population size (51), two forms of schema (rooted-partly-ordered-
subtrees and rooted-ordered-fragments), 50 random seeds and 21 genera-
tions (initial generation to 100th in steps of five). In addition, five of the
seeds were run over 101 generations (initial generation to 100th).

Thus the schema engine was run a total of 5800 times per changed pa-
rameter value. The following parameter values were used:

• Population size: 26, 51, 76, 101, . . . , 451, 476, 501

• Program size (maximum node count): 20, 30, 40, 50, 60, 70, 80

• Function node arity (other than if): 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75,
4

(A fractional arity a indicates the GP engine created a proportion of
functions with the floor of a as their arity and created a proportion
of functions with the ceiling of a as their arity. Thus an arity of 2.25
indicates that three quarters of function nodes, other than if nodes,
have arity 2 and one quarter have arity of 3.

6.7.1 Population size

An important feature of the new method is that it can analyze medium-
scale populations of medium-sized programs. This section attempts to
characterize the new method over a range of population sizes, up to 501
programs. The method was run with default parameters, other than vary-
ing the population size from 26 to 501 in steps of 25.

6.7. CHARACTERIZATIONS BY VARYING SINGLE PARAMETERS 177

Figure 6.16: Effect of the population size on the distribution of numbers of
representative pairs at generation 40, task BCW for two forms of schema.

Figure 6.16 shows how the population size affects the number of rep-
resentative pairs by population size. The figure has two plots, one for
rooted-ordered-fragments and the other for rooted-partly-ordered-subtrees.
Each plot has quartiles over 50 trials per population size of the number of
representative pairs, capped at 200000, versus population size.

The figure shows a polynomial relationship between the size of pop-
ulation and the number of representative pairs. The regressed bases for
this relationship are |R| ∝ |P0|2.37 for rooted-partly-ordered-subtrees and
|R| ∝ |P0|2.29 for rooted-ordered-fragments. In these equations R is the
output set of representative pairs for the median of the 50 trials and P0

is the input set of programs. The results used least-squares polynomial
regression to find the closest a and b in |R| = a|P0|b.

Thus the typical number of maximal pairs found quadruples as the
population size is doubled. Extrapolating, a population size of 1000 would
be expected to have a median number of maximal rooted-ordered-fragments
of about 1,300,000 at generation 40.

To show the trend over time, figure 6.17 presents the median number of
representative pairs found versus generation for the following population

178 CHAPTER 6. CHARACTERIZING EXPERIMENTS

Figure 6.17: Median number of representative pairs versus generation for
different population sizes, task BCW for two forms of schema.

sizes: 26, 101, 201, 301, 401 and 501.

The figure shows the interesting trend that, while the number of repre-
sentative pairs grows steadily for small population sizes, for larger popu-
lation sizes it can peak early in the run and stays at a similar level as the
run progresses. In particular, the series for a population size of 301 has a
maximum at generation 20 and immediately starts to decline, rising again
after about generation 80. This may indicate that the number of represen-
tative pairs has a somewhat stable value through for a given population
size.

6.7.2 Program size

This section attempts to characterize the new method over a range of pro-
gram sizes. The experiments placed a node-count limit on programs rather
than a tree-depth limit. The method was run with default parameters,
other than varying the maximum program size from 20 to 80 in steps of
10.

Figure 6.18 shows how the program size affects the number of repre-

6.7. CHARACTERIZATIONS BY VARYING SINGLE PARAMETERS 179

Figure 6.18: Effect of program size on the distribution of numbers of rep-
resentative pairs at generation 40, task BCW for two forms of schema.

sentative pairs. The figure has two plots. Each plot gives quartiles over 50
trials per program size of the number of representative pairs, which was
capped at 200000, versus program size.

The figure shows a marked increase in the number of representative
pairs given an increase in the size of programs. Interpreting this increase
as polynomial and again using least-squares regression, the regressed bases
for this relationship are |R| ∝ Nnodes

2.77 for rooted-partly-ordered-subtrees

180 CHAPTER 6. CHARACTERIZING EXPERIMENTS

and |R| ∝ Nnodes
3.08 for rooted-ordered-fragments. In these formulae R is

the output set of representative pairs for the median of the 50 trials and
Nnodes is the maximum size of a program.

Perhaps even more striking than the increase of the median statistic
is the increase of the upper quartile and maximum runs. At about 70
nodes, the upper quartile series shows marked increase. Polynomial re-
gression of the upper-quartile series for rooted-ordered-fragments gives
|R| ∝ Nnodes

3.68, significantly larger in exponent than the same for the
median series. Polynomial regression of the maximum series for rooted-
ordered-fragments up to generation 60 with 126,178 representative pairs
gives |R| ∝ Nnodes

4.46, another marked increase in exponent over the up-
per quartile series. This increase in exponent would indicate that, were
the experiment to further increase the size of programs, it would expect
the runs with the most representative pairs to have many more represen-
tative pairs.

To show the trend over time, figure 6.19 presents the median number of
representative pairs found versus generation for differing program sizes.
In contrast to the trend shown previously in figure 6.16, where larger pop-
ulation sizes gave a steep but brief increase in the number of representative
pairs as the run progressed, figure 6.19 gives a slower and more sustained
rise in the number of representative pairs for larger maximum program
sizes as the run progressed. Similar trends are shown for the two forms of
schema. It may be that while all generations share a population size and
thus a population size affects all generations evenly, code-growth causes
later generations to be more affected by a large program size.

6.7.3 Function arity

Some GP systems have varying numbers of arguments to functions, for
instance, an addition node may have 1, 2, 3, 4 or more child arguments.
It is expected that the number of representative pairs has correlation to

6.7. CHARACTERIZATIONS BY VARYING SINGLE PARAMETERS 181

Figure 6.19: Median number of representative pairs versus generation for
different program sizes, task BCW for two forms of schema.

this arity value. In the experiments of this subsection, the method was run
with default parameters other than varying the function arity from 2 to
4 steps of 0.25. The arity was set at the start of each run and influenced
the desired number of children for the variable arity functions created by
mutation or in the initial population. Each population may still contain
a mixture of arities of function nodes for any given primitive since the
arity value set here gives only an upper bound on the preferred number
of children assigned to any given function node.

Figure 6.20 shows how the function arity affects the number of repre-
sentative pairs. The figure has two plots. Each plot gives quartiles over 50
runs per function arity of the number of representative pairs, which was
capped at 200000, versus function arity.

The figure shows that there is indeed a correlation between the num-
ber of representative pairs and the arity of the function nodes with higher
arities in general leading to more representative pairs.

For an arity of 2, the number of representative pairs is about half that
when the arity is 2.5, the default setting for experiments in this thesis. Thus
we could expect that a system which uses binary functions could perform

182 CHAPTER 6. CHARACTERIZING EXPERIMENTS

Figure 6.20: Effect of function arity on the distribution of numbers of rep-
resentative pairs at generation 40, task BCW for two forms of schema.

6.7. CHARACTERIZATIONS BY VARYING SINGLE PARAMETERS 183

Figure 6.21: Effect of function arity on the distribution of times taken to
find the representative pairs at generation 40, task BCW for two forms of
schema.

faster and take less memory than the default setup presented here.
To show this effect of function arity on the time taken by the new

method, figure 6.21 shows the time taken versus the function arity. The
figure has two plots, each with quartiles of the time taken to find the unan-
notated representative pair DAG versus function arity.

As expected, the plots of figure 6.21 have much the same trends as the
plots of figure 6.20 with the new method taking about half the time to

184 CHAPTER 6. CHARACTERIZING EXPERIMENTS

process populations with binary functions than the populations produced
with the default arity of 2.5. Figures 6.20 and 6.21 are quite noisy and have
with a significant dip at arity 3. This may be due to the use of fractional ar-
ity affecting the evolutionary process; where integer arity produces many
functions with the same arity, fractional arity produces a population of
many function arities and this may change the dynamics of the GP evolu-
tion and the matched schemata. Further experiments would be required
to determine whether the noise is just noise or symptomatic of the system
used.

6.8 Discussion

The experiments of this chapter aim to test and characterize the new method
analyzing GP populations in a “typical” GP system. Thus the GP engine
parameters used are standard as far as possible. No one system could
represents all GP setups that the method might be used on and indeed
a useful advantage of this empirical method over theoretical schema the-
ory methods is that it may be used in unusual GP setups. Nevertheless,
this chapter does give useful information on the general trends one may
encounter in using the new method.

Section 6.4 gives good evidence that each of 20 variants of the addMeets
algorithm, which is core to the new method, gives exactly the same result
as each other given the same input population and form. Each experiment
derived a 64-bit hash from the DAG of representative pairs. The experi-
ments of this section compared these hashes between the variants for each
population and form. Though hash collisions could possibly occur, it is
highly improbable.

There are other algorithms of the new method which are harder to test
in this way since only one variant exists. For example, there is only one al-
gorithm to get the tree representation of a schema and only one algorithm
to get the histograms of represented program subsets for a representative

6.8. DISCUSSION 185

program subset. These other algorithms were tested visually, by using
them on simpler cases and testing that they produced the correct results.

The second set of experiments provides us with expected distributions
for the default experimental setup, of: the number of representative pairs
produced by the new methods, the time taken by the new method and
the memory footprint of the new method both in memory and on disk.
Most striking is the correlation of the time taken and memory footprint,
of the new method with the number of representative pairs found. An
approximately linear relationship is shown in most plots of figures 6.9, 6.11
and 6.12 showing that the defining characteristic affecting any given run
of the schema engine is the number of representative pairs produced.

The number of representative pairs found in any given trial varied
widely. Many runs had small numbers, while a few had very large num-
bers. But, when compared with the total number of schemata or program
subsets, the number of representative pairs is tiny and proves to be a good
summary for analysis of even moderately large populations of moderately
large programs. As expected, a major influence on the number of repre-
sentative pairs was the form of schema used. Non-rooted forms of schema
were found to produce a great deal more representative pairs than rooted
forms.

Of the tested variants of the addMeets algorithm, ProMP appears quick-
est. The form of schema used also influences the relative speeds of the
algorithms slightly through the increasing or decreasing of the size of the
schema components set which defines each schema; some variants like
IntMS suffer if these sets get too large, where some like IntMPS are indif-
ferent.

Section 6.7 gives characterizations of the new method with varied pa-
rameters, including: population sizes up to 501 programs, program sizes
up to 80 nodes and function arities up to 4 arguments. For the two forms of
schema used, rooted-ordered-fragments and rooted-partly-ordered-subtrees,
the new method exceeded the limit of 200,000 representative pairs about

186 CHAPTER 6. CHARACTERIZING EXPERIMENTS

25% of the time for populations of 301 60-node programs. Program size
was seen to be more influential on the number of representative pairs than
population size; while the number of representative pairs is approximately
quadratic on the number of programs in the population, it is approxi-
mately quartic on the size of the programs in nodes. Raising the func-
tion arity was also found to slightly increase the number of representative
pairs. Many GP setups use binary functions for addition, subtraction, mul-
tiplication and division and the results of section 6.7.3 suggest that in these
setups there would typically be about half the number of representative
pairs for the same population size, program size and form of schema.

Another varied parameter which is not listed in the experiments of sec-
tion 6.7 is the numeric terminal block size, which was found to have no
significant effect on the number of representative pairs. Lowering this pa-
rameter should in theory increase the total number of schemata occurring
in the population, through numeric terminals with slightly different val-
ues being considered different for small numeric terminal block sizes.

All experiments were run on two tasks: “BCW” and “sphere”. Most of
the chapter’s figures are for the “BCW” task since these figures reported
very similar trends to the equivalent figures for the “sphere” task. As ex-
pected, the influence of the task performed by the “GP engine” had little
bearing on coarse “schema engine” performance statistics such as number
of representative pairs and time taken.

6.9 Chapter summary

This chapter empirically characterized the performance of the new method.
The experiments of this chapter aimed to test the new method in several
ways:

• To indicate whether each variant of the algorithm producing the rep-
resentative pairs as a DAG gives exactly the same DAG of represen-
tative pairs as output.

6.9. CHAPTER SUMMARY 187

• Characterize the typical number of representative pairs given as out-
put.

• Characterize the typical time taken by the method and the typical
memory footprint of the method both on disk and in RAM.

• Indicate correlations between the number of representative pairs out-
put the time taken or memory footprint both on disk and in RAM of
the method.

• Characterize the time requirements of the new method for different
variants of the algorithms for the new method.

• Characterize the time and space requirements of the new method
over different parameter values, including: population size, pro-
gram size and function arity.

• Identify trends in these statistics over generation number.

As may be expected, the number of representative pairs drives both the
time taken by the new method as a whole and its memory footprint with
approximately linear relationships to time-taken, bytes-on-disk and bytes-
in-RAM. Importantly, the number of representative pairs was found to be
manageably small for most parameter settings with a limit of 200,000 pairs
found to be an acceptable setting for all rooted forms of schemata when
using a population size of 51 and for rooted-partly-ordered-subtrees and
rooted-ordered-fragments in populations up to 301. But there was a large
increase in the number of maximal schemata by using a non-rooted form
of schema. The limit of 200,000 representative pairs was too small for most
non-rooted forms of schema tested.

These small numbers of representative pairs compare well to the total
numbers of schemata in the populations, which at times would easily ex-
ceed 10100, justifying the use of the new method over the naive iteration
over all schemata.

188 CHAPTER 6. CHARACTERIZING EXPERIMENTS

The number of representative pairs was found to be heavily influenced
by three parameters being quadratic on population size, quartic on pro-
gram size and highly dependent on form of schema.

Little or no correlation was found between the number of representa-
tive pairs and the numeric terminal block size. A small positive correlation
was found between the number of representative pairs and the function
arity.

Where this chapter characterized the new method, the next chapter as-
sesses its efficacy by providing some potentially useful and previously im-
practical analyses of GP runs using the new method.

Chapter 7

Efficacy experiments

7.1 Chapter introduction

In contrast to the previous chapter which aimed to characterize the new
method, this chapter aims to show that is useful by presenting a range of
simple analyses of GP runs.

The method presented in this thesis provides a tool for the analysis of
GP evolutions which is powerful in these key ways:

• The tool generates useful statistics over the otherwise prohibitively
large set of schemata occurring in a set of programs.

• The tool may be tailored to many forms of schema, through accept-
ing a match-tree form as a parameter.

This chapter presents the results in graphical form of several statistics
which are likely to be of interest to the GP community, starting with simple
statistics and ending with more complex analyses. The statistics presented
include:

• Section 7.3 gives the total number of schemata occurring in any pro-
gram in the population.

189

190 CHAPTER 7. EFFICACY EXPERIMENTS

• Section 7.4 gives the size of the largest schema occurring in any set
of n programs for various values of n.

• Section 7.5 gives the size of the largest schema occurring in a set of n

programs, averaged over all such sets of programs for various values
of n.

• Section 7.6 gives the distance between each pair of programs, where
the distance is the percentage of shared schemata.

• Sections 7.4 and 7.6 also have analyses on generational-populations de-
scribed in section 7.2.1 below.

The chapter presents these results on a wide range of schemata which are
presented to the system as match-tree forms:

• Rooted-ordered-fragments (r-o-fragments)

• Rooted-ordered-hyperschemata (r-o-hyperschemata)

• Rooted-partly-ordered-subtrees (r-po-subtrees)

• Ordered-subtrees (o-subtrees)

• Ordered-fragments (o-fragments)

• Rooted-restrictive-ordered-fragments (r-x-o-fragments)

7.2 Experimental setup

The experimental setup is very similar to that of the previous chapter. Ta-
bles 6.1 and 6.2 in that chapter give default GP and schema engine settings
respectively.

Most results given are the median result over fifty randomized trials.
Exceptions are graphs giving a distribution over the fifty trials and the
results given in section 7.6 which are for a single run of evolution.

7.3. NUMBER OF SCHEMATA OF EACH SIZE 191

7.2.1 Generation populations

There are broadly two ways to construct the set of programs, used as input
into the method, from the series of populations at each generation of a run
of evolution.

Mostly, the experiments of this chapter use the populations themselves
as input. Some experiments use populations obtained by grouping to-
gether programs of differing generation rather than rank. This thesis will
refer to these sets of programs as generational-populations. They provide a
useful contrast between the good programs and the bad programs, at each
generation.

7.3 Number of schemata of each size

This section presents a very simple, yet deceptively hard to obtain, statistic
on a population of programs: the number of schemata of a given form in
any one or more programs of the population.

Chapter 5 gave an algorithm for finding the number of schemata in a
single program, however, the case for multiple programs is significantly
more difficult since the analysis must count each schema only once no
matter how many programs it is in. Using the method of this thesis, the
task is simple: sum the numbers of represented schemata for each max-
imal schema. Since each schema is represented by exactly one maximal
schema, the new method arrives trivially at this otherwise difficult statis-
tic.

Method

Given a set of programs and a form of schema, the representative sets of
schemata are found. Each representative set of schemata is annotated with
a histogram containing the count of represented schemata of each size.

192 CHAPTER 7. EFFICACY EXPERIMENTS

The total number of schemata of size z is the sum over all representative
sets of schemata of the count of represented schemata of size z.

Using the analysis algorithms of chapter 4, the analysis is trivial. It is
an analysis over schemata with the following two defining functions:

• AnSc(P, zs) = 1

• Agg(A, A′, c) = A + A′ ∗ c

The AnSc function provides a count of 1 for each schema. The aggregate
function Agg sums these counts by adding c times this count per c schema.

Results

Figure 7.1 gives the numbers of schemata of each order (that is, number
of non-don’t-care nodes) as a median over fifty randomized trials for six
forms of schema. As expected, the figure shows that the most important
factor determining the number of schemata is the form used. There are
three orders of magnitude more hyperschemata than any other form of
schema. There were very similar numbers of r-o-fragments, r-po-fragments,
and o-fragments (although there are more small o-fragments than either of
the others). The r-x-o-fragments show heavy bias toward large schemata
since their matching behaviour prevents low arity schema node functions
from matching higher arity program node functions.

The stage in the run also affects the results with numbers of all forms of
schemata increasing more than an order of magnitude from the first gen-
eration to the 60th. Interestingly, this increase in numbers of schemata to-
ward later generations was more pronounced in the r-x-o-fragments than
the other forms of schemata.

7.3. NUMBER OF SCHEMATA OF EACH SIZE 193

Figure 7.1: Total number of schemata occurring in any program in a
population of 51 programs for various generation numbers and forms of
schema. Note that the r-p-o-subtrees and r-o-fragments series overlap.

194 CHAPTER 7. EFFICACY EXPERIMENTS

7.4 Largest matched schemata by k programs

This section presents another statistic readily available using the new method:
the size of the largest schema in any set of k programs for different sizes k.

This statistic is of considerable interest:

• Evolution tends to stagnate with slow improvement in the quality of
programs if too many programs are too similar and the population
has converged. In this case programs may share some large schema.

• This statistic could be used in some form as a measure of diversity
and correlated between good runs and bad to characterize its effect
on performance.

Method

Where the previous analysis iterated over the set of schemata, this analysis
iterates over the set of program subsets.

Using the analysis algorithms of chapter 4, the analysis is over program
subsets with the following defining functions:

• AnPS(S, zP) = if zP = k then return the size of largest schema in S,
otherwise return 0

• Agg(A, A′, c) = Max(A, A′)

The aggregating function Agg returns the maximum value found by the
function AnPS, which returns the size of the largest schema in the iterated
program subset, so long as the program subset has cardinality k. Thus the
analysis finds the largest schema in any program subset of size k.

Results

Figure 7.2 gives the trend of the largest schema size in a set of k programs,
over generation number for four forms of schema. Each graph has gen-

7.4. LARGEST MATCHED SCHEMATA BY K PROGRAMS 195

Figure 7.2: Size of largest schema occurring in k programs over generation
for four forms of schema. Median values over 50 runs with population
size 101.

196 CHAPTER 7. EFFICACY EXPERIMENTS

eration on the horizontal axis and the size of the largest schema in any k

programs on the vertical axis for various values k from 1 to the popula-
tion size of 101 as the series. Thus we would expect the series for k = 1

to simply record the size of the largest program at each generation and
the series at k = 101 to record the size of the largest schema occurring in
all programs if any. A diverse population would be expected to have low
values for most series and a highly converged population might have very
high values for most series. The graphs record the median values over 50
randomized trials.

The figures are surprising; for the three rooted forms of schemata, even
after only ten generations, very large schemata exist which are in many
programs. For instance, there is a 44 node rooted-ordered-fragment which
is in some set of 7 programs. Despite the very fast rise, the sizes don’t
change a lot later in the run. For instance, the largest rooted-ordered-
fragment in generation 100 is still about 46 nodes. Though the runs very
quickly developed large schemata, they did not fully converge since no
large schemata occurred in large program subsets. Note that the results
show the median over 50 trials.

The series for the centre values of k are lower for the ordered subtree
form of schema than the other three forms, suggesting that the programs
shared larger fragments and hyperschemata than they shared subtrees,
in turn validating our interest in the more expressive forms of schema.
Interestingly, the size of the largest subtree seems a noisier statistic than
the size of the largest fragment, partly-ordered subtree or hyperschema.
Subtrees seem to represent a more “fragile” form of schema than these
other forms; if a program changes in a way that invalidates its match with
a given schema s, the expressiveness of s’s form of schema affects how
much s must change to once again match the program. For the expressive
form of hyperschemata all that may be required is a targeted insertion of a
don’t care, whereas for the less expressive form of subtrees a much greater
modification to s may be required.

7.4. LARGEST MATCHED SCHEMATA BY K PROGRAMS 197

Figure 7.3: Quartiles over fifty runs of size of largest schema occurring in k

programs (size of program subset) for four forms of schema at generation
40.

Figure 7.3 shows the distributions for the sizes of the largest schemata
in k programs at generation 40 for different values of k. The five lines cor-
respond to the maximum, upper quartile, median, lower quartile and min-
imum over the 50 randomized trials. As expected, all runs had some very
large schema in at least one program. The three rooted forms of schema
show similar distributions for larger values of k with ordered-subtrees
showing a different trend. Where for the rooted forms at least one run
has some over-40-node schema in some set of 18 programs, the maximum

198 CHAPTER 7. EFFICACY EXPERIMENTS

values for large k are smaller in the case of ordered-subtrees.

Figure 7.4 focuses of the case of rooted-ordered-fragments by show-
ing graphs similar to those above but for the initial, 5th, 10th, 20th, 40thand
60thgenerations. As expected, the initial generation shows very small shared
fragments for all runs; the random programs of the initial generation have
not been combined by selection and crossover and thus have very little
chance of the spontaneous sharing of schemata. Later generations show
a general increase in the sizes of shared schemata as the run progresses.
Interestingly, after the initial generations, the run with the largest shared
schemata shows little variance in the size of those schemata with gener-
ation and has reached its peak by generation five. Most other runs show
considerable increase in the size of the largest fragment in k programs as
the run progresses.

The central half of the runs, from the lower quartile to the upper quar-
tile, show very similar characteristics with very little difference in schema
size over all values of k shown. Unexpectedly, this is especially true later
in the run.

Figure 7.5, again dealing with rooted-ordered-fragments, analyzes generational-
populations for various ranks. The six graphs of the figure show the dis-
tribution of the largest schemata shared by the programs of rank k at each
generation from the initial generation to generation 100 with each graph
showing data for a different value for k. Thus for instance, the figures
could show if selection favours the sharing of material from good pro-
grams and suppresses the sharing of material from bad programs.

Indeed, this is exactly the trend seen in the results; the best programs
share large schemata across many generations and for at least 75% of the
trials, the worst programs share no large schemata across even a few gen-
erations. There are other interesting trends: the largest shared schemata
line is surprisingly high for the worst programs, that is, while the worst
programs in almost all runs shared few if any schemata across multiple
runs, there is some run where even the worst programs shared a fragment

7.4. LARGEST MATCHED SCHEMATA BY K PROGRAMS 199

of size 19 across 8 generations. This run has likely converged completely
such that for several late generations all programs in the population share
a sizeable fragment, although more analysis will be required to confirm
this hypothesis.

Small sets of programs, that is small numbers of generations, show sim-
ilar trends between programs of rank 11 and those of rank 31, indicating
that there is some region of evolution where programs of the two quite dif-
ferent ranks share similar sized fragments. But for larger sets of programs,
that is larger numbers of generations, the better programs share signifi-
cantly larger schemata that the worse programs. This likely indicates that
most runs have a period of convergence when even unfit programs share
large schemata, that this period is typically at least 6 generations in length
and that the shared schemata occur in fitter programs beyond this period
of convergence.

200 CHAPTER 7. EFFICACY EXPERIMENTS

Figure 7.4: Quartiles over fifty runs of size of largest r-o-fragment occur-
ring in k programs (size of program subset) for four forms of schema at
various stages in the run.

7.4. LARGEST MATCHED SCHEMATA BY K PROGRAMS 201

Figure 7.5: Quartiles over fifty runs of size of largest r-o-fragment occur-
ring in k programs (size of program subset) for four forms of schema and
generational-populations of various ranks.

202 CHAPTER 7. EFFICACY EXPERIMENTS

7.5 Average size of maximal schemata

Two interesting statistics available using the new method that are closely
related to the largest schema sizes of the previous subsection, are: the size
of the largest schema occurring in each of a set of programs P of cardinal-
ity k averaged over all such sets P and the average number of programs
matching schemata of order k. These statistics give insight into not just
the very most popular schemata but the population at large; these statis-
tics take into account each match between a schema and a program, which
is not the case if just the largest schema is found.

This section presents results for these two statistics in single runs of
evolution:

• The average maximal schema size – for a program subset P the ex-
periment finds the size z of the largest schema occurring in all pro-
grams of P and the average such z over all P ’s of a given cardinality
k.

• The average maximal program subset size – for a schema s the exper-
iment finds the number of programs k matching s and the average
such k over schemas s of a given order z.

It is expected that, where the population to converge, the resulting lack of
diversity would push up both the average maximal program subset size
and the average maximal schema size.

Method

The two statistics of this section are complementary with one iterating
over schemata and one over program subsets.

Using the analysis algorithms of chapter 4, the average maximal schema
size is found using the following defining functions:

• AnPS(S, zP) = a pair containing a sum and a count: if zP = k then
return <size of largest schema in S, 1 >, otherwise return < 0, 0 >

7.5. AVERAGE SIZE OF MAXIMAL SCHEMATA 203

• Agg(A, A′, c) =< Asum + cA′sum, Acount + cA′count >

Thus each aggregated value is both a sum of the aggregated values from
the analysis function AnPS and a count of how many sizes there were.
The final average is found by dividing the sum by the count. AnPS gives
the size of the largest schema occurring in each program subset if the size
of that program subset is k, and a value of no effect otherwise. Thus the
analysis provides the size of the largest schema matching a program subset
P , averaged over each program subset P of cardinality k.

The average maximal program subset size is similarly found using the
following defining functions:

• AnSc(P, zs) = if zs = k then return < |P |, 1 >, otherwise return
< 0, 0 >

• Agg(A, A′, c) =< Asum + cA′sum, Acount + cA′count >

The aggregating function again allows an average of the values of the anal-
ysis function, which in this case provides the size of the matching program
subset for each analyzed schema of order k. Thus the analysis provides the
number of programs matching a schema s, averaged over each schema s

of order k.

Results

Figure 7.6 gives the trend of the average maximal schema size over all
sets of k programs, by generation number for four forms of schema. Each
graph has generation on the horizontal axis and the average maximal schema
size on the vertical axis. The four series are the four sizes of program sub-
sets used for the average.

Three of the four graphs show an interesting feature at exactly genera-
tion 64; the average maximal schema size very suddenly increases for all
schema sizes, in some cases by a factor of 5 in one generation. It seems that

204 CHAPTER 7. EFFICACY EXPERIMENTS

Figure 7.6: Average, over all program subsets of a given size, of the largest
schema occurring in the program subset. Values are for the “seed 1” trial
with population size 51.

7.5. AVERAGE SIZE OF MAXIMAL SCHEMATA 205

Figure 7.7: Average, over all program subsets of a given size, of the largest
schema occurring in the program subset. Four trials (trials 1 to 4, popula-
tion size 51).

at that exact generation some very large schemata suddenly became popu-
lar, occurring in at least 5 programs. But these schemata were not subtrees
since the ordered subtree graph shows no such feature. The feature is most
marked for the expressive hyperschemata form of schema.

Figure 7.7 shows similar graphs but rather than showing four forms
of schema shows four trials. As before, each graph has generation on the
horizontal axis and the average maximal schema size on the vertical axis.

206 CHAPTER 7. EFFICACY EXPERIMENTS

The four series are the four sizes of program subsets used for the average.
The graphs each show marked different trends with the sudden in-

crease feature only occurring in the previously shown “Seed 1” trial. All
trials show small average maximal schema sizes in the earlier generations
but where the “Seed 2” trial does not show marked increase until gener-
ation 17 the last two trials show rapid increase even before generation 9.
The “Seed 3” trial especially shows no change in the series after about gen-
eration 15. Sections 7.6 and 7.7 give further analysis of this run, showing
it has converged by generation 20.

Figure 7.8 shows the average number of matching programs over all
schemata of a given size, by generation for four forms of schema. Each
graph has generation on the horizontal axis and the average maximal pro-
gram subset size on the vertical axis. The four series are the four sizes of
schemata used for the average.

The sudden-increase feature at generation 64 is gone with this figure
showing a noisy but steady increase in program subset size for all forms
of schema for most of the run, up until a maximum is found at about gen-
eration 60 to 80. It is interesting to compare the different forms of schema;
where very small subtrees are highly shared, very small hyperschemata
are not. Perhaps this is because programs sharing a very small hyper-
schema must share material at the root while very small subtrees may oc-
cur in different programs even if the programs do not share a root. Order
7 subtrees occur in as many programs as the same sized hyperschemata. It
seems that the larger, order 7, hyperschemata occur in few less programs
than smaller, order 2, hyperschemata even early in the run. This may be
due to hyperschemata of any of the given sizes occurring in on average
few programs.

Partly-ordered-subtrees and fragments show a trend somewhere be-
tween the two extremes of hyperschemata and subtrees; small partly-ordered-
subtrees occur in on average about 6 programs and small fragments about
5 programs.

7.5. AVERAGE SIZE OF MAXIMAL SCHEMATA 207

Figure 7.8: Average number of matching programs over all schemata of a
given size. Values are for one run (trial 1 with population size 51).

208 CHAPTER 7. EFFICACY EXPERIMENTS

7.6 Similarity between programs

This section gives an example of a more complex analysis possible using
the new method. Schemata may be effectively used to measure the simi-
larity between pairs or sets of programs. This section presents one way of
forming a program similarity measure using the new method.

The similarity of two programs S(a, b) is Na∧b

Na∨b
, where Na∧b is the number

of schemata of a given form that occur in both a and b and Na∨b is the
number of schemata of a given form that occur in either a or b, or both a

and b. If a = b then this measure will give its maximum possible value of
1. If a and b share no schemata then the measure will give its minimum
possible value of 0. Since there are typically many orders of magnitude
more large schemata than there are small schemata, only schemata of a
given size zs are counted. By restricting to one size of schema the analysis
avoids the possibility that the many large schemata of a large program
would dominate over the few small schemata of a small program.

Another useful schema inclusion/exclusion filter is made possible by
the method: since there may also be many uninteresting schemata which
are in only one or two programs, the new method may be set to exclude
or include schemata based on how many programs they occur in. In this
section the parameter minP sets a minimum number of programs a schema
must occur in for it to count toward the program similarity calculation.

Method

This section presents similarities between each pair of programs a, b as the
count of schemata shared by a and b divided by the count of schemata
occurring in either a or b, or both a and b. This similarity value may be
worked out from two statistics:

• Ns(p): the count of schemata of size zs occurring in program p and a
total of at least minP programs.

7.6. SIMILARITY BETWEEN PROGRAMS 209

• Nshare(p1, p2): the count of schemata of size zs occurring in both pro-
grams p1 and p2 and a total of at least minP programs.

The count of schemata occurring in either a or b is found as Ns(a)+Ns(b)−
Nshare(a, b).

To find Ns(p) the analysis uses a similar method to that of section 7.3.
Using the analysis algorithms of chapter 4 the analysis is over schemata
with the following two defining functions:

• AnSc(P, zs) = 1 if p ∈ P and |P | ≥ minP , 0 otherwise

• Agg(A, A′, c) = A + A′ ∗ c

The aggregating function Agg is the sum function also found in section 7.3.
In this case the aggregated analysis function returns 1 for schemata match-
ing p and at least minP − 1 other programs, and returns 0 otherwise. Thus
the analysis returns the count of these schemata. This core analysis is run
for each program p in the input population.

A similar method finds Nshare(p1, p2) for each pair of programs. Using
the analysis algorithms of chapter 4 the analysis is again over schemata
with the following two defining functions:

• AnSc(P, zs) = 1 if p1 ∈ P and p2 ∈ P and |P | ≥ minP , or 0 otherwise

• Agg(A, A′, c) = A + A′ ∗ c

The aggregating function Agg is the same sum function used previously.
The aggregated analysis function returns 1 for schemata matching p1 and
p2 and at least minP − 2 other programs, and returns 0 otherwise. Thus the
analysis returns the count of these schemata. This core analysis is run for
each pair of programs p1, p2 in the input population.

Thus defining P0 as the population and R as the set of maximal pairs
used for the analysis, the complexity of the analysis is O(|P0|2|R|) since
the analysis producing Nshare(p1, p2) has complexity O(|R|) and this core
analysis is run |P0|2 times.

210 CHAPTER 7. EFFICACY EXPERIMENTS

The figures of this section present programs on both the x and y axes
with the ithprogram on the x axis also being the ithprogram on the y axis.
The ordering of the programs is vital to clearly presenting any clusters
of similar programs that may exist and the natural ordering of programs
by rank tends to hide these clusters by placing dissimilar programs with
similar fitnesses next to each other.

For the plots of this section an alternative approach was used: once
the similarity between each pair of programs was found, the programs are
ordered by rank, and a function repeatedly optimized this order toward an
order where similar programs are close together and dissimilar programs
are far apart. This optimization proceeded for 50,000 iterations.

Each iteration randomly assigned a number 1 ≤ n ≤ 3 and randomly
shuffled n programs to new places in the order of programs. If this new
order was found to have improved over the old order, then the new order
was kept, otherwise the changes were rolled back. To test whether the new
order was better the method used the following fitness function to reward
orders for grouping similar programs together and dissimilar programs
apart:

F (p1, p2, p3, . . . , p|P0|) =

∑
i,j (1− Similarity(pi, pj)) ∗ (i− j)∑

i,j (i− j)2

where Similarity(pi, pj) is the similarity of programs pi, pj as found by the
analysis. This formula gives the ordinary least squares linear regression of
program distance to difference in index and gives a high value if small
distances correspond to small differences in index and large distances cor-
respond to large separation of index.

Results

Figure 7.9 shows, for four forms of schema, the program similarities at
generation 40 of one run of evolution (random trial “seed 1”).

7.6. SIMILARITY BETWEEN PROGRAMS 211

Figure 7.9: Program similarities between each pair of programs in gen-
eration 40 of one run with 51 programs for four forms of schema. zs =

5, minP = 1

Only schemata with 5 nodes counted toward the similarity but the
analysis placed no lower limit on the number of programs a schema must
occur in.

The plots present the similarities as five scaled groups:

• Those pairs which share no schemata have the lowest value (blue,
marked 0-0.2)

• The remaining groups hold the remaining pairs (red for low simi-
larity, then green, then yellow and finally purple for high similarity)

212 CHAPTER 7. EFFICACY EXPERIMENTS

such that each group has the same number of pairs in it. This scal-
ing step avoid non-linearities inherent to the schemata count based
similarity calculation.

The figure shows clusters of similar programs in the population with each
plot showing partly separated purple blocks of similar programs. Each
plot shows many outer programs which are completely dissimilar in terms
of schemata shared to all but one or two other programs. The purple di-
agonal line shows that all programs are similar to themselves.

The large central cluster in the plot for hyperschemata shows that most
programs share many schemata of this very expressive form of schema. By
contrast, the plot for the subtree form of schema shows less coherence with
more distinct small clusters.

Figure 7.10 shows similar plots to figure 7.9 but counts only schemata
occurring in at least 10 programs.

Comparing the plots, figure 7.10 has less fragmentation and more clear
clusters of programs. This is especially true for the subtree and hyper-
schema forms of schema. In addition, much of the diagonal purple line is
gone as these dissimilar programs match no schemata which also occur in
at least 9 other programs.

Each plot shows at least one quite distinct square cluster of programs,
which are mostly dissimilar to the other programs. Defining P as the set
of programs which share some schemata with some other program, for
the rooted forms of schemata all programs in P share some schemata with
most other programs in P since the central, non-blue group is roughly a
filled square. For the non-rooted subtree form of schema there is a small
number of programs with share schemata with only a small subset of P .

A good use of this method is to show the state of the population at
regular intervals as evolution progresses.

Figure 7.11 shows similar plots to figure 7.10 but shows the state of the
population for each 10thgeneration and generation 5 during the “seed 1”
evolution. The figure gives a good sense of how the evolution progressed:

7.6. SIMILARITY BETWEEN PROGRAMS 213

Figure 7.10: Program similarities between each pair of programs in gen-
eration 40 of one run with 51 programs for four forms of schema. zs =

5, minP = 10

• The initial programs share no 5-node-sized schemata which occur in
enough programs.

• After 5 generations, selection has produced five small (4 to 7 pro-
grams) clusters of similar programs but these clusters have not yet
been combined.

• After 10 generations, the clusters remain but some have mixed with
others with some similarity of programs from different clusters. But
one cluster has both very high similarity of programs in the cluster

214 CHAPTER 7. EFFICACY EXPERIMENTS

Figure 7.11: Program similarities between each pair of programs at various
stages of one run with 51 programs for rooted-ordered-fragments. zs =

5, minP = 5

7.6. SIMILARITY BETWEEN PROGRAMS 215

and no similarity of any of these programs with programs outside
the cluster.

• At 20 generations there is still no mixing of the two main clusters
but these clusters have grown in size and have a core of very similar
programs with a periphery of less similar programs.

• At 30 generations the two clusters have combined and diluted with
no very similar programs but many combinations of less similar pro-
grams.

• Further generations again strengthen the boundaries of program clus-
ters with generation 60 presenting two distinct groups of programs:
one with a hard edge in which all programs are very similar, and one
with a softer edge in which there are some less similar programs.

• After 100 generations, there is a dominant cluster with a core group
of very similar programs and a periphery of less similar programs.

Figure 7.12 shows similar plots to figure 7.11 but for the “seed 3” evolution
which section 7.5 found to have converged at generation 15.

Indeed, even by generation 5 the evolution looks different to the case
for the “seed 1” evolution with one dominant soft cluster of programs and
only one other smaller, hard-edged cluster of 9 programs. A large, soft-
edged cluster which may be assumed to derive from this original cluster
dominates the evolution right through to generation 100. While at times
a small cluster emerges, it remains integrated into the single dominant
cluster.

7.6.1 Non-determinism of the program ordering

The algorithm used to determine the order of programs for the figures is
non-deterministic, and we would expect that two figures differing only by
their initial random seed would differ in their overall look. Figures 7.13, 7.14,

216 CHAPTER 7. EFFICACY EXPERIMENTS

Figure 7.12: Program similarities between each pair of programs at various
stages of one run with 51 programs for rooted-ordered-fragments. zs =

5, minP = 5

7.6. SIMILARITY BETWEEN PROGRAMS 217

Figure 7.13: Program similarities between each pair of programs at gener-
ation 10 with 51 programs for rooted-ordered-fragments. zs = 5, minP = 5.
Plots differ only by the initial random seed used by the algorithm obtain-
ing a program ordering.

218 CHAPTER 7. EFFICACY EXPERIMENTS

Figure 7.14: Program similarities between each pair of programs at gener-
ation 10 with 51 programs for rooted-ordered-fragments. zs = 5, minP = 5.
Plots differ only by the initial random seed used by the algorithm obtain-
ing a program ordering.

7.6. SIMILARITY BETWEEN PROGRAMS 219

Figure 7.15: Program similarities between each pair of programs at gener-
ation 10 with 51 programs for rooted-ordered-fragments. zs = 5, minP = 5.
Plots differ only by the initial random seed used by the algorithm obtain-
ing a program ordering.

220 CHAPTER 7. EFFICACY EXPERIMENTS

and 7.15 show the effect of the non-determinism on the overall look of the
figures. In each figure the plots differ only by the initial random seed used
by the ordering algorithm. The figures themselves differ by generation,
with figure 7.13 being generation 10 (see figure 7.11), figure 7.14 being
generation 40, and figure 7.15 being generation 100.

As may be expected, while the plots of each figure differ in the place-
ment of clusters, the nature of the inner, purple, clusters (that is, number
of programs, hard or soft edge, internal speckling of lower similarity pairs,
and so on) remains intact between plots.

The outer, red, fringe in more variable, with some plots showing differ-
ent patterns. An example is the red fringe of “cluster seed 0” of figure 7.13
which looks different to that of “cluster seed 1” of the same figure. The
program ordering algorithm is good at identifying the programs belong-
ing to a cluster, but not at placing the cluster. The red fringe to shows sim-
ilarities of pairs of programs that fall into different clusters, and therefore
depends on cluster placement more than the purple which shows similar-
ities of programs in the same cluster.

7.7 Clustering programs

This section gives an final example of an interesting analysis possible us-
ing the new method.

While the previous section effectively shows the clusters of programs
in given populations, the graphs of this section show these clusters in a
more explicit way, also bypassing the requirement to search for a good or-
der of the programs.

The graphs of this section show bar graphs of two series:

• An orange series gives the size of the largest schema occurring in a
given program and some minimum number of programs in total.

Each orange bar marks a distinct program.

7.7. CLUSTERING PROGRAMS 221

• A black series, divides adjacent clusters.

For any given size of schema z on the y-axis, any two programs as-
sociate with two orange bars on the plot. If the two programs share
a schema of size z such that the schema is in some minimum num-
ber of programs in total, then all orange and black bars between the
programs are at least size z. If for two sets of programs no program
in the first set shares such a schema with any program in the second
set then the programs of each of these sets will be divided by a black
bar of size less than z.

Thus the black bars have a height such that they join the orange bars
into clusters and the height of a black bar is the maximum size of
schema for which all programs of the cluster share a schema of that
size with some other program of the cluster. Were the population di-
vided into two groups of programs which were similar to only pro-
grams in the same group, then there would be two peaks in the graph
with a small sized black line dividing them

Similarly to the plots of the last section, the order of programs on the x axis
is crucial to the plots of this section. But the method of this section relies
less on random numbers to determine the order of programs. The method
used ensures a grouping of programs such that neighbouring programs
share large schemata as far as possible.

The overall effect is for clean and descriptive plots directly showing the
clusters of similar programs in any given population, using schemata of a
given form that are in some minimum number of programs.

Method

This method forms clusters based on the largest schema size occurring in
pairs of programs. Thus on top of requiring the size of the largest schema
zs(p) in any one program p for the orange series, the analysis requires the
size of the largest schema zs(p1, p2) in each pair of programs p1, p2.

222 CHAPTER 7. EFFICACY EXPERIMENTS

To find zs(p) this analysis uses a slightly different approach than that
used in section 7.4, allowing us to filter the schemata to only those occur-
ring in P . Using the analysis algorithms of chapter 4 the analysis is over
schemata with the following two defining functions:

• AnSc(P, zs) = zs if p ∈ P and |P | ≥ minP , or 0 otherwise

• Agg(A, A′, c) = max (A, A′)

The aggregation function Agg returns the maximum value of the analysis
function AnSc. This analysis function returns the order of the analyzed
schema if it occurs in p and at least minP − 1 other programs, or returns a
value of no effect otherwise. Thus the analysis provides the order of the
largest such schema.

This core analysis is run for each program p in the input population.
A similar method finds zs(p1, p2) for each pair of programs. Using the

analysis algorithms of chapter 4 the analysis is again over schemata with
the following two defining functions:

• AnSc(P, zs) = zs if p1 ∈ P and p2 ∈ P and |P | ≥ minP , or 0 otherwise

• Agg(A, A′, c) = max (A, A′)

The aggregation function Agg again returns the maximum value of the
analysis function AnSc. In this case the analysis function returns the order
of the analyzed schema if it occurs in p1 and p2 and at least minP − 2 other
programs, or returns a value of no effect otherwise. Thus the analysis
provides the order of the largest such schema.

This core analysis is run for each pair of programs p1, p2 in the input
population.

Thus defining P0 as the population and R as the set of maximal pairs
used for the analysis, the complexity of the analysis is near O(|P0|2|R|)
since the analysis producing zs(p1, p2) has complexity O(|R|) and this core
analysis is run |P0|2 times.

The method to find the order of programs is as follows:

7.7. CLUSTERING PROGRAMS 223

• The procedure proceeds from small schema sizes to large schema
sizes by progressively dividing a base cluster, initially the whole
population, into smaller clusters by finding the smallest possible sub-
sets of a given cluster of programs where each pair of programs shar-
ing a schema of a given size are placed in the same subset.

• For each schema size z, the method further divides the clusters of
programs for size z − 1, or the whole population if z = 0, based on
which programs share a schema of size z.

• The method orders the z sub-clusters of each z−1 cluster from many
programs on the left to few programs on the right.

• The process then proceeds to the next size until the clusters are sin-
gletons or no shared schemata are found.

Thus other than the ambiguous ordering of equal-sized clusters, the pro-
cess is deterministic.

Results

Figure 7.16 shows twelve plots from various generations of the “seed 1”
trial also used in the previous section. Each of the twelve plots shows
the cluster graph of the population at that generation for rooted-ordered-
fragment schemata occurring in at least 5 programs. The figure also clearly
echoes the results of the previous section for the “seed 1” evolution: At
first there are few shared schemata of any size but by generation 5 there
are several distinct competing clusters. Later two main distinct clusters
form, which by generation 30 have joined into one. These plots show with
more certainty the sizes of the clusters and show clearly the sizes of the
shared schemata in each cluster. For instance, the small third cluster seen
at generation 10 of figure 7.11 has programs sharing only small schemata.
The figure clearly identifies what happened at generation 64 of figure 7.6

224 CHAPTER 7. EFFICACY EXPERIMENTS

Figure 7.16: Program clusters for each 10thgeneration of the “seed 1” evo-
lution using rooted-ordered-fragment schemata occurring in at least 5 pro-
grams.

7.7. CLUSTERING PROGRAMS 225

of section 7.5 which saw the average size of schema for many sizes of pro-
gram subset increase five-fold in one or two generations: a cluster that
emerged around generation 40 and strengthened to cover half of the pro-
grams by generation 50 gained in number but decreased in program size.
By generation 60 the cluster has many programs but with a small aver-
age size. By generation 70 the cluster has been replaced by the progeny
of the smaller in number cluster containing significantly larger programs.
From the previous result it may be assumed that this transition occurred
at generation 64. Later generations show convergence with few clusters of
appreciable size competing with the dominant cluster.

Figure 7.17 shows twelve similar plots for the ordered-subtree form of
schema. The plots are distinctive in how they compare to those of the
previous figure. For early generations they show quite a different picture
to the rooted-ordered-fragments. Even by generation 5 many programs
share sizable subtrees and nearly all programs share some subtree of size
3. The plots for generations 5 and 10 are not as broken up into distinct clus-
ters as was the case for rooted-ordered-fragments. The plot for the initial
generation may present a clue why: where few of the initial random pro-
grams shared any rooted-ordered-fragment of more than one node, most
shared some subtree with two or three nodes. This trend carries over into
generation 5 providing most programs with a base-line subtree similar-
ity. Interestingly, after about generation 30 the plots for the two forms of
schema are very similar. Perhaps by this generation the baseline similarity
between random programs and its difference between the two forms of
schema, has become less influential.

Figure 7.18 shows twelve plots from various generations of the “seed
3” trial which was found in the previous section to have converged early
in the run. Each of the twelve plots shows the cluster graph of the popu-
lation at that generation for rooted-ordered-fragment schemata occurring
in at least 5 programs. Again, the figure echoes the results of the previ-
ous section. It shows that even by generation 5 a single large cluster of

226 CHAPTER 7. EFFICACY EXPERIMENTS

Figure 7.17: Program clusters for each 10thgeneration of the “seed 1” evo-
lution using ordered-subtree schemata occurring in at least 5 programs.

7.7. CLUSTERING PROGRAMS 227

Figure 7.18: Program clusters for each 10thgeneration of the “seed 3” evo-
lution using rooted-ordered-fragment schemata occurring in at least 5 pro-
grams.

228 CHAPTER 7. EFFICACY EXPERIMENTS

large programs has emerged. The other competing cluster dwindles in
size and by generation 20 the single dominant cluster has established it-
self and there is little change for the rest of the run. At times a competing
cluster emerges but they are always reabsorbed into the main cluster.

The one major parameter to the analysis, other than form of schema, is
the minimum number of programs a schema must occur in to be included
in the cluster analysis. Figure 7.19 shows six plots with various settings
for this parameter. As may be expected, the trivial case with no minimum
number of programs shows a noisy graph with many small clusters. In-
creasing the number of required programs smoothes the graph and a large
enough setting removes all smaller clusters.

Interestingly, while the leftmost major cluster for the “no limit” case
has 20 programs, the leftmost major cluster for the “5 programs” case has
23 programs. This shows that the difference is not a simple smoothing of
the graph.

7.7.1 Non-determinism of the program ordering

As for the method of the previous section, a non-deterministic algorithm is
used to order the programs in each of the figures of this section, but where
the algorithm of the previous section relies heavily on the random number
generator, the algorithm used here uses it only to determine the order of
two equal size clusters.

To test the effect of the non-determinism, the settings used to produce
each of the twelve plots of figure 7.17 were used to produce twelve similar
plots which differed only by the initial random number generator (RNG)
seed used by the clustering algorithm. With careful visual inspection no
difference was noticed between any two plots that differed only by RNG
seed.

7.7. CLUSTERING PROGRAMS 229

Figure 7.19: Program clusters for the 40thgeneration of the “seed 1” evolu-
tion using rooted-ordered-fragment schemata occurring in at least k pro-
grams for various values of k.

230 CHAPTER 7. EFFICACY EXPERIMENTS

7.8 Discussion

This chapter presented a few sample analyses using the new method. The
chapter presents five types of analysis, including three basic analyses of
statistics on the schemata occurring in programs of a given population
and two more complex analyses. The various analyses presented some
results that were expected and some results that were quite unexpected:

• Section 7.3 presented the total number of schemata of each size oc-
curring in any program of the given population.

As expected, the analysis found few large or small schemata and
many medium schemata. Each curve was slightly shifted toward
larger schemata. The form of schema was a major factor in the num-
ber of schemata with orders of magnitude more schemata of a more
expressive form like hyperschemata than of a less expressive form
like fragments.

• Section 7.4 presented the size of the largest schema occurring in any
k programs of a given population for various values of k.

The expected trend was a slow growth in the size of the largest schemata
in k programs for most sizes k. In contrast, the observed trend is a
very fast rise in this statistic for all sizes k and relatively slow growth
after about generation 20. By generation 50 the largest rooted-ordered-
hyperschema in any 21 programs was unexpectedly large at about
20 nodes in size, not including don’t-care nodes. The largest ordered-
subtree was slightly smaller. Despite the trend of a fast rise at the
start of the run, then steady-state for the remainder of the run, the
plots do not suggest convergence since the distribution does not sug-
gest that all programs are excessively similar.

• Section 7.4 also presented the size of the largest schema occurring in
the rthranked programs over any k generations for various values of
r and k.

7.8. DISCUSSION 231

This analysis used generational populations, where rather than analysing
programs of different rank and common generation, analysis is on
programs of common rank and different generation. As may be ex-
pected, fit programs shared significantly larger fragments than unfit
programs. Interestingly, there was at least one trial out of the fifty
randomized trials of figure 7.5 in which this was not the case; in
these runs even the very most unfit programs of this trial sharing
large fragments over many generations.

• Section 7.5 presented the average, over all program subsets of size k,
of the largest matched schema.

While the previous results were medians over 50 randomized trials,
this section presented results for individual trials and thus showed
in more detail the events and trends of a single run. The analysis
showed very clear trends and events in some evolutions, including
the clear trend that at about generation 18 the “seed 3” trial had rel-
atively large shared schemata and showed little change in the size of
these schemata for the rest of the run. This would seem clear indica-
tion that this trial converged early.

The average largest matched schema for trial “seed 1” showed a very
interesting event at generation 64 with the statistic jumping up to
4-fold in that one generation for rooted-hyperschemata and k = 3.
This sudden increase is sustained later in the run. It is unclear from
this graph why such an event would occur, although later analysis in
sections 7.6 and 7.7 gave good evidence it was one tight-knit cluster
of large programs succeeding a larger cluster of smaller programs.

• Section 7.6 presented similarities between programs, based on num-
ber of shared schemata.

This section presented a matrix of similarities between programs.
Each similarity was defined as the number of schemata shared by
both programs, divided by the total number of schemata in either

232 CHAPTER 7. EFFICACY EXPERIMENTS

program. This very visual analysis gave a very fine grained view
into a single run of GP by displaying how clusters of programs grew,
shrank and merged through evolution. The plots of the section show
another view of the event at generation 64 of the “seed 1” trial: one
cluster of programs spectacularly gave way to another. They also
backed up the results of section 7.5 by showing that the “seed 3” trial
had effectively converged by generation 15, though with less precise
timing.

• Section 7.7 presented clusters of programs, based on size of shared
schemata.

A cluster of programs was defined as a connected set of programs,
that is, any two programs sharing a schema of the required size were
placed in the same cluster. Thus this section presented an alter-
nate view of the clusters of section 7.6, showing the size of shared
schemata on a bar-plot. The same clusters were found in the two
analyses but the plots of section 7.7 showed more clearly schema
size as well as the cluster size shown in the plots of section 7.6.

This chapter shows several interesting analyses of GP using the new method,
both of the general trend of a GP system over multiple runs, in sections 7.3
and 7.4, and of the trend of the GP system in a single evolution, in sec-
tions 7.5, 7.6 and 7.7.

The new method, though slow to use on an evolution, presents ex-
tremely fine-grained analysis of the shared schemata in the population in
a way not at all practical on this scale by previous methods. This chap-
ter presented only a small fraction of the analyses possible by using the
method and particularly focussed on convergence of runs and clusters
of programs. Other analyses could detect bloat or analyze wider proper-
ties of GP like the ability of crossover to successfully combine fit building
blocks into fitter programs. In addition, it would be very interesting to
look at the relationships between the schema statistics presented here and

7.9. CHAPTER SUMMARY 233

the fitness of populations and programs.

But even the basic analyses presented here are very interesting. The
simple program distance used gives an intriguing view into evolution.
One may imagine an animation showing the macro process of evolution
in a way resembling the micro process of Conway’s game of life [28]. The
clustering of section 7.7 shows very plainly how many programs share
how large a schema and would also be suited to animation.

The generation populations of section 7.4 nicely show the difference
between fit and unfit programs, which is not apparent in the analyses of
standard populations, which could be termed rank populations. Another
avenue not yet explored is seed-populations where the population passed
to the algorithm is made up of programs of the same rank and from the
same generation but from different trials. Such an analysis would make
independent the factors of rank and generation; in both rank and gener-
ational populations one or other of these factors is forced to play a role
in the analysis by being different for each program in the population. All
types of analysis presented in this chapter could, like clustering or aver-
age schema size, be made to work with generational populations and seed
populations.

7.9 Chapter summary

The goal of this chapter was to present a few sample analyses using the
new method, deriving results of interest to the GP community from a few
runs of GP. The chapter aimed to show the efficacy of the new method, if
only with a small number of relatively simple analyses.

Though most of the analyses presented are very difficult to replicate
using previous methods, the new method performs these analyses without
great difficulty even when analyzing rooted-hyperschemata in real-sized
populations of 101 60-node programs. While there are many ways that
these analyses may be extended and this chapter seeks only to provide

234 CHAPTER 7. EFFICACY EXPERIMENTS

a taste of what the new method can do, even the results of this chapter
give interesting insights into: the potential of a run to converge, the extent
of that convergence, the jostling for position of clusters of programs in
evolution and the effect of these clusters on shared schemata.

Chapter 8

Conclusions

This chapter presents the conclusions of this thesis with reference to the
goals of section 1.2.

This thesis had the following goal:

produce a new method for the analysis of Genetic Program-
ming (GP) by empirically analysing the schemata shared be-
tween programs

The new method should be able to analyze various forms of schema and
be applicable to medium sized populations and programs. Another stip-
ulation was that the method be deterministic in its results, not bending to
the whims of chance and that the enabled analyses be potentially useful.
The method that this thesis has presented achieves all these aims.

The new method has defined a new form of schema and a new lan-
guage for forms of schema in order to be applicable over a range of forms
of schema. The match-tree form of schema is a general form of schema which
borrows from Object-Oriented programming to lend behaviour to each
schema node, easily generalizing over all relevant surveyed forms of schema
in the literature. The match-tree form of schema language provides a stan-
dardized way to refer to specializations of this extremely general form of
schema and allows these specializations to be expressed. All relevant com-

235

236 CHAPTER 8. CONCLUSIONS

monly used forms of GP schema and many as yet undiscovered forms,
may be expressed as match-tree forms. The match-tree form of schema can
be extended by adding label-match and child-match functions to the vocab-
ulary used by the system. The experiments of this thesis have laid out a
set of basic label-match and child-match functions.

The new method has been shown in the previous chapters to effectively
analyze populations of GP genetic programs even up to 500 60-node pro-
grams, easily exceeding its target. Only a small subset of the forms ex-
pressible in the match-tree form of schema language are implemented in
the system: the conjunctive match-tree forms which are ordered rooted forms
of schema and de-rooted conjunctive forms of schema which are ordered forms
of schema. Generalizing to non-rooted forms of schema significantly de-
creased performance and increased the chances of exceeding resource lim-
its. No efficient algorithm was found to allow further generalization to
non-conjunctive forms of schema, for instance unordered-fragments.

The new method is indeed deterministic, producing the same output
for the same input. The previous chapter has presented some analyses
enabled by the method which are likely to be of interest to the GP commu-
nity. Future work promises to present many more.

8.1 Specific conclusions

The main goal of this thesis was to

provide a method to perform efficient analysis on all the schemata
occurring in an input set of genetic programs

This thesis achieved this goal by designing and building a system per-
forming such analysis.

In experiments the analysis system proved efficient even at sizable
scales of evolution. The new method groups schemata such that large
volumes of similarly propertied schemata are summed up by a represen-

8.1. SPECIFIC CONCLUSIONS 237

tative. In doing so the system can perform analyses on medium-sized pop-
ulations of genetic programs which were previously impractical or impos-
sible.

In particular, the new method meets all of the several qualifications to
the main goal that were given in section 1.2.

• Some of the analyses enabled by the method will be useful to researchers and
the research community.

The new method presented in this thesis provides a base for a great
many analyses. While chapter 7 gives the results of several analyses
on GP populations using the new method, there are a great many
more which are possible and can be explored in future work.

The analyses of chapter 7 include previously impossible or difficult
analyses which give insight into: convergence, the clustering of pro-
grams during evolution, and the difference in behaviour between
different forms of schema as well as providing a fine-grained view
into the process of GP evolution itself. Each of these areas is poten-
tially of great interest to the GP community.

To indentify and study convergence, experiments in section 7.4 looked
at the highest-order schema occurring in any set of k programs. Using
the new method, this statistic is found by performing an analysis
on maximal program subsets that is equivalent to an analysis find-
ing the size of the largest schema in each set of k programs from the
population P0. This useful analysis is made possible by grouping
the huge set of schemata analyzed into a manageable set of repre-
sentatives, giving orders of magnitude better efficiency over a naive
analysis. Another similar analysis found the average size, over all
sets of programs P of size k, of the largest schema occurring in all
programs of P .

The new method showed that in the runs of evolution studied total
convergence did not occur even after 100 generations. But after only

238 CHAPTER 8. CONCLUSIONS

20 generations, in the median of 50 randomized trials, there was al-
ready a 10-node fragment shared by almost half of the 101 programs
of the population. After this steep increase of the size of the largest
shared fragment the remainder of the run shows a steady but slow
increase in the size of the largest fragment in k programs for most
values of k. The largest rooted-ordered-hyperschemata and rooted-
partly-ordered-fragments followed this similar trend of a fast initial
increase followed by a slower rise for the remainder of the run.

In addition, the results of section 7.6 give insight into convergence by
presenting a schema related distance between each pair of programs,
at various points during the evolution. Figure 7.11 shows these dis-
tances as they evolve in one evolution. The clear clusters of programs
seen in the figure are in a constant state of flux, and there is no ap-
parent stagnation late in the run. But for a different evolution shown
by figure 7.12 the difference is marked, with clear convergence little
change in the arrangement of the clusters of programs after about
generation 20.

• The method provides an analysis on all schemata of the given form in the
given programs. The result is not dependent on random numbers or selec-
tive sampling.

The new method defined by this thesis uses a deterministic algo-
rithm, not relying on selective sampling and exactly emulates cer-
tain “global” analyses which if done in a “naive” way are typically
impractical due to the large numbers of schemata. Section 4.4 gives
methods by which a naive analysis which visits each schema in turn
and analyses the programs the schema is in may be refactored into an
equivalent and achievable analysis of representative pairs. The equiva-
lent analysis will reliably return the same result as the naive analysis.

By removing the need for selective sampling of schemata, this the-
sis removes the inevitable sampling bias inherent in sampling from

8.1. SPECIFIC CONCLUSIONS 239

a collection of trees. The result is an algorithm which has all the ben-
efits of the global naive analysis but has practical and at times very
good complexity even when analyzing the fragments in populations
of 400 60-node programs.

• The method provides analysis on complex and interesting forms of schemata

By using the “form of schema language” the new method may ana-
lyze a very wide range of forms of schema in one implementation.
Included in the forms used for the experiments of chapters 6 and 7
are both rooted and non-rooted forms of schema, including sub-
trees, fragments, hyperschemata and the new form: partly-ordered-
subtrees which has only limited ordering of function arguments. Pre-
vious literature has seldom dealt with unordered schemata and hy-
perschemata are typically seen as a highly general and highly inter-
esting form of schema.

• The new method should be able to analyze all schemata in 100 seven-deep
programs. The analysis should be available on real world, non-toy problems

The experiments of chapter 6 included runs of the new method on
populations of up to 501 60-node programs or up to 51 80-node pro-
grams, although at these scales of evolution many runs of the analy-
sis exceeded resource limits. This thesis was able, even using a fairly
unoptimized system, to reliably perform useful analysis on rooted-
ordered or rooted-partly-ordered forms of schemata in populations
of 300 60-node programs. Given that a seven-deep binary program
has a maximum of 63 nodes, and that few typical populations of such
programs would have an average program size of over 60 nodes, the
new method exceeds the goal’s requirement and is applicable to real-
world, non-toy GP systems.

240 CHAPTER 8. CONCLUSIONS

8.2 Other observations

Achieving the main goal involved achieving subsidiary goals: Provide a
language for forms of GP schema unifying common forms of GP schema.

• There are many forms of schema in the literature and this thesis
provides an important unifying contribution. The match-tree form of
schema language is a language by which forms of schema may be rep-
resented. This is similar to forms of schema defining a way by which
individual schemata may be represented. This language is expres-
sive enough to represent all relevant existing forms of schema in the
literature.

The match-tree form of schema language derives its considerable ex-
pressivity from this thesis’ definition of the match-tree form of schema
with any form of schema represented by the match-tree form of schema
language in fact defining a subset of the overall match-tree form of
schema. This overall form of schema borrows a similar idea from
object-oriented-programming; each node in a match-tree schema en-
capsulates behaviour allowing it to decide intelligently which pro-
gram nodes it does or does not occur in. The functions providing
this behaviour provide arbitrarily complex matching behaviour.

The definition of a representation for forms of schema means a more
rigorous way to define schemata. Too often literature defining a form
of schema sums-up the form in few words and leaves out crucial de-
tails. Such details include whether the form is “ordered” or whether
additional program children negate a match. In declaring the form
of schema using the match-tree form of schema language, all such
details are also declared.

• Build the analysis method to be compatible with this language for forms of
schema.

The system used for this thesis’ experiments implements two broad

8.2. OTHER OBSERVATIONS 241

classes of match-tree forms: conjunctive match-tree forms of schema
and de-rooted conjunctive match-tree forms of schema. Though only
allowing analysis of a small proportion of the forms expressible by
the match-tree form of schema language, these two classes are enough
to represent most forms of schema used in past GP literature with the
notable exception of the seldom used “unordered” forms.

An analysis system which implements the match-tree form of schema
language may be provided with a form of schema as an argument
with no need to reimplement to specialize to a different form of
schema. Indeed, the system used for this thesis’ experiments takes as
an argument the string representation of a form of schema, returning
results valid for the represented form.

Characterize the method by using it for GP analysis in a range of situations.

• Since no close theoretical bounds on the complexity of the new method
were found, there was a need to test the new method in practice.
Chapter 6 put the new method through its paces over tens of thou-
sands of parameter combinations, testing the time and space com-
plexity in practice with default parameters and while varying pa-
rameters including generation number, variant of the algorithm, pop-
ulation size, program size and function arity.

As expected, experiments found high correlation between the num-
ber of representative pairs, the grouping object which is the major
artefact produced by the new method, and its running time and
memory footprint both in RAM and on disk, with close to linear cor-
relation in each case.

The new method was found to slow as the run progressed and the
number of schema shared by programs of the population increased.
But the complexity of the new method was found to plateau after a
few generations with sustainable complexity at least until generation
100.

242 CHAPTER 8. CONCLUSIONS

Agreeing with the deterministic nature of the new method, each vari-
ant of its core algorithm was found to produce the exact same output.
Some variants were found to be significantly faster than others. The
variant “ProMP” was the fastest overall.

The method allows large population sizes more easily than large pro-
gram sizes. It is approximately quadratic on population size and
quartic on program size in nodes. Experiments found that func-
tion arity had a considerable effect on the complexity of the method
with larger function arities leading to longer running time and larger
memory footprint. A certain proportion of the runs would typically
fail by exceeding memory limits, even when these limits were set
very high. The majority of runs stayed well within reasonable limits.

The secondary goal of this thesis was to implement the method in C++ as
a tool for analysis of GP and the thesis achieved this goal by the PhDVgp
package which is available from the author under an open source licence1.
The tool currently implements the subset of the new method required for
experiments but is under further development to provide additional func-
tionality.

8.3 Discussion of the uses of this research

I hope that this research provides the community with a very useful anal-
ysis tool, but what of its eventual use?

This analysis tool provides fine-grained information to any GP researcher
dealing in small to medium scales of evolution, who wishes to “see” what
their GP system is doing during evolution. The plots of the previous chap-
ter show that very detailed information is present about the state of a run,
and how the run is progressing. The researcher could be expected, for

1PhDVgp is currently hosted at sourceforge: http://sourceforge.net/projects/phdvgp/.

8.3. DISCUSSION OF THE USES OF THIS RESEARCH 243

instance, to adjust the parameters of the system until most runs don’t con-
verge, and there are typically two or three soft edge clusters in the popu-
lation.

Or should they be hard edge clusters? Or a mix? I expect that this
tool could be used to look for the combination of clusters of programs
which gives best expected performance. In evolution, the tool could be
used to vet evolutions which are unpromising (for example, the “seed 5”
evolution of the previous chapter could have been identified as converged
quite early in the run), or to adjust parameters on the fly such that the run
continues to be promising.

This thesis’ experiments do not exploit a powerful property of the anal-
ysis method. To all the analyses, each schema was a number, however,
the method actually identifies the exact largest schema (as a match-tree
schema) for each set of programs in the population, as well as the set of
programs that the schema occurs in. So most of the figures of the previous
chapter could have been annotated with the string representations of the
schemata they referred to (for instance, each cluster could be labelled with
its prominent schema). Schemata have long been used as subroutines (for
instance, as ADFs), and this method may find use as an automatic way to
find commonly used subroutines that are in fit programs.

Are there building blocks in GP? If so, they are likely to be repre-
sentable as schemata, and would have peculiar characteristics. I expect
that this tool will not only shed considerable light on the behaviour of
building blocks in evolution through plots like those in the previous chap-
ter (are they the hard edge clusters?), but will be able to name suspected
building blocks as match-tree schemata. It would be very interesting to
inject such a suspected building block into evolutions other than its origi-
nator to test its range.

A highly optimized version of the tool could be run on the union of the
populations of many generations of the same run of evolution. The result
would be not only the common schemata between programs, but the path

244 CHAPTER 8. CONCLUSIONS

of these schemata through evolution. Combined with a graph showing
the hereditary of each program, this would provide copious data on the
propagation of schemata through evolution, guiding the search for better
GP.

8.4 Directions for future work

Now that this thesis is complete, we look to the future. The following list
gives a few ideas on how this research could be used and extended:

• More in depth analysis – the results of chapter 7 could be expanded
to, for instance, show the clusters of the population each generation
instead of each 10thgeneration. Some of the details are lost at the
wider time-scale.

• Animated visualization of the results – some of the results would
be ideally suited to animation, showing how the trends change by
generation.

• Generation and seed populations – while the results of section 7.4
take a cursory glance at generation populations, these populations
deserve a more thorough investigation. Seed populations, that is
populations where individuals have common rank and generation
and differ only by seed, may hold the key to finding objectively good
building blocks and will be an immediate line of inquiry.

• More forms of schema – the forms of schema used in experiments do
not use some of the more advanced features of the match-tree form
of schema language, for instance, forms could use the partly ordered
pind child-match function only for unordered functions like addi-
tion, and not for ordered functions like if. Other child-match func-
tions are also possible.

8.4. DIRECTIONS FOR FUTURE WORK 245

• Work on generalizing the algorithms to take non-conjunctive forms
of schema.

• In experiments, the non-rooted forms of schema performed badly
and this is likely to be able to be corrected.

• Implement filters to set minimum and maximum sizes on the program-
subset and schemata of interest – such filters would be easy to imple-
ment and would make the algorithms far more efficient.

• Use the method as part of evolution:

– To detect when a run will go bad – experiments of chapter 7
may indicate that convergence is detectable early in the run, is
fitness also detectable. If it is, we may save time by using a fast
test to avoid a slow, fruitless run.

– To detect when a diversity boost is needed – the new method
can detect the diversity of a population. By detecting diver-
sity during evolution we could provide tailored mutation and
crossover rates.

– Use the maximal schemata as functions – rather than using the
maximal schemata for analysis, they may be suited for use as
subroutines. The new method would provide a non-biased way
to obtain these subroutines for future generations or evolutions.

So, the PhD student with his ice-cream scoop finds there is an entirely new
iceberg under the one made into this thesis.

246 CHAPTER 8. CONCLUSIONS

Bibliography

[1] AAMODT, A., AND PLAZA, E. Case-based reasoning: Foundational
issues, methodological variations, and system approaches. AI com-
munications 7, 1 (1994), 39–59.

[2] AHLUWALIA, M., AND BULL, L. Coevolving functions in genetic
programming. Journal of Systems Architecture 47, 7 (2001), 573–585.

[3] ALTENBERG, L. The evolution of evolvability in genetic program-
ming. In Advances in Genetic Programming, J. Kenneth E. Kinnear,
Ed. MIT Press, 1994, ch. 3, pp. 47–74.

[4] ALTENBERG, L. The schema theorem and Price’s theorem. In Foun-
dations of Genetic Algorithms 3 (Estes Park, Colorado, USA, 1994),
L. D. Whitley and M. D. Vose, Eds., Morgan Kaufmann, pp. 23–49.
Published 1995.

[5] ANGELINE, P. J. Subtree crossover: Building block engine or macro-
mutation? In Genetic Programming 1997: Proceedings of the Second
Annual Conference (Stanford University, CA, USA, 1997), J. R. Koza,
K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo,
Eds., Morgan Kaufmann, pp. 9–17.

[6] ANGELINE, P. J., AND POLLACK, J. B. Coevolving high-level repre-
sentations. July Technical report 92-PA-COEVOLVE, Laboratory for
Artificial Intelligence. The Ohio State University, 1993.

247

248 BIBLIOGRAPHY

[7] BADER-EL-DEN, M., AND FATIMA, S. Genetic programming for
auction based scheduling. In Proceedings of the 13th European Con-
ference on Genetic Programming, EuroGP 2010 (Istanbul, 2010), A. I.
Esparcia-Alcazar, A. Ekart, S. Silva, S. Dignum, and A. S. Uyar, Eds.,
vol. 6021 of LNCS, Springer, pp. 256–267.

[8] BANZHAF, W., BANSCHERUS, D., AND DITTRICH, P. Hierarchical
genetic programming using local modules. InterJournal Complex Sys-
tems 228 (2000).

[9] BICKEL, A. S., AND BICKEL, R. W. Tree structured rules in genetic
algorithms. In Genetic Algorithms and their Applications: Proceedings of
the Second International Conference on Genetic Algorithms (MIT, Cam-
bridge, MA, USA, 1987), J. J. Grefenstette, Ed., Lawrence Erlbaum
Associates, pp. 77–81.

[10] BISHOP, C. Neural Networks for Pattern Recognition. Oxford Univer-
sity Press, USA, 1995.

[11] BRAMEIER, M. On Linear Genetic Programming. PhD thesis, Fach-
bereich Informatik, Universit Germany, 2003.

[12] BROCK, O. Evolving reusable subroutines for genetic programming.
In Artificial Life at Stanford 1994, J. R. Koza, Ed. Stanford Bookstore,
Stanford, California, 94305-3079 USA, 1994, pp. 11–19.

[13] BROOKS, R. A. Artificial life and real robots. In Toward a Prac-
tice of Autonomous Systems: Proceedings of the First European Confer-
ence on Artificial Life (Cambridge, MA, USA, 1992), F. J. Varela and
P. Bourgine, Eds., MIT Press, pp. 3–10.

[14] CIESIELSKI, V., AND LI, X. Experiments with explicit for-loops
in genetic programming. In Proceedings of the 2004 IEEE Congress
on Evolutionary Computation (Portland, Oregon, 2004), IEEE Press,
pp. 494–501.

BIBLIOGRAPHY 249

[15] CLERC, M. Particle Swarm Optimization, vol. 4. ISTE London, UK,
2006.

[16] COVER, T., AND HART, P. Nearest neighbor pattern classification.
IEEE Transactions on Information Theory 13, 1 (2002), 21–27.

[17] CRAMER, N. L. A representation for the adaptive generation of sim-
ple sequential programs. In Proceedings of an International Conference
on Genetic Algorithms and the Applications (Carnegie-Mellon Univer-
sity, Pittsburgh, PA, USA, 1985), J. J. Grefenstette, Ed., pp. 183–187.

[18] DAIDA, J. M., BERTRAM, R. R., POLITO, J. A., AND STANHOPE,
S. A. Analysis of single-node (building) blocks in genetic program-
ming. In Advances in Genetic Programming 3, L. Spector, W. B. Lang-
don, U.-M. O’Reilly, and P. J. Angeline, Eds. MIT Press, Cambridge,
MA, USA, 1999, ch. 10, pp. 217–241.

[19] DASGUPTA, D. Artficial Immune Systems and Their Applications.
Springer-Verlag New York, Inc. Secaucus, NJ, USA, 1998.

[20] DORIGO, M., MANIEZZO, V., AND COLORNI, A. Ant system: opti-
mization by a colony of cooperating agents. Systems, Man, and Cy-
bernetics, Part B: Cybernetics, IEEE Transactions on 26, 1 (2002), 29–41.

[21] DROSTE, S. Efficient genetic programming for finding good gener-
alizing boolean functions. In Genetic Programming 1997: Proceedings
of the Second Annual Conference (Stanford University, CA, USA, 1997),
J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and
R. L. Riolo, Eds., Morgan Kaufmann, pp. 82–87.

[22] EIBEN, A., AND SMITH, J. Introduction to Evolutionary Computing.
Springer Verlag, 2003.

[23] FELDMAN, J., AND BALLARD, D. Connectionist models and their
properties. Cognitive Science 6, 3 (1982), 205–254.

250 BIBLIOGRAPHY

[24] FERARIU, L., AND PATELLI, A. Multiobjective genetic programming
for nonlinear system identification. In 9th International Conference on
Adaptive and Natural Computing Algorithms, ICANNGA 2009 (Kuopio,
Finland, 2009), M. Kolehmainen, P. Toivanen, and B. Beliczynski,
Eds., vol. 5495 of Lecture Notes in Computer Science, Springer, pp. 233–
242.

[25] FORSYTH, R. Beagle a darwinian approach to pattern recognition.
Kybernetes 10 (1981), 159–166.

[26] FUKUNAGA, A. S. Massively parallel evolution of sat heuristics.
In 2009 IEEE Congress on Evolutionary Computation (Trondheim, Nor-
way, 2009), A. Tyrrell, Ed., IEEE Computational Intelligence Society,
IEEE Press, pp. 1478–1485.

[27] FURUHOLMEN, M., GLETTE, K., HOVIN, M., AND TORRESEN, J.
Coevolving heuristics for the distributor’s pallet packing problem.
In 2009 IEEE Congress on Evolutionary Computation (Trondheim, Nor-
way, 2009), A. Tyrrell, Ed., IEEE Computational Intelligence Society,
IEEE Press, pp. 18–21.

[28] GARDNER, M. On cellular automata, self-reproduction, the garden
of eden, and the game of life. Scientific American 224, 2 (1971), 112–
117.

[29] GOLDBERG, D. E. Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Addison–Wesley, Reading, MA, 1989.

[30] GREFENSTETTE, J. J., AND BAKER, J. E. How genetic algorithms
work: A critical look at implicit parallelism. In Proceedings of the
Third International Conference on Genetic Algorithms (ICGA’89) (San
Mateo, California, 1989), J. D. Schaffer, Ed., Morgan Kaufmann Pub-
lishers, Inc., pp. 20–27.

BIBLIOGRAPHY 251

[31] HAYNES, T. Phenotypical building blocks for genetic programming.
In Genetic Algorithms: Proceedings of the Seventh International Con-
ference (Michigan State University, East Lansing, MI, USA, 1997),
T. Back, Ed., Morgan Kaufmann, pp. 26–33.

[32] HAYNES, T. D. Collective Adaptation: The Sharing of Building Blocks.
PhD thesis, Department of Mathematical and Computer Sciences,
University of Tulsa, Tulsa, OK, USA, 1998.

[33] HOANG, T. H., ESSAM, D., MCKAY, B., AND HOAI, N. X. Building
on success in genetic programming: Adaptive variation and devel-
opmental evaluation. In Proceedings of the Second International Sym-
posium on Computation and Intelligence, ISICA 2007 (Wuhan, China,
2007), L. Kang, Y. Liu, and S. Y. Zeng, Eds., vol. 4683 of Lecture Notes
in Computer Science, Springer, pp. 137–146.

[34] HOLLAND, J. H. Adaption in Natural and Artificial Systems. Univer-
sity of Michigan Press, 1975.

[35] JONG, K. D. On using genetic algorithms to search program spaces.
In Genetic Algorithms and their Applications: Proceedings of the second
international conference on Genetic Algorithms (MIT, Cambridge, MA,
USA, 1987), J. J. Grefenstette, Ed., Lawrence Erlbaum Associates,
pp. 210–216.

[36] KAMEYA, Y., KUMAGAI, J., AND KURATA, Y. Accelerating genetic
programming by frequent subtree mining. In GECCO ’08: Proceed-
ings of the 10th Annual Conference on Genetic and Evolutionary Com-
putation (Atlanta, GA, USA, 2008), M. Keijzer, G. Antoniol, C. B.
Congdon, K. Deb, B. Doerr, N. Hansen, J. H. Holmes, G. S. Hornby,
D. Howard, J. Kennedy, S. Kumar, F. G. Lobo, J. F. Miller, J. Moore,
F. Neumann, M. Pelikan, J. Pollack, K. Sastry, K. Stanley, A. Stoica,
E.-G. Talbi, and I. Wegener, Eds., ACM, pp. 1203–1210.

252 BIBLIOGRAPHY

[37] KINZETT, D., JOHNSTON, M., AND ZHANG, M. How online simpli-
fication affects building blocks in genetic programming. In GECCO
’09: Proceedings of the 11th Annual conference on Genetic and evolution-
ary computation (Montreal, 2009), G. Raidl, F. Rothlauf, G. Squillero,
R. Drechsler, T. Stuetzle, M. Birattari, C. B. Congdon, M. Midden-
dorf, C. Blum, C. Cotta, P. Bosman, J. Grahl, J. Knowles, D. Corne,
H.-G. Beyer, K. Stanley, J. F. Miller, J. van Hemert, T. Lenaerts,
M. Ebner, J. Bacardit, M. O’Neill, M. D. Penta, B. Doerr, T. Jansen,
R. Poli, and E. Alba, Eds., ACM, pp. 979–986.

[38] KINZETT, D., JOHNSTON, M., AND ZHANG, M. Numerical simpli-
fication for bloat control and analysis of building blocks in genetic
programming. Evolutionary Intelligence 2, 4 (2009), 151–168.

[39] KINZETT, D., ZHANG, M., AND JOHNSTON, M. Analysis of build-
ing blocks with numerical simplification in genetic programming.
In Proceedings of the 13th European Conference on Genetic Program-
ming, EuroGP 2010 (Istanbul, 2010), A. I. Esparcia-Alcazar, A. Ekart,
S. Silva, S. Dignum, and A. S. Uyar, Eds., vol. 6021 of LNCS, Springer,
pp. 289–300.

[40] KOZA, J. R. Hierarchical genetic algorithms operating on popula-
tions of computer programs. In Proceedings of the Eleventh Interna-
tional Joint Conference on Artificial Intelligence IJCAI-89 (Detroit, MI,
USA, 1989), N. S. Sridharan, Ed., vol. 1, Morgan Kaufmann, pp. 768–
774.

[41] KOZA, J. R. A genetic approach to the truck backer upper problem
and the inter-twined spiral problem. In Proceedings of IJCNN Interna-
tional Joint Conference on Neural Networks (1992), vol. IV, IEEE Press,
pp. 310–318.

BIBLIOGRAPHY 253

[42] KOZA, J. R. Genetic programming: On the programming of com-
puters by means of natural selection. Statistics and Computing 4, 2
(1994).

[43] KOZA, J. R., III, F. H. B., ANDRE, D., AND KEANE, M. A. Au-
tomated design of both the topology and sizing of analog electrical
circuits using genetic programming. In Artificial Intelligence in De-
sign ’96 (Dordrecht, 1996), J. S. Gero and F. Sudweeks, Eds., Kluwer
Academic, pp. 151–170.

[44] KRATOCHVIL, O., OSMERA, P., AND POPELKA, O. Parallel gram-
matical evolution for circuit optimization. In Proceedings of the World
Congress on Engineering and Computer Science, WCECS ’09 (San Fran-
cisco, USA, 2009), S. I. Ao, C. Douglas, W. S. Grundfest, and J. Burg-
stone, Eds., vol. II, International Association of Engineers, News-
wood Limited, pp. 1032–1037.

[45] KRONBERGER, G., WINKLER, S. M., AFFENZELLER, M., BEHAM,
A., AND WAGNER, S. On the success rate of crossover operators for
genetic programming with offspring selection. In 12th International
Conference on Computer Aided Systems Theory, EUROCAST 2009 (Las
Palmas de Gran Canaria, Spain, 2009), R. Moreno-Dı́az, F. Pichler,
and A. Quesada-Arencibia, Eds., vol. 5717 of Lecture Notes in Com-
puter Science, Springer, pp. 793–800.

[46] LANGDON, W. B. Evolving data structures using genetic program-
ming. In Genetic Algorithms: Proceedings of the Sixth International Con-
ference (ICGA95) (Pittsburgh, PA, USA, 1995), L. Eshelman, Ed., Mor-
gan Kaufmann, pp. 295–302.

[47] LANGDON, W. B. Size fair and homologous tree genetic program-
ming crossovers. Genetic Programming and Evolvable Machines 1, 1/2
(2000), 95–119.

254 BIBLIOGRAPHY

[48] LANGDON, W. B., AND BANZHAF, W. Repeated patterns in tree
genetic programming. In Proceedings of the 8th European Conference
on Genetic Programming (Lausanne, Switzerland, 2005), M. Keijzer,
A. Tettamanzi, P. Collet, J. I. van Hemert, and M. Tomassini, Eds.,
vol. 3447 of Lecture Notes in Computer Science, Springer, pp. 190–202.

[49] LANGDON, W. B., AND BANZHAF, W. Repeated sequences in linear
genetic programming genomes. Complex Systems 15, 4 (2005), 285–
306.

[50] LANGDON, W. B., AND HARMAN, M. Evolving a cuda kernel from
an nvidia template. In 2010 IEEE World Congress on Computational
Intelligence (Barcelona, 2010), P. Sobrevilla, Ed., IEEE, pp. 2376–2383.

[51] LANGDON, W. B., AND POLI, R. Why ants are hard. In Genetic
Programming 1998: Proceedings of the Third Annual Conference (Uni-
versity of Wisconsin, Madison, Wisconsin, USA, 1998), J. R. Koza,
W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H.
Garzon, D. E. Goldberg, H. Iba, and R. Riolo, Eds., Morgan Kauf-
mann, pp. 193–201.

[52] LANGDON, W. B., AND POLI, R. Why “building blocks” don’t work
on parity problems. Tech. Rep. CSRP-98-17, University of Birming-
ham, School of Computer Science, 1998.

[53] LI, G., LEE, K.-H., AND LEUNG, K.-S. Evolve schema directly using
instruction matrix based genetic programming. In Proceedings of the
8th European Conference on Genetic Programming (Lausanne, Switzer-
land, 2005), M. Keijzer, A. Tettamanzi, P. Collet, J. I. van Hemert,
and M. Tomassini, Eds., vol. 3447 of Lecture Notes in Computer Sci-
ence, Springer, pp. 271–280.

[54] LI, X., AND CIESIELSKI, V. An analysis of explicit loops in genetic
programming. In Proceedings of the 2005 IEEE Congress on Evolution-

BIBLIOGRAPHY 255

ary Computation (Edinburgh, UK, 2005), D. Corne, Z. Michalewicz,
M. Dorigo, G. Eiben, D. Fogel, C. Fonseca, G. Greenwood, T. K.
Chen, G. Raidl, A. Zalzala, S. Lucas, B. Paechter, J. Willies, J. J. M.
Guervos, E. Eberbach, B. McKay, A. Channon, A. Tiwari, L. G.
Volkert, D. Ashlock, and M. Schoenauer, Eds., vol. 3, IEEE Press,
pp. 2522–2529.

[55] LUKE, S., AND SPECTOR, L. Evolving graphs and networks with
edge encoding: Preliminary report. In Late Breaking Papers at the
Genetic Programming 1996 Conference Stanford University July 28-31,
1996 (Stanford University, CA, USA, 1996), J. R. Koza, Ed., Stanford
Bookstore, pp. 117–124.

[56] MAJEED, H. A new approach to evaluate GP schema in context. In
Genetic and Evolutionary Computation Conference (GECCO2005) work-
shop program (Washington, D.C., USA, 2005), F. Rothlauf, M. Blow-
ers, and J Eds., ACM Press, pp. 378–381.

[57] MAJEED, H. The Importance of semantic context in tree based GP and its
application in defining a less destructive, context aware crossover for GP.
PhD thesis, University of Limerick, Ireland, 2007.

[58] MAJEED, H., RYAN, C., AND AZAD, R. M. A. Evaluating GP
schema in context. In GECCO 2005: Proceedings of the 2005 conference
on Genetic and evolutionary computation (Washington DC, USA, 2005),
H.-G. Beyer, U.-M. O’Reilly, D. V. Arnold, W. Banzhaf, C. Blum, E. W.
Bonabeau, E. Cantu-Paz, D. Dasgupta, K. Deb, J. A. Foster, E. D.
de Jong, H. Lipson, X. Llora, S. Mancoridis, M. Pelikan, G. R. Raidl,
T. Soule, A. M. Tyrrell, J.-P. Watson, and E. Zitzler, Eds., vol. 2, ACM
Press, pp. 1773–1774.

[59] MCKAY, R. I., NGUYEN, X. H., CHENEY, J. R., KIM, M., MORI,
N., AND HOANG, T. H. Estimating the distribution and propa-
gation of genetic programming building blocks through tree com-

256 BIBLIOGRAPHY

pression. In GECCO ’09: Proceedings of the 11th Annual conference
on Genetic and Evolutionary Computation (Montreal, 2009), G. Raidl,
F. Rothlauf, G. Squillero, R. Drechsler, T. Stuetzle, M. Birattari, C. B.
Congdon, M. Middendorf, C. Blum, C. Cotta, P. Bosman, J. Grahl,
J. Knowles, D. Corne, H.-G. Beyer, K. Stanley, J. F. Miller, J. van
Hemert, T. Lenaerts, M. Ebner, J. Bacardit, M. O’Neill, M. D. Penta,
B. Doerr, T. Jansen, R. Poli, and E. Alba, Eds., ACM, pp. 1011–1018.

[60] MCKAY, R. I. B., SHIN, J., HOANG, T. H., NGUYEN, X. H., AND

MORI, N. Using compression to understand the distribution of
building blocks in genetic programming populations. In 2007 IEEE
Congress on Evolutionary Computation (Singapore, 2007), D. Srini-
vasan and L. Wang, Eds., IEEE Computational Intelligence Society,
IEEE Press, pp. 2501–2508.

[61] MCPHEE, N. F., OHS, B., AND HUTCHISON, T. Semantic build-
ing blocks in genetic programming. Working Paper Series Volume
3 Number 2, University of Minnesota Morris, 600 East 4th Street,
Morris, MN 56267, USA, 2007.

[62] MCPHEE, N. F., OHS, B., AND HUTCHISON, T. Semantic build-
ing blocks in genetic programming. In Proceedings of the 11th Euro-
pean Conference on Genetic Programming, EuroGP 2008 (Naples, 2008),
M. O’Neill, L. Vanneschi, S. Gustafson, A. I. E. Alcazar, I. D. Falco,
A. D. Cioppa, and E. Tarantino, Eds., vol. 4971 of Lecture Notes in
Computer Science, Springer, pp. 134–145.

[63] MCPHEE, N. F., AND POLI, R. A schema theory analysis of the evo-
lution of size in genetic programming with linear representations.
Tech. Rep. CSRP-00-22, University of Birmingham, School of Com-
puter Science, 2000.

[64] MCPHEE, N. F., AND POLI, R. Using schema theory to explore in-
teractions of multiple operators. In GECCO 2002: Proceedings of the

BIBLIOGRAPHY 257

Genetic and Evolutionary Computation Conference (New York, 2002),
W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli,
K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A.
Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, Eds.,
Morgan Kaufmann Publishers, pp. 853–860.

[65] MCPHEE, N. F., POLI, R., AND ROWE, J. E. A schema theory anal-
ysis of mutation size biases in genetic programming with linear rep-
resentations. In Proceedings of the 2001 Congress on Evolutionary Com-
putation CEC2001 (COEX, World Trade Center, 159 Samseong-dong,
Gangnam-gu, Seoul, Korea, 2001), IEEE Press, pp. 1078–1085.

[66] MILLER, J. F., AND THOMSON, P. Cartesian genetic program-
ming. In Genetic Programming, Proceedings of EuroGP’2000 (Edin-
burgh, 2000), R. Poli, W. Banzhaf, W. B. Langdon, J. F. Miller,
P. Nordin, and T. C. Fogarty, Eds., vol. 1802 of LNCS, Springer-
Verlag, pp. 121–132.

[67] MITAVSKIY, B., AND ROWE, J. E. A schema-based version of
Geiringer’s theorem for nonlinear genetic programming with ho-
mologous crossover. In Foundations of Genetic Algorithms 8, A. H.
Wright, M. D. Vose, K. A. D. Jong, and L. M. Schmitt, Eds., vol. 3469
of Lecture Notes in Computer Science. Springer-Verlag, Berlin Heidel-
berg, 2005, pp. 156–175.

[68] MUNAWAR, A., WAHIB, M., MUNETOMO, M., AND AKAMA, K.
Hybrid of genetic algorithm and local search to solve max-sat prob-
lem using nvidia cuda framework. Genetic Programming and Evolv-
able Machines 10, 4 (2009), 391–415.

[69] NORDIN, P., AND BANZHAF, W. Evolving turing-complete pro-
grams for a register machine with self-modifying code. In Genetic
Algorithms: Proceedings of the Sixth International Conference (ICGA95)

258 BIBLIOGRAPHY

(Pittsburgh, PA, USA, 1995), L. Eshelman, Ed., Morgan Kaufmann,
pp. 318–325.

[70] O’REILLY, U.-M., AND OPPACHER, F. The troubling aspects of a
building block hypothesis for genetic programming. In Foundations
of Genetic Algorithms 3 (Estes Park, Colorado, USA, 1994), L. D. Whit-
ley and M. D. Vose, Eds., Morgan Kaufmann, pp. 73–88. Published
1995.

[71] O’REILLY, U.-M., AND OPPACHER, F. Using building block func-
tions to investigate a building block hypothesis for genetic program-
ming. Working Paper 94-02-029, Santa Fe Institute, 1399 Hyde Park
Road Santa Fe, New Mexico 87501-8943 USA, 1994.

[72] PADMAN, R., AND ROEHRIG, S. A genetic programming approach
for heuristic selection in constrained project scheduling. Tech. Rep.
95-30, H. John Heinz III School of Public Policy and Management,
Carniege-Mellon University, 1995.

[73] PATELLI, A., AND FERARIU, L. Elite based multiobjective genetic
programming in nonlinear systems identification. Advances in Elec-
trical and Computer Engineering 10, 1 (2010), 94–99.

[74] POLI, R. New results in the schema theory for GP with one-point
crossover which account for schema creation, survival and disrup-
tion. Tech. Rep. CSRP-99-18, University of Birmingham, School of
Computer Science, 1999.

[75] POLI, R. Probabilistic schema theorems without expectation, recur-
sive conditional schema theorem, convergence and population siz-
ing in genetic algorithms. Tech. Rep. CSRP-99-3, University of Birm-
ingham, School of Computer Science, 1999.

[76] POLI, R. Schema theory without expectations for GP and GAs with
one-point crossover in the presence of schema creation. Tech. Rep.

BIBLIOGRAPHY 259

CSRP-99-13, University of Birmingham, School of Computer Sci-
ence, 1999.

[77] POLI, R. Exact schema theorem and effective fitness for GP with
one-point crossover. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2000) (Las Vegas, Nevada, USA,
2000), D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee,
and H.-G. Beyer, Eds., Morgan Kaufmann, pp. 469–476.

[78] POLI, R. Hyperschema theory for GP with one-point crossover,
building blocks, and some new results in GA theory. In Genetic
Programming, Proceedings of EuroGP’2000 (Edinburgh, 2000), R. Poli,
W. Banzhaf, W. B. Langdon, J. F. Miller, P. Nordin, and T. C. Fogarty,
Eds., vol. 1802 of LNCS, Springer-Verlag, pp. 163–180.

[79] POLI, R. A macroscopic exact schema theorem and a redefinition of
effective fitness for GP with one-point crossover. Tech. Rep. CSRP-
00-1, University of Birmingham, School of Computer Science, 2000.

[80] POLI, R. Microscopic and macroscopic schema theories for ge-
netic programming and variable-length genetic algorithms with
one-point crossover, their use and their relations with earlier GP and
GA schema theories. Tech. Rep. CSRP-00-15, University of Birming-
ham, School of Computer Science, 2000.

[81] POLI, R. Exact schema theory for genetic programming and
variable-length genetic algorithms with one-point crossover. Genetic
Programming and Evolvable Machines 2, 2 (2001), 123–163.

[82] POLI, R. General schema theory for genetic programming with
subtree-swapping crossover. In Genetic Programming, Proceedings
of EuroGP’2001 (Lake Como, Italy, 2001), J. F. Miller, M. Tomassini,
P. L. Lanzi, C. Ryan, A. G. B. Tettamanzi, and W. B. Langdon, Eds.,
vol. 2038 of LNCS, Springer-Verlag, pp. 143–159.

260 BIBLIOGRAPHY

[83] POLI, R. Exact schema theorems and markov chain models for ge-
netic programming and variable length genetic algorithms. Report
330, Dagstuhl, Germany, 2002.

[84] POLI, R., AND LANGDON, W. B. An experimental analysis of
schema creation, propagation and disruption in genetic program-
ming. In Genetic Algorithms: Proceedings of the Seventh International
Conference (Michigan State University, East Lansing, MI, USA, 1997),
T. Back, Ed., Morgan Kaufmann, pp. 18–25.

[85] POLI, R., AND LANGDON, W. B. A new schema theory for genetic
programming with one-point crossover and point mutation. In Ge-
netic Programming 1997: Proceedings of the Second Annual Conference
(Stanford University, CA, USA, 1997), J. R. Koza, K. Deb, M. Dorigo,
D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, Eds., Morgan Kauf-
mann, pp. 278–285.

[86] POLI, R., AND LANGDON, W. B. A review of theoretical and ex-
perimental results on schemata in genetic programming. Technical
Report CSRP-97-27, University of Birmingham, B15 2TT, UK, 1997.

[87] POLI, R., AND LANGDON, W. B. Schema theory for genetic pro-
gramming with one-point crossover and point mutation. Evolution-
ary Computation 6, 3 (1998), 231–252.

[88] POLI, R., LANGDON, W. B., AND O’REILLY, U.-M. Analysis of
schema variance and short term extinction likelihoods. In Genetic
Programming 1998: Proceedings of the Third Annual Conference (Uni-
versity of Wisconsin, Madison, Wisconsin, USA, 1998), J. R. Koza,
W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H.
Garzon, D. E. Goldberg, H. Iba, and R. Riolo, Eds., Morgan Kauf-
mann, pp. 284–292.

BIBLIOGRAPHY 261

[89] POLI, R., AND MCPHEE, N. F. Exact GP schema theory for head-
less chicken crossover and subtree mutation. Tech. Rep. CSRP-00-23,
University of Birmingham, School of Computer Science, 2000.

[90] POLI, R., AND MCPHEE, N. F. Exact schema theorems for GP with
one-point and standard crossover operating on linear structures and
their application to the study of the evolution of size. Tech. Rep.
CSRP-00-14, University of Birmingham, School of Computer Sci-
ence, 2000.

[91] POLI, R., AND MCPHEE, N. F. Exact schema theory for GP and
variable-length GAs with homologous crossover. In Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2001)
(San Francisco, California, USA, 2001), L. Spector, E. D. Goodman,
A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo,
S. Pezeshk, M. H. Garzon, and E. Burke, Eds., Morgan Kaufmann,
pp. 104–111.

[92] POLI, R., MCPHEE, N. F., AND ROWE, J. E. Exact schema theory
and markov chain models for genetic programming and variable-
length genetic algorithms with homologous crossover. Genetic Pro-
gramming and Evolvable Machines 5, 1 (2004), 31–70.

[93] POLI, R., AND STEPHENS, C. R. The building block basis for genetic
programming and variable-length genetic algorithms. International
Journal of Computational Intelligence Research 1, 2 (2005), 183–197.

[94] POLI, R., STEPHENS, C. R., WRIGHT, A. H., AND ROWE, J. E. A
schema theory based extension of Geiringer’s theorem for linear GP
and variable length gas under homologous crossover. In Foundations
of Genetic Algorithms VII (Torremolinos, Spain, 2002), K. A. D. Jong,
R. Poli, and J. E. Rowe, Eds., Morgan Kaufmann, pp. 45–62.

262 BIBLIOGRAPHY

[95] PRICE, G. R. Selection and covariance. Nature 227, August 1 (1970),
520–521.

[96] ROBERTS, S. C., HOWARD, D., AND KOZA, J. R. Evolving modules
in genetic programming by subtree encapsulation. In Genetic Pro-
gramming, Proceedings of EuroGP’2001 (Lake Como, Italy, 2001), J. F.
Miller, M. Tomassini, P. L. Lanzi, C. Ryan, A. G. B. Tettamanzi, and
W. B. Langdon, Eds., vol. 2038 of LNCS, Springer-Verlag, pp. 160–
175.

[97] RODRIGUES, E., AND POZO, A. Grammar-guided genetic program-
ming and automatically defined functions. In Advances in Artificial
Intelligence: 16th Brazilian Symposium on Artificial Intelligence, SBIA
2002, Proceedings (Porto de Galinhas/Recife, Brazil, 2002), G. Bitten-
court and G. L. Ramalho, Eds., vol. 2507 of LNAI, pp. 324–333.

[98] ROSCA, J. Towards automatic discovery of building blocks in ge-
netic programming. In Working Notes for the AAAI Symposium on
Genetic Programming (MIT, Cambridge, MA, USA, 1995), E. V. Siegel
and J. R. Koza, Eds., AAAI, pp. 78–85.

[99] ROSCA, J., AND BALLARD, D. H. Evolution-based discovery of hi-
erarchical behaviors. In Proceedings of the Thirteenth National Confer-
ence on Artificial Intelligence (AAAI-96) (1996), AAAI / The MIT Press,
pp. 888–894.

[100] ROSCA, J. P. Genetic programming exploratory power and the dis-
covery of functions. In Evolutionary Programming IV Proceedings of the
Fourth Annual Conference on Evolutionary Programming (San Diego,
CA, USA, 1995), J. R. McDonnell, R. G. Reynolds, and D. B. Fogel,
Eds., MIT Press, pp. 719–736.

[101] ROSCA, J. P. Analysis of complexity drift in genetic programming.
In Genetic Programming 1997: Proceedings of the Second Annual Con-

BIBLIOGRAPHY 263

ference (Stanford University, CA, USA, 1997), J. R. Koza, K. Deb,
M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, Eds.,
Morgan Kaufmann, pp. 286–294.

[102] ROSCA, J. P. Hierarchical Learning with Procedural Abstraction Mech-
anisms. PhD thesis, Department of Computer Science, The College
of Arts and Sciences, University of Rochester, Rochester, NY 14627,
USA, 1997.

[103] ROSCA, J. P., AND BALLARD, D. H. Genetic programming
with adaptive representations. Tech. Rep. TR 489, University of
Rochester, Computer Science Department, Rochester, NY, USA,
1994.

[104] ROSCA, J. P., AND BALLARD, D. H. Hierarchical self-organization
in genetic programming. In Proceedings of the Eleventh International
Conference on Machine Learning (1994), Morgan Kaufmann, pp. 251–
258.

[105] ROSCA, J. P., AND BALLARD, D. H. Learning by adapting repre-
sentations in genetic programming. In Proceedings of the 1994 IEEE
World Congress on Computational Intelligence (Orlando, Florida, USA,
1994), IEEE Press, pp. 27–29.

[106] ROSCA, J. P., AND BALLARD, D. H. Complexity drift in evolution-
ary computation with tree representations. Technical Report NRL5,
University of Rochester, Computer Science Department, Rochester,
NY, USA, 1996.

[107] ROSCA, J. P., AND BALLARD, D. H. Discovery of subroutines in ge-
netic programming. In Advances in Genetic Programming 2, P. J. An-
geline and J. K. E. Kinnear, Eds. MIT Press, Cambridge, MA, USA,
1996, ch. 9, pp. 177–202.

264 BIBLIOGRAPHY

[108] ROSCA, J. P., AND BALLARD, D. H. Rooted-tree schemata in ge-
netic programming. In Advances in Genetic Programming 3, L. Spector,
W. B. Langdon, U.-M. O’Reilly, and P. J. Angeline, Eds. MIT Press,
Cambridge, MA, USA, 1999, ch. 11, pp. 243–271.

[109] RYAN, C., MAJEED, H., AND AZAD, A. A competitive building
block hypothesis. In Genetic and Evolutionary Computation – GECCO-
2004, Part II (Seattle, WA, USA, 2004), K. Deb, R. Poli, W. Banzhaf,
H.-G. Beyer, E. Burke, P. Darwen, D. Dasgupta, D. Floreano, J. Fos-
ter, M. Harman, O. Holland, P. L. Lanzi, L. Spector, A. Tettamanzi,
D. Thierens, and A. Tyrrell, Eds., vol. 3103 of Lecture Notes in Com-
puter Science, Springer-Verlag, pp. 654–665.

[110] SASTRY, K., O’REILLY, U.-M., GOLDBERG, D. E., AND HILL, D.
Building block supply in genetic programming. In Genetic Program-
ming Theory and Practice, R. L. Riolo and B. Worzel, Eds. Kluwer,
2003, ch. 9, pp. 137–154.

[111] SHAN, Y., MCKAY, R. I., BAXTER, R., ABBASS, H., ESSAM, D., AND

HOAI, N. X. Grammar model-based program evolution. In Proceed-
ings of the 2004 IEEE Congress on Evolutionary Computation (Portland,
Oregon, 2004), IEEE Press, pp. 478–485.

[112] SIGAUD, O., AND WILSON, S. Learning classifier systems: a sur-
vey. Soft Computing-A Fusion of Foundations, Methodologies and Appli-
cations 11, 11 (2007), 1065–1078.

[113] SMART, W., ANDREAE, P., AND ZHANG, M. Empirical analysis of
GP tree-fragments. In Proceedings of the 10th European Conference on
Genetic Programming (Valencia, Spain, 2007), M. Ebner, M. O’Neill,
A. Ekárt, L. Vanneschi, and A. I. Esparcia-Alcázar, Eds., vol. 4445 of
Lecture Notes in Computer Science, Springer, pp. 55–67.

BIBLIOGRAPHY 265

[114] SMART, W., AND ZHANG, M. Empirical analysis of schemata in
genetic programming using maximal schemata and MSG. In 2008
IEEE World Congress on Computational Intelligence (Hong Kong, 2008),
J. Wang, Ed., IEEE Computational Intelligence Society, IEEE Press,
pp. 2983–2990.

[115] SPEARS, W., DE JONG, K., BAECK, T., FOGEL, D., AND DE GARIS,
H. An overview of evolutionary computation. In Machine Learning:
ECML-93 (1993), Springer, pp. 442–459.

[116] SPECTOR, L. Simultaneous evolution of programs and their control
structures. In Advances in Genetic Programming 2, P. J. Angeline and
J. K. E. Kinnear, Eds. MIT Press, Cambridge, MA, USA, 1996, ch. 7,
pp. 137–154.

[117] TANJI, M., AND IBA, H. Program optimization by random tree
sampling. In GECCO ’09: Proceedings of the 11th Annual conference
on Genetic and evolutionary computation (Montreal, 2009), G. Raidl,
F. Rothlauf, G. Squillero, R. Drechsler, T. Stuetzle, M. Birattari, C. B.
Congdon, M. Middendorf, C. Blum, C. Cotta, P. Bosman, J. Grahl,
J. Knowles, D. Corne, H.-G. Beyer, K. Stanley, J. F. Miller, J. van
Hemert, T. Lenaerts, M. Ebner, J. Bacardit, M. O’Neill, M. D. Penta,
B. Doerr, T. Jansen, R. Poli, and E. Alba, Eds., ACM, pp. 1131–1138.

[118] TURING, A. M. Intelligent machinery. In Machine Intelligence,
B. Meltzer and D. Michie, Eds., vol. 5. Edinburgh University Press,
Edinburgh, UK, 1969, ch. 1, pp. 3–23.

[119] VAFAEE, F., XIAO, W., NELSON, P. C., AND ZHOU, C. Adaptively
evolving probabilities of genetic operators. In Seventh International
Conference on Machine Learning and Applications, ICMLA ’08 (La Jolla,
San Diego, USA, 2008), IEEE, pp. 292–299.

266 BIBLIOGRAPHY

[120] VANNESCHI, L., CASTELLI, M., AND SILVA, S. Measuring bloat,
overfitting and functional complexity in genetic programming. In
GECCO ’10: Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation (Portland, Oregon, USA, 2010), J. Branke,
M. Pelikan, E. Alba, D. V. Arnold, J. Bongard, A. Brabazon, J. Branke,
M. V. Butz, J. Clune, M. Cohen, K. Deb, A. P. Engelbrecht, N. Krasno-
gor, J. F. Miller, M. O’Neill, K. Sastry, D. Thierens, J. van Hemert,
L. Vanneschi, and C. Witt, Eds., ACM, pp. 877–884.

[121] VEKARIA, K., AND CLACK, C. Schema propagation in selective
crossover. In Late Breaking Papers at the 1999 Genetic and Evolution-
ary Computation Conference (Orlando, Florida, USA, 1999), S. Brave
and A. S. Wu, Eds., pp. 268–275.

[122] WALKER, M. Evolution of a robotic soccer player. Research Letters in
the Information and Mathematical Sciences 3, 1 (2002), 15–23.

[123] WHIGHAM, P. A. Grammatically-based genetic programming. In
Proceedings of the Workshop on Genetic Programming: From Theory
to Real-World Applications (Tahoe City, California, USA, 1995), J. P.
Rosca, Ed., pp. 33–41.

[124] WHIGHAM, P. A. A schema theorem for context-free grammars. In
1995 IEEE Conference on Evolutionary Computation (Perth, Australia,
1995), vol. 1, IEEE Press, pp. 178–181.

[125] WHIGHAM, P. A., AND DICK, G. Implicitly controlling bloat in ge-
netic programming. IEEE Transactions on Evolutionary Computation
14, 2 (2010), 173–190.

[126] WHITLEY, L. D. Fundamental principles of deception in genetic
search. Foundations of Genetic Algorithms (1990), pp. 221–241.

[127] WILKERSON, J. L., AND TAURITZ, D. Coevolutionary automated
software correction. In GECCO ’10: Proceedings of the 12th annual

BIBLIOGRAPHY 267

conference on Genetic and evolutionary computation (Portland, Oregon,
USA, 2010), J. Branke, M. Pelikan, E. Alba, D. V. Arnold, J. Bongard,
A. Brabazon, J. Branke, M. V. Butz, J. Clune, M. Cohen, K. Deb,
A. P. Engelbrecht, N. Krasnogor, J. F. Miller, M. O’Neill, K. Sastry,
D. Thierens, J. van Hemert, L. Vanneschi, and C. Witt, Eds., ACM,
pp. 1391–1392.

[128] WILSON, G. C., AND HEYWOOD, M. I. Context-based repeated
sequences in linear genetic programming. In Proceedings of the 8th
European Conference on Genetic Programming (Lausanne, Switzerland,
2005), M. Keijzer, A. Tettamanzi, P. Collet, J. I. van Hemert, and
M. Tomassini, Eds., vol. 3447 of Lecture Notes in Computer Science,
Springer, pp. 240–249.

[129] WONG, M. L., AND LEUNG, K. S. Applying logic grammars to
induce sub-functions in genetic programming. In 1995 IEEE Confer-
ence on Evolutionary Computation (Perth, Australia, 1995), vol. 2, IEEE
Press, pp. 737–740.

[130] WONG, P., AND ZHANG, M. Numerical-node building block anal-
ysis of genetic programming with simplification. Tech. Rep. CS-TR-
06-15, Computer Science, Victoria University of Wellington, New
Zealand, 2006.

[131] WONG, P., AND ZHANG, M. Effects of program simplification
on simple building blocks in genetic programming. In 2007 IEEE
Congress on Evolutionary Computation (Singapore, 2007), D. Srini-
vasan and L. Wang, Eds., IEEE Computational Intelligence Society,
IEEE Press, pp. 1570–1577.

[132] WOODWARD, J. R. Modularity in genetic programming. In Ge-
netic Programming, Proceedings of EuroGP’2003 (Essex, 2003), C. Ryan,
T. Soule, M. Keijzer, E. Tsang, R. Poli, and E. Costa, Eds., vol. 2610 of
LNCS, Springer-Verlag, pp. 254–263.

268 BIBLIOGRAPHY

[133] YUEN, C. C. Selective crossover using gene dominance as an adap-
tive strategy for genetic programming. MSc intelligent systems, Uni-
versity College, London, UK, 2004.

