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Abstract 

Accurate input information is the cornerstone of sound managerial decision making. 

Assessing the future lifetime value of customers is a key component in making 

accurate managerial decisions such as how to apply scarce organisation resources on 

retention or acquisition activities (Blattberg and Deighton, 1996). Additionally, 

accurate customer lifetime value (CL V) calculation can be used for effective 

segmentation of customers. 

Berger and Nasr (1998) recognised the need for an improved approach to customer 

lifetime valuation calculation. The model proposed by Berger and N asr ( 1998) 

differed from historical approaches, such as the Recency, Frequency, and Monetary 

(RFM) method, by predicting the future state of existing customers and discounting the 

projected cash flow over time. Whilst the RFM model was popular as noted by 

Reinartz and Kumar, (2000), it was limited in accurately calculating the future value of 

a group of customers and was applied in segmentation classification. 

Berger and Nasr's ( 1998) model found favour in literature where subsequent 

contributions followed in areas; Managerial application of the model findings, 

alternative approaches to calculating the model inputs, and introducing alternative 

variables or techniques in the CL V calculation model itself 

The literature confirmed Berger and Nasr's (1998) approach as suitable for 

examination in this study however also revealed a general lack of empirical validation 



for Berger and Nasr's (1998). A review of literature detailed several extensions to the 

theory and modelling literature on CL V and several propositions relating to this area of 

theory development. These were contributions mostly conceptual by nature and few 

supported their concepts with empirical validation. 

This empirical study provides an important contribution by examining the predictive 

accuracy of Berger and N asr' s ( 1998) CL V calculation model. The purpose of this 

research was to compare Berger and Nasr's ( 1998) CLV model's prediction of 

customer lifetime value against the actual value data over a specific period for a set 

cohort of residential segment consumers fi'om a leading New Zealand energy retailer. 

This study goes further to examine the sensitivity of the model's calculation output to a 

change in input variables. 

The findings of this research challenge the predictive accuracy of Berger and Nasr's 

(1998) CLV model. The model was applied using both large (total cohort) and small 

(segments) customer groups to understand how what level of accuracy can be achieved 

in different contexts. 

The study identified a number of limitations such as the use of a constant retention 

rate, and not adequately accommodating the level of customer heterogeneity. The 

sensitivity of the model to change in the input variables supported Gupta, Lehmann 

and Stuart's (2004) research showing the retention variable was the critical input as it 

was the most influential on the model calculation. The marketing and discount rate 

variables had little to no influence on the model calculation outcome. Several 



propositions identified in literature on this subject were examined with many 

supported such as Reichheld and Sasser's ( 1990) observation that businesses lose 15% 

-20% oftheir customers each year. Wyner's (1999) proposition was also supported in 

that the cohmi when segmented demonstrated considerable different characteristics 

including patterns of attrition. 

This research presents empirical findings that will assist further theory development in 

the area of accurate measurement of Customer Lifetime Value (CLV) and promotes 

further examination of Berger and Nasr's (1998) CLV model. 
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1 Introduction 

A key component of success in marketing is accurate identification and retention ofthe 

right customer (Blatt berg and Deighton, 199 I). This is the basis of the modern 

marketing paradigm in relationship marketing. The value of retained loyal customers 

is observed by McKenna ( 1993) as a source of competitive advantage. 

Business is often about compromtse. In the context of acquiring and retaining 

customers, organisations have limited resources and need effective tools to make the 

best decision possible. Compromise comes from balancing the use of scarce resources 

such as how much to invest in retention or acquisition activity (or whether to at all). 

Segmentation is a common tool used for efficient use of resources and to improve the 

outcome of targeted marketing activity. There are several approaches used to group 

customers into segments such as geographical, consumption, and value. However, in 

recent times academics and practitioners have investigated ways to segment customers 

using the classification of the lifetime value ofthe customers to an organisation. 

Customer value is a central tenet of customer relationship marketing (Gronroos, 1991; 

Morgan and Hunt, 1994; and Wyner, 1996). The inherent risk ofbasing decisions on 

the future sate of customer value is reliance on the accuracy of the value calculation 

method employed. Berger and Nasr (1998) set out to assist managers in that decision 

making by providing a Customer Lifetime Value (CLV) calculation model. The 

outputs of this calculation are designed to assist managers in efficient resource 

allocation decisions and focus acquisition and retention strategies. The concern of 



many authors such as B lattberg, Getz, and Thomas, (200 1 ), Gupta and Lehmann, 

(2005), and Rust, Lemon and Zeithaml, (2004) is the risk of an inaccurate calculation 

of future value will lead to poor options taking. The error in making business 

decisions based on unreliable or inaccurate information presents academics and 

practitioners strong motivation to develop trusted accurate models to calculate the 

value of customers. 

The progression of CL V calculation models in academic literature has been built on 

the work by Berger and Nasr ( 1998). The subsequent literature in this area has been 

predominantly conceptual and focused on how input variables of the CL V model are 

established or how managers should interpret results. The calculation of future value 

incorporates the widely accepted method of discounted cash flow. Despite a 

considerable body of work on CLV calculation models, a concerning observation is the 

lack of empirical testing and model validation. Contributing an empirical study to the 

evaluation of a well established customer lifetime value calculation model is the role of 

this research. 

The first step in the examination of CLV modelling was selection of a suitable CLV 

calculation model tor evaluation. Following identification of the right model, it is 

applied to actual customer data recruited from a commercial energy retail organisation 

in New Zealand. This organisation (working title - Rata Energy) consented to 

providing a cohort of residential profile consumers with monthly recorded 

consumption data over the years 2003 to 2006. In addition to the data extract received, 



management at Rata Energy were interviewed to provide any necessary inputs tor the 

CL V calculation, specifically marketing spend and the discount rate used in the model. 

The research initially undertook descriptive statistical analysis of the cohort, profiling 

the customer group, identifying the retention rate for each year of the cohmi study. 

The selected CLV model is then applied using inputs from the initial year of the cohort 

(2004) to predict the value of those customers in 2006. The findings are compared to a 

net present value calculation, of the actual consumption information tor those same 

customers over the same period. Analysis of the results is undertaken and discussed in 

relation to the implication on the research problem and relevant propositions identified 

in literature. Following establishment of the relative accuracy of 'tit' of the model the 

sensitivity of inputs is investigated. This examines the sensitivity of the CL V model 

outcome to change in the input variables. 

The issue of customer heterogeneity is also examined. The cohort is segmented by 

volume consumption and then the analysis based on these segment specific input 

variables is revisited. The purpose is to test if using granular level inputs will lead to a 

more accurate 'tit' of the model. 

The findings have been shared with Rata Energy as a part of this research project. 

Early feedback acknowledged the need to review and refine current approaches to 

customer segmentation and value calculation. Additionally it has led to further 

discussion on strategy development and investment decisions for these and broader 

customer groups. 



2 Literature Review 

The discipline of marketing has progressed in recent times where organisations' aim to 

become 'customer focused' and shift from transactional interactions to building long 

te1m relationships with customers. This is predicated on the belief that long term 

customer relationships relate to higher profitability (Reichheld and Sasser, 1990). This 

research does not directly challenge this premise and assumes this as the operating 

tenet of marketing for this research context. 

The shift to a customer orientation necessitates the development of tools to enable 

marketers to effectively identify and benefit from highly profitable customers. One 

essential aspect of operating under this orientation is the need tor accurate customer 

lifetime value measurement. To effectively and accurately project the profitability of a 

customer (or segment) is vital to an organisation. Understanding lifetime value of a 

firm's customer base will contribute to efficiency in making informed decisions on 

utilisation of scarce resources, and to understand the marginal returns to marketing 

execution (Blattberg and Deighton, 1996; Levitt, 1986; McKenna, 1991; Webster, 

1994; Dickson, 1997; Kotler, 1997). Specifically, so organisations can target the right 

customers based on the value of those customers to an organisation i.e. the tenet of the 

direct marketing approach. "Attracting and keeping the highest value customers is the 

cornerstone of a successful marketing program" (Blattberg and Deighton, 1996, 

p.l36). 



The following literature review highlights practices used to calculate the value of 

customers of the period oftime they have a purchase relationship with a company and 

discusses the implications on managerial decision making. The literature on customer 

lifetime value has several themes. It commences with how the frame work of RFM 

(Recency, Frequency and Monetary) can enable decision making to alternative 

customer lifetime value calculation models, with several models and variations 

proposed. It also extends to how to apply the t1ndings of these various calculation 

processes to business decision making. This literature review profiles key models and 

variations introduced. The aim ofthe literature review, in addition to providing sound 

background on rationale and model progression, was the identif1cation of a foundation 

customer lifetime value calculation model to use in this examination. 

The discussion on CL V modelling begins by profiling a widely adopted model used by 

marketing managers to optimise resource allocation called the Recency, Frequency and 

Monetary model (RFM). 

2.1 Recency, Frequency and Monetary (RFM) methodology 

The RFM approach was introduced by Cullinan (1978) who was credited with 

identifying the three variables. The model was later extended by Bauer ( 1988) to 

apply to managerial decision making. The adoption and popularity of this model is 

based on the relative ease of use, the accessibility of the inputs that can be sourced 

using an organisations own transaction data. Lastly, the relatively straight-forward 

logic has strong application appeal. Stone ( 1995) proposed using the RFM 



methodology as an approach to assist m targeting valued customers by placing 

weightings on purchases to rank customers. 

RFM analysis profiles customers by the three variables of purchase behaviour, which 

is how recently the customer has purchased (recency), how often they purchase 

(frequency), and the level of customer spending (monetary value) (Cullinan, 1978). 

Combining the size of the purchase with frequency allows for customer segmentation 

(Colombo and Jiang, 1999, and Shepherd, 1990). The recency element allows 

organisations to understand the potential loyalty of a customer relative to their 

expected purchase frequency or previous purchase behaviour. Interpretations are made 

fl-om the analysis that customers who purchase frequently are more likely to purchase 

agam. Lastly, customers who spend more, and make regular purchases, are more 

likely to continue spending more and think more favourably of the brand. 

The common application of the RFM approach is to segment customers based on 

observation in literature (Colombo and Jiang, 1999, Shepherd, 1990, and Reinartz and 

Kumar, 2000). This has found favour by practitioners in its application to direct 

marketing and database marketing disciplines. The use of RFM is however not 

without criticism. This is due to several limitations of the model that lead to poor 

decision-making (Miglautsch, 2002). The ability of the RFM method to assist in 

effective resource allocation is also challenged by Reinartz and Kumar (2000) who 

observed "the use of the RFM model can result in suboptimal allocation of limited 

resources" (Reinartz and Kumar, 2000, p.l8). The RFM approach is limited in 

application in managerial strategy development as it does not factor for time in relation 



to cash f1ow over the period of the customer tenure. Additionally, it fails to consider 

the opp01iunity to increase retention rate thereby improving profitability. These 

limitations reduce the contribution this approach can make to informed strategic 

decision making. 

2.2 Zero defections 

Another early attempt for measuring customer value came out of services marketing. 

Reichheld and Sasser ( 1990) commented that a need to retain customers is vital to 

increased value and hence proposed organisations pursue 'zero defects'. Reichheld 

and Sasser (I 990) made several observations about customer value and the reduction 

of detection rates. "Reducing defections by just 5% generated 85% more profits in one 

bank's branch system, 50% more in an insurance brokerage, and 30% more in an auto­

service chain" (Reichheld and Sasser, 1990, p.l 07). 

Reichheld and Sasser ( 1990) also discussed how tenure relates to customer 

profitability. "Companies with loyal long time customers can financially outperform 

competitors with lower unit costs and high market share but high customer churn" 

(Reichheld and Sasser, 1990, p.l 08). They also made an observation of the relatively 

consistent level of defection in business. "It is common for a business to lose 15% to 

20% of its customers each year" (Reichheld and Sasser, 1990, p.l 08). The excerpts 

above present interesting and challenging propositions relevant to this research. 



A subsequent article by Reichheld ( 1996) presented research findings that "On 

average, the CEO's of USA corporations lose half their customers every five years" 

(Reichheld, 1996, p.56). 

A justification for retention investment was also proposed by Reichheld ( 1996). The 

impact of customer defection on profitability was discussed with commentary on 

several reasons why keeping 5% more customers will increase a firms profit by 100%. 

"Older customers tend to produce greater cash flow and profits than newer ones" 

(Reichheld, 1996, p.56). 

Reichheld and Sasser ( 1990) and Reichheld ( 1996) both presented interesting 

propositions albeit in somewhat sensationalised headlines. Headline statements of 

I 00% more profit fi·om 5% more retention do not necessarily reflect the averages of 

Reichheld (1996) and Reichheld and Sasser's (1990) findings. They reported increases 

of 85% in banking, 50% insurance and 30% in an auto service chain. These findings 

were not empirically based and both articles lead to questioning the integrity of the 

statements presented because ofthe variation between the headlines and the actual data 

provided in these articles. 

Irrespective of the integrity of the data and degree of affect reported, Reichheld and 

Sasser ( 1990) were successful in providing a catalyst to subsequent papers and general 

interest in this area. This was particularly relevant to the area of Customer Lifetime 

Values (CL V) in business, how that value may be calculated, and the link to decision 

making tor resource allocation through to marketing strategy development. 



2.3 CL V model foundations 

Several conceptual papers discussed the concepts of customer value and customer 

equity, highlighting issues with factors influencing the realisation of that value or 

equity. In 1996 Blattberg and Deighton introduced a paper that discussed the 

important role Customer Lifetime Value (CLV) calculation models could play for 

organisations in making informed and protltable decisions in regard to maximising 

equity of the customer and t1rm. Blattberg and Deighton's (1996) paper was key at a 

time when academics and practitioners had adopted the paradigm of the relationship 

marketing concept and were interested in the relationship between CL V calculations 

and business decision making. 

Blattberg and Deighton's ( 1996) influential paper sparked discussion on methodology 

and application of CLV, and on the conceptual benefits of applying CLV calculations 

directly to business decisions. Blattberg and Deighton's (1996) conceptual paper 

introduced an approach tor resource utility decision making to optimise acquisition 

and retention activities. The paper outlined a broad approach to the calculation of 

optimal spend on acquisition and retention spending and linked it to CL V modelling. 

The difference between the lifetime value of a customer and customer equity was a 

distinction introduced by Blattberg and Deighton ( 1996) and continued to be an area of 

subsequent literature discussion. This early focus did not address the calculation 

directly though had introduced a rationale. It provided insight into why the 

requirement tor reliable, accurate models of calculation of customer lifetime value 

would continue to grow. 



Berger and Nasr-Bechwati (2001) addressed the issue of customer equity with a paper 

that discussed the influence of promotional budgets. They introduced a decision 

calculus conceptual model in which manager judgements would be incorporated into 

calculations. The article discussed the subsequent impact on acquisition and retention 

options as well as specific media category expenditure. 

Van Raaij (2005) presented a rationale for the use of CL V calculation tools in 

business, emphasising the role customer profitability analysis had in managerial 

strategic decision making and marketing planning. The paper introduced a conceptual 

model founded on a cost model orientation and set about to provide understanding of 

how profitability was distributed throughout a customer base. 

The relationship between CL V and shareholder value was addressed by Berger, 

Eechambadi, George, Lehmann, Rizley and Venkatesan (2006) introducing a chain of 

effects framework to explain the dynamics of the relationship. They introduced the 

concept of a range of steps that preceded CL V calculation and consideration of the 

competitive environment in how it impacts on the equity of the customer. They also 

introduced the direct relationship CL V modelling can have in calculating the value of a 

firm at the shareholder level. 

In addition to discussing the relationship between CL V, customer equity and 

shareholder value a relevant stream of literature acknowledge the role customer 

valuation has in calculating outcomes of customer migration. 



2.4 Customer migration 

Dwyer ( 1997) introduced a taxonomy of the Lifetime Value (LTV) for buyer-seller 

relationships that could be employed to formulate a calculation of the lifetime value 

and measure migration behaviours to a population. This contribution is similar in 

ways to the introduction of option theory proposed by Levett, Page, Nel, Pitt, Berthon, 

and Money ( 1999). Dwyer ( 1997) applied the taxonomy to two distinct groups of 

customers defined by Jackson (1985) as the lost-for-good customer scenario where a 

customer makes a long term commitment to an organisation and the always-a-share 

customer scenario where the firm is prepared to give any vendor a potiion of their 

business. These customer groups were formed due to their relationship type and 

commitment to a supplier. The model relies on purchase recency to predict repeat 

purchase behaviour. The purchase propensity based on previous behaviours 

establishes a propensity estimate called the recency cell in the model. This was a 

positive contribution as it sought to project future states through introduction of a 

propensity element to retention. 

The main focus of Dwyer's ( 1997) article was on managerial decision-making and 

implications for designing and budgeting tor customer acquisition programs, 

specifically in relation to migration situations. Whilst introducing the propensity 

element the atiicle did not directly contribute to CL V computation methods. The 

literature in this area was generally conceptual and outlined the benefits to 

organisations who adopt suitable CL V calculation approaches. The following 



discussion moves from managerial implications to exploring the calculation process in 

the context of considering non-mathematical inputs into the CL V calculation. 

2.5 Non-mathematical inputs 

Berger, Weinberg and Hanna (2003) applied a CLV model to highlight how decision 

making can be influenced by specitlc migration models when based on real data. The 

CL V model was used to measure the retention of cruise liner ticket purchase 

customers. They acknowledged in their paper that it would have been very unlikely 

that any mathematical model could capture all the inputs needed. Introducing non­

mathematical subjective elements to CL V calculations presents a challenge to get a 

consistent accurate use of the inputs for the calculation. As well as accuracy the model 

must use inputs that are easy to source. Lastly, the model must be easy to use in order 

to gain practical adoption. 

Helm (2003) introduced the concept of word-of-mouth as a major determinant of 

Customer Lifetime Value (CLV). Helm (2003) introduced Herrmann and Fuerderer's 

( 1997) model that calculated CL V based on inputs such as referrals. The model 

proposed was highly complex including other variables such as price sensitivity, cross 

buy potential, referral behaviour and re-buying behaviour. The level of subjective 

inputs presents a challenge with Helm (2003) noting that many inputs needed an 

"educated guess" (Helm, 2003, p.l32) in order tor practitioners to attain all the 

required inputs to be effective in modelling. Whilst referrals may have a role tor 



consumers in the decision making process, the context of high or low involvement 

transactions needs consideration. 

Gruca and Rego (2005) investigated the concept of value by focusing on growth and 

stability as key characteristics of future cash flows. The article focused on the role 

satisfaction had on future cash flows . It presented findings at industry level using a 

USA national customer satisfaction database. Annualised profitability of firms in 

different sectors was used to illustrate a correlation between satisfaction and industry 

cash flow. This was at a high level and application to customers at firm level was an 

acknowledged area that required future research. Interestingly, the article reported that 

large firms were less efficient in increasing their cash flows yet did not provide insight 

into the potential drivers for this finding . 

The literature at this point has mostly focused on the progression of theory on CL V 

from the conceptual rationale and early models, through to discussion on various non­

mathematical inputs. In addition, the role CLV modelling has on business decision 

making for resource allocation has been highlighted . The literature shows a strong 

willingness and rationale for CL V calculation but lacked comprehensive empirical 

validation. 

The focus shifts from the context of application to actual methods used for the 

calculation of lifetime value. The purpose of the remaining literature review is to 

highlight contributions in the area of CL V modelling. The literature relates to 

13 



contributions of either core model designs or on ways to improve the input variables 

for the CL V calculation model. 

2.6 CL V calculation- the discounted cash flow approach 

Berger and Nasr (1998) presented a seminal paper specifica lly focused on a series of 

mathematical calculation models for determining Customer Lifetime Value (CLV). 

The CLV model uses the widely accepted Discounted Cash Flow (DCF) approach. 

Berger and Nasr (1998) note there are two steps being a need to "project the net cash 

flows that the firm expects to receive from the customer over time. Next, calculate the 

present value of that stream of cash flows" (Berger and Nasr, 1998, p.19) 

The model suggests a three step CL V calculation process. It commenced with a 

calculation of the gross contribution discounted over time. Then established the 

amount of marketing expenditure discounted over time and then subtracted the 

marketing expense from the gross contribution to establish the lifetime value. The 

model is presented in Figure 1 and provides a detailed breakdown of the calculation 

approach. 

14 



Figure 1: CLV model by Berger and Nasr (1998) 

ll 11 

CLV = {GC *I [ri/(1 + di]} - {M *I [ri- 1/(l+d)i-o.s]} 
i=O i=l 

(Berger and asr, 1998, p. 21) 

Where: 

GC Is the (expected) yearly gross contribution margin per customer. It is equal to 

revenue minus cost of sales. 

M Is the (relevant) promotion costs per customer per year. To reflect mid-year 

marketing expenditure it is possible to introduce 0.5 into the equation. 

Is the purchase cycle 

n Is the length, in years, for the period over which cash flows are to be projected. 

Berger and Nasr ( 1998) noted that this period was likely to be highly dependent 

on the industry. Carpenter (1995) commented that extending the model further 

than five years involves too much guesswork in high tech industries (however, 

Berger and Nasr (1998) noted that longer periods may be plausible for durable 

products). There should also be consideration given to the contractual nature of 

the relationship with the customer. There are instances where 10 year contracts 

are put in place and hence the relative value of that relationship can be 

established with some accuracy and these calculations become pivotal to the 

initial negotiation strategy and process. 

15 



r Is the yearly retention rate. This is the proportion of customers expected to 

continue buying the company's goods or services in the subsequent year. Note 

this application takes a 'customer group' level approach and the literature 

illustrated that this can be adapted to the individual level. 

d Is the yearly discount rate (appropriate f(w marketing investments). 

There are two notable exclusions from Berger and Nasr's (1998) approach to this 

model. They are the exclusion of costs for acquiring the customer and fixed cost 

components as inputs in the calculation. The rationale was that the model works to 

determine specifically the contribution margin of a customer. Consequently these 

were not included in the calculations, aligning with other direct marketing studies on 

the treatment of these variables. Berger and Nasr (1998) believed that this led their 

model to be appropriately conservative. The most challenging element of this CL V 

model acknowledged by Berger and Nasr (1998) was accurate projection of cash 

f1ows. This observation is consistent for all models in this area of focus. 

The flexibility of Berger and Nasr' s ( 1998) model was demonstrated through changing 

the characteristics of a number of input variables or introducing new variables to 

illustrate application to various 'real world' scenarios. The variables that were either 

changed or introduced were the length of projection period, frequency of sales, spend 

and rate of retention, amount of annual revenue, discrete vs. continuous cash flows, 



and lastly includes Dwyer's ( 1997) propensity projection of purchase recency. This 

diversity was illustrated however not empirically validated. 

Dwyer's (I 997) article was supportive of Berger and Nasr's ( 1998) CLV model 

illustrating in a conceptual paper a breadth of application and set up a road map of 

possible empirical validation under various scenarios before this model could be 

endorsed as a foundation formula. It is observed that despite the relatively limited 

empirical testing of Berger and Nasr's (1998) model, their approach had been widely 

adopted in literature. 

Berger and Nasr's ( 1998) paper introduced a CLV model approach that has been 

widely adopted. This is evidenced with over two hundred and forty subsequent articles 

noted in a literature citation search on the Google Scholar website. This model became 

regarded as a foundation for CL V calculation modelling. Subsequent literature 

adopted the principles proposed by Berger and Nasr ( 1998) focusing on varymg 

approaches to calculate model inputs as well as proposed new inputs. 

2.7 Progressing CLV model calculation 

Wyner's ( 1999) paper discussed the implications for management if organisations fail 

to take a segment orientated approach to viewing their customers and adopt the 

approach that all customers arc treated as one group with similar needs and 

characteristics. Wyner ( 1999) observed that some customer segments exhibit different 

patterns of defection than others. This proposition presented important implications 



tor much of the work to date on CL V as it had focused predominantly on looking at a 

total customer base perspective to equate the value to a firm of a customer base. 

Mulhern ( 1999) did not contribute a change in the CL V calculation method. The 

article concentrated on the validity of several of the input variables to profitability 

analysis introducing Schmittlein, Morrison, and Colombo ( 1987) and Schmittlein and 

Peterson's ( 1994) technique of delineating the status of a customer to ensure they are 

'active'. 

The article by Mulhern (1999) supported the work done by Berger and Nasr (1998). It 

extended the CL V approach to consideration of a customer replacement costs element, 

and used a Tobin's q ratio to ret1ect this cost. The introduction ofthe Tobin's q ratio 

was noted by Hayashi ( 1982) as a preferred approach to account tor the replacement 

cost of the customer in CLV calculation which is used in customer profitability 

analysis. This conceptually illustrated the structural customer profitability model tor 

business to business transactions for a pharmaceutical manufacturer. The article 

illustrated the use of a CL V measurement in for the purpose of effectively segmenting 

customers. An alternative approach was introduced by Levett et al. ( 1999) that 

introduced a new approach to CL V calculation with the application of option theory. 

2.8 Option theory 

Levett, Page, Nel, Pitt, Bcrthon and Money ( 1999) presented an alternative approach to 

the calculation tor Customer Lifetime Value (CL V) introducing option theory into the 



CL V calculation process. Levett et al. ( 1999) purport the use of their proposed CL V 

calculation approach would improve accuracy as it incorporated previous decisions as 

inputs to future decisions. This option valuation applies to customer re-purchase 

decision making. Option theory is used to capture the sequence of activities that 

happen when a customer is faced with a choice to purchase or not. This binary nature 

can be developed into a binomial lattice to better represent a probability element to 

valuing a customer " ... appraises customers as a series of call options rather than a 

single series of expected profit contributions" (Levett et al. 1999, p.283). Levett et al. 

( 1999) purported addition of option theory into the calculation of CL V would improve 

the accuracy of the model and produce results that better reflect a 'real world' context. 

Levett et al. ( 1999) admit that the option valuation model is similar to Berger and 

Nasr's ( 1998) model in the way value is calculated. Levett et al. ( 1999) purport that 

the value ofthe option valuation model is the ability R)r managers to apply a context to 

a consumer's choice to undertake a transaction and not just to the total expected 

contribution as considered in Berger and Nasr's (1998) calculation. 

Whilst an interesting contribution to the valuation of a customer, Levett et al. 's ( 1 999) 

work received limited literature coverage and model extension in both academic and 

practical application. Levett et al. ( 1999) suggest there is benefit in further research "if 

previous purchases have a significant bearing on the probability of current purchases, 

in situations where the value of the customer is more sensitive to the level of 

probability than profitability growth" (Levett et al. 1999, p.283 ). 



Whilst option theory presents an interesting conceptual method in adding a level of 

probability the use of it addressed the context of dynamic consumer environments. 

This model is conceptual and is not widely applied by academics or practitioners. 

2.9 In the microscope 

An additional consideration in relation to Berger and Nasr's ( 1998) model was the 

interence that the model was best suited to application of contractual relationships 

between a customer and t1rm. This limitation was observed by Reinartz and Kumar 

(2000) who tested the model in the non-contractual context finding several limitations 

such as suitable consideration of the level of switching costs to the customer. If 

switching costs are low in the non-contractual setting, the customer switches easily. 

However, for long term relationships the customer needs to weigh up aspects such as 

the loss of loyalty schemes. 

Reinartz and Kumar (2000) undertook one of the early empirical studies investigating 

four commonly held propositions associated with customer profitability over time. 

The research undertaken by Reinartz and Kumar (2000) used data taken from a USA 

catalogue retailer in the general merchandise category. The total number of 

observations, over the study period, came fi·om 9,167 households made up of two 

cohorts those that purchased over the 36 month period (total study period) and those 

that purchased over a 35 month period (cohort 2's 1st purchase taking place one month 

after those in Cohort I). Estimation of the parameters for the calculation used the 

approach suggested by Schmittlein, Morrison and Colombo's ( 1987) and subsequently 



Schmittlein and Peterson ( 1994). Taking the inputs fi'om that calculation process 

Reinartz and Kumar (2000) applied the analysis to the Berger and Nasr's (1998) CL V 

calculation model. 

The propositions and findings were: 

1. There exists a strong positive customer lifetime profitability relationship 

• This was supported but only a moderate linear association was found. 

Approximately 40% of customers fell out of the expected quadrants 

between tenure and profitability. 

2. Profits increase over time 

• Reinartz and Kumar (2000) asserted that both long and short-term 

customers form the core of company profits hence the relationship of 

time and retention to profitability was not supported. As such, the 

proposition was not supported. 

3. The costs of service to long-lite customers are less 

• This proposition was not supported as they tound the mailing cost per 

dollar sales was not statistically different between shoti and long-term 

customers. Notable was that this related to only one dimension of the 

cost components - mailing. 



4. Long-life customers pay higher prices 

• The research finding did not support this proposition. In reality the 

research found the opposite situation. Short tenure customers paid on 

average a price of between 8% and 10% higher on a single product than 

long tenure customers. 

2.10 Customer retention calculation 

In their article Reinartz and Kumar (2003) discussed the issue of calculation and then 

presented a conceptual discussion on the calculation input variables. They suggested 

the modelling may be improved through using Schmittlein and Peterson's (1994) 

customer lifetime duration measurement. Through adding Mulhern's (1999) variable 

'P(active)' to represent the probability a customer is still active in purchasing a 

companies product. In short do you still have a relationship with that customer or is 

their 'lifetime' with that firm expired. Reinartz and Kumar (2003) put forward this as 

a suitable treatment to the calculation for customers in non-contractual relationship 

settings. This is an important contribution to enhance the calculation as it introduces 

consideration that, in a non-contractual setting, customers are not as reliable as those 

contracted. Hence this vulnerability or reduced certainty needs a treatment. 

A notable addition to the body of literature on Customer Lifetime Value (CL V) 

calculation was Pfeifer and Carraway's (2000) article. Pfeifer and Carraway's (2000) 

contribution set out to address their perceived limitation in the model by Berger and 

Nasr (I 998) where no consideration was given to probability that a customer would 



repeat purchase in the future. This under the Berger and Nasr ( 1998) model was 

assumed as given. This was suggested by Pfeifer and Carraway (2000) as limiting the 

models practical application as it did not consider broader factors that can influence a 

consumer's purchase decision making. The addition to the model added a calculation 

of probability that a customer will repeat purchase behaviour in a future period. 

Pfeifer and Canaway (2000) applied a general class of mathematical model called the 

Markov Chain Model (MCM). The model creates probabilities of a customer moving 

from one decision state to another in a single period. Figure 2 is a graphical 

representation of a firm's relationship with a customer over a five year period context 

using the MCM approach. The customer at the titl:h period is deemed to have become 

a 'non-customer' or 'former customer' as depicted with the probability of being a 

customer in the next period. 

Figure 2: Markov Chain Model (MCM) calculation 
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(Pfeifer and Carraway. 2000. p.45) 

Pfeifer and Carraway (2000) noted the MCM's flexibility as the key advantage of 

using this approach over other models to provide more accurate inputs to handling 

retention, migration and acquisition situations. The model is introduces the element of 



probability thereby explicitly accounting for uncertainty of customer relationships. 

Pfeifer and Carraway (2000) combined the MCM model with the RFM framework and 

tested the model with catalogue data from the USA to illustrate the application. 

Although the introduction of the probability of future purchase has potential to 

enhance the CL V model, it has not been subject to broad empirical testing. The 

addition ofMCM may be found to enhance the model. 

The MCM model in this paper focused on the application to managerial decision­

making and not specifically to CL V determination. Further testing is considered 

necessary to clarify the accuracy and applicability of this MCM approach and value to 

the context of CL V calculation. 

Libai, Narayandas and Humby (2002) in their paper presented a number of limitations 

to Berger and Nasr's (1998) model when applied in the context of Jackson's ( 1985) 

lost-tor-good customer scenario -where a customer makes a longer term commitment 

to an organisation where switching costs are high. Libai et al. (2002) found that the 

CL V model examined did not assist managers in practical case scenarios and hence 

limited its adoption. This has implications tor high frequency purchase products (such 

as Fast Moving Consumer Goods FMCG) where a customer may operate fi·om a 

repertoire of brands with equal loyalty. This was highlighted in Berger and Nasr's 

( 1998) suggested areas for future enhancement, noting that adding brand loyalty and 

customer satisfaction variables into the calculation should be explored. 



Jain and Singh (2002) presented a good overview of literature as observed at that point 

in CL V model and theory development, summarising the state of the CL V model 

development. The article also outlines a number of limitations to Berger and Nasr's 

(1998) approach to CLV calculation such as the amount of cash flow from a customer, 

timing of cash flow, the type of business model, and the type of data needed. Jain and 

Singh (2002) also noted the lack of empirical validation observed in the current body 

of literature on CL V model development. Further extension of the CL V model is 

suggested by Jain and Singh (2002) to broaden model inputs to include demographic 

information and product usage variables. They note that not all models available at 

that time need further development to be applicable to product categories. 

Reinartz and Kumar (2003) article continued development building on Reinartz and 

Kumar (2000) where they incorporated the projection of profitability with the 

computation oflifetime duration. They compared the RFM framework to the model of 

customer profitability proposed in Reinartz and Kumar's (2000) model. Whilst the 

results are not presented, there is the position taken that Reinartz and Kumar's (2000) 

model delivers superior accuracy in its predictability or variance in measurement of the 

value than using the RFM approach. 

The article by Reinartz and Kumar (2003) also responded to the findings of Reinartz 

and Kumar (2000) paper by conceptually reviewing antecedents that can influence 

calculations of lifetime duration. Their paper tested several propositions. 



• The level of spending IS positively related to profitable customer lifetime 

duration. 

• The degree of cross department buying IS positively related to profitable 

lifetime duration. 

• Lifetime was shown to be shorter when the time between purchases by a 

customer was inconsistent. 

• 

• 

• 

The proposition that higher company profits had a correlation to greater 

customer dissatisfaction was not supported. Finding that the relationship to 

company profitability had more to do with the degree of spending by customers 

and not satisfaction. 

Loyalty schemes are associated with higher lifetime value . 

Profitable lifetime value is supported in the mailing effort of direct marketing 

activity. 

• Profitable customer lifetime duration is higher for customers living m areas 

with lower population density. 

• Age is not related to profitable lifetime but income is. 

Reinartz and Kumar (2003) were successful in outlining a number of conceptual 

influencing antecedents that should be considered. However, Reinartz and Kumar's 

(2003) article did not provide support tor the weighting factor associated with the 

antecedents themselves on the calculation. They highlight that "customers are 

heterogeneous on an important relationship characteristic lifetime duration" 

(Reinartz and Kumar, 2003, p.23). Their research found that customer heterogeneity 



was not isolated to the characteristic of tenure. Other CL V Model characteristics such 

as consumption also varied. 

At a conceptual level Reinartz and Kumar (2003) were successful in providing 

'reasonable doubt' that Reinartz and Kumar's (2000) findings may not be accurate. 

This finding supported Berger and N asr' s ( 1998) original DCF concept. 

Rust, Lemon and Zeithaml (2004) presented an excellent overview of the body of 

literature in this area and distinguished three streams of development in relation to 

Customer Lifetime Value. They are: 

• 

• 

• 

• 

CL V models (e.g. Berger and Nasr 1998); 

Direct marketing-motivated models of customer equity (e.g. Blattberg and 

Deighton 1996), and 

Pfeifer and Carraway 2000) 

Longitudinal database marketing models (e.g. Reinartz and Kumar 2000) 

Rust et al. (2004) proposed a model that builds on the above streams, not relying on 

the input of longitudinal data being. The proposed model by Rust et al. (2004) was 

more general and incorporated all marketing expenditure not purely direct marketing 

expenses. The model was ambitious, in that it incorporated competition and brand 

switching elements. The following model was proposed by Rust et a!. (2004) for 

calculation of CL V fi)r the subject customer to a specific brand. 



Figure 3: CL V model by Rust et a!. (2004) 

Tij 

CL vij == ~=0 ( 1 + djrt/fiVijt1fijtBijt 

(Rust et al., 2004, p. 114) 

Where: 

Is the customer 

Is the firm 

r Is the fi·equency of purchase of customer i 

Is the moment of purchase in time 

d Is the discount factor of the firm 

T;; The number of purchases customer i is expected to make before firm j's time 

horizons 

Vijt Customer i's expected purchase volume in a purchase ofbrand j in purchase t 

Jrijt Expected contribution margin per unit of firm j fi·om customer i in purchase t 

Bijt The probability that customer i buys brand j in purchase t 

An important contribution by Rust et al. (2004) to CL V model calculation 

development is their introduction of competitor offerings and brand switching 

variables (calculated through application of Markov Chain Modelling) in the formulae 

proposed by Pfeifer and Carraway (2000). The CL V model proposed is based on the 

discounted cash t1ow methodology used by Berger and Nasr ( 1998) and incorporates a 

utility formulation of brand and competitor inertia being the introduction of frequency, 

margin, volume and brand choice probabilities to a customer purchases in this 



calculation. Additionally, the model incorporated a probability of choice creating an 

input switching matrix at the individual level. 

Rust et al. (2004) then applied the new model to calculate the customer equity and ROI 

analysis, utilising outputs of their refined CL V model. Rust et al. (2004) utilised cross 

sectional data to establish customer ratings of competitor brands and brand purchase 

behaviour. Customer ratings ofbrands is achieved through observation, panel data or 

using purchase intent as a proxy tor profitability in the next intended purchase. This is 

applied to each purchase tor each brand in a repertoire. Once the variables are 

established they use multinominal logit choice model analysis to establish driver 

levels. 

When comparing the model proposed by Rust et al. (2004) to other CLV models such 

as Berger and Nasr's (1998), it was found that "the lost-tor-good [being Berger and 

Nasr's ( 1998) approach) model provides a systematic underestimation of customer 

equity that, in this case, is an underestimation of4 7.3%" (Rust eta!., 2004, p.l21 ). 

This is an important finding, yet Rust et al. (2004) did not mticulate which model was 

the more accurate. Of interest in Rust et al. 's (2004) model was it discounts according 

to individual purchases, and moves away from the risk identified in this research of 

acting at aggregated levels. Several limitations were outlined in the article including 

the impacts of cross-selling and competitor reactions, which were acknowledged by 

Rust et al. (2004) areas of future development. 



An observation of the contribution made by Rust et al. (2004) is the challenge of 

incorporating individual (transaction or consumer) level variables. Consideration 

should be given in development of calculation models to the practical application. If 

consideration is not given then the contribution to the theory is constrained. Rust et 

a!.' s (2004) model suggests application at individual consumer or transaction level. 

This presents an unlikely scenario due to the practicality of using the model and 

accessibility to the input information in a way that easily allows for aggregation and 

decisions to be made at a segment level. 

2.11 CL V and customer equity 

During the development of CL V literature Pfeifer, Haskins and Conroy (2004) 

addressed the issue of terminology. They identified the need for clarification between 

the expressions 'customer lifetime value' and 'customer profitability' when referenced 

and set out to illustrate the key differences. 

Effectively Pfeifer, et al. (2004) distinguished customer lifetime value as a calculation 

that should not include acquisition costs. Where acquisition costs are included they 

support Blattberg and Deighton's ( 1996) model that calculates the profitable customer 

lifetime value where a firm has expenditure prior to receiving revenue from the 

acquisition. 

There is a distinction introduced by Kumar, Ramani and Bohling (2004) where CL V 

may be applied to the contexts of averages and to individual customer situations. 



Kumar et al. 's (2004) article set out clarifying the difference between averages and 

individual situations and considerations that should be undertaken for calculating CL V 

in the two contexts. 

Kumar et al. (2004) noted that in the context of measuring CL V for a group of 

customers at an aggregated level, the approach outlined by Berger and Nasr (1998) 

was supported. They did not suggest changes were required to the model for that 

application. They identified a key benefit of aggregating the data for a set of 

customers was for evaluating at a competitor firm. This allows insight and comparison 

with competitor fmns. Additionally this approach was proposed to assist with merger 

and acquisition decisions (Gupta and Lehmann, 2003; Gupta, Lehmann and Stuart, 

2004). 

Kumar et al. (2004) reviewed the context of individuallevellitetime value calculations 

and suggested the application of a probability element (the P(Active) probability) 

required to reflect the active status of the customer, as outlined in Schmittlein, 

Morrison, Colombo ( 1987) and Reinartz and Kumar (2000). 

In preferring this approach Kumar et al. (2004) illustrated several managerial 

applications for their proposed model in areas such as customer selection, management 

in relation to investment, and resource mix and frequency of communication 

applications. It is not clear why Kumar et al. (2004) suggest that the two contexts of 

aggregated and individual level calculation could not be accommodated under one 

model. They infer that introduction of a probability component, used in the individual 



model, may present improved accuracy however they do not provide empirical support 

for this assertion. 

Kumar et a!. 's (2004) article did not specifically contribute to CLV formulae 

calculation in the context of aggregated or individual level contexts but provides an 

opinion on preference. The article responded to criticism by Jain and Singh (2002) 

expressing concern about the limitations of practically applying CL V models. The 

development ofthe solution was not limited to customer lifetime valuation alone. The 

following paper investigates how calculating the lifetime value of a firm's customers 

can play a role to the in valuation ofthat firm. 

Gupta et al., (2004) paper proposed using the calculation of the customer lifetime value 

of a firm's customers to estimate the value of a firm. They investigated the discounted 

cash f1ow approach and tested calculation of CLV for a f1rm's customers against the 

company annual report data. A key finding in their research was to identify that 

"retention rate has a significantly larger impact on customer and firm value than does 

discount rate and cost of capital" (Gupta et al., 2004, p. 17). The element of retention 

rate is examined in their research investigating its role in calculating CLV. 

2.12 A product perspective 

Up until van Triest (2005), the body of literature centred on the CL V calculation 

applied to segment, aggregated, or individual (i.e. customer or transaction) level 

contexts. The contribution by van Triest (2005) was to approach the customer lifetime 



value calculation differently, investigating the impact of changing the relationship to 

that of customer profitability at product level. 

Van Triest (2005) introduced a generalised customer profitability model to explore the 

relationship between customer size and customer profitability. Assuming there is a 

coiTelation between size and increased profits, van Triest (2005) sought to identify 

where a higher profitability margin may come from. Van Triest (2005) introduces a 

model with several variables relating to organisation size, purchased products (and 

product margin), sales, exchange efficiency, tenure, and purchase volume. The 

propositions proposed by Van Triest (2005) related to if larger organisations achieve 

greater product margins (discounts), have less support demands and higher exchange 

costs. The findings did not support the examined proposition that large organisations 

generate greater product marginal profit but did posit that the size effect is relevant to 

exchange efficiencies. 

2.13 The context of risk 

Ryals and Knox (2005) make a umque contribution to the body of literature by 

investigating a way of 'risk-adjusting' the calculation of customer lifetime and 

customer profitability. Ryals and Knox (2005) applied a risk element in profiles 

specifically to the revenue component where other authors such as Pfeiffer and 

Carraway (2000) and Levett et al. ( 1999) applied it to other elements, specifically the 

customer and their probability to be retained. From the result of that step Ryals and 

Knox (2005) propose calculating the Economic Value (EV) measurement of a 



customer as a product of combining a forecast of the CL V and the future customer risk 

relative to revenue. 

The approach taken by Ryals and Knox (2005) calculates risk-adjusted revenues, 

subtracts cost and adjusts to present value using the weighted average cost of capital. 

It effectively takes an approach to reflecting the risk in the relationship by applying a 

'risk adjustment' to the revenue component. The paper argues that the difference 

between risk adjusted and non risk adjusted is the difference between the CLV 

calculation and the EV. Ryals and Knox (2005) apply the methodology to insurance 

data to outline the difference and consequently discussed the marketing management 

implications to decision making. 

More recently, Haenlein, Kaplan and Schoder (2006) built on the collection of work of 

CLV calculation, maximising marketing resource allocation (Blattberg and Deighton, 

1996; Berger and Nasr, I 998; Reinartz, et al., 2005; Rust, et al., 2004; and Venkatesan 

and Kumar, 2004) and use of Option Theory (Levett et al. 1999) to introduce a new 

model. Combining the CL V approach proposed by Berger and Nasr ( 1998), and real 

option analysis (specifically the abandonment option), Haenlein et al. (2006) ranked 

customers to guide managerial decision on resource allocation. 

Haenlein et al. (2006) presented the proposition that using traditional discounted cash 

flow based CL V models to direct allocation of scarce marketing resources, as 

suggested by Blattberg and Deighton (1996), results in flawed and biased outcomes. 

The article suggests that the use of real option analysis combined with CLV analysis 



can lead to more efficient use of resources. This approach introduces the flexibility for 

the t1rm to remove (or explicitly not target) unprofitable customers. 

Haenlein et al. (2006) undertook testing of the propositions using longitudinal data 

fl'om a USA catalogue company over a 12 year period. The research calculated 

purchase fi·equency, cost of sale, and marketing activity per customer. With these 

inputs established future profit contribution is estimated. Calculation of these inputs 

enabled application to a standard CL V under the scenario that includes real option 

value and without the addition of that real option element. Haenlein et al. (2006) 

repmied a consistent underestimation of customer value. 

The consistency in the error (being underestimation of customer value) identified in 

Haenlein et al. 's (2006) research provided opportunity to investigate the source of 

variation. For this purpose they undertook Monte Carlo simulations and identified 

divergence increases with decreases in future purchase probability and decreased 

future expenditure. 

One of the challenges in the work by Haenlein et al. (2006) was the introduction of a 

highly complex calculation model that integrated the Option Theory elements into the 

CL V calculation. An observation is that the complex nature of the model inputs would 

prove challenging in a practical context. 



2.14 Literature review - summary 

In summary, the body of literature on CL V calculation has developed with a relatively 

narrow extension of the core theory and methodology either fi-om Recency, Frequency, 

and Monetary (RFM) or Discounted Cash Flow (DCF) foundations and the model 

introduced by Berger and N asr (1998). The variations in literature are observed to 

focus on extending the way the calculation of model inputs are made and the use of 

various inputs in the model. Additionally the aspect of probability of future 

transactions and customer retention received strong attention. 

A weakness identified from this literature review is the lack of application and 

empirical validation of many of the conceptual proposed models. In selecting the 

approach to use in this research early articles by B lattberg and Deighton ( 1996) and 

Berger and Nasr (1998) presented a clear foundation. The CLV calculation model 

proposed by Berger and Nasr ( 1998) was popular in literature and continues to be the 

basis f(w future development of model calculation approaches. Contributions in 

literature following Berger and Nasr's ( 1998) model, tended to focus on ways to 

increase the accuracy in predicting model inputs and a future customer state of tenure 

or propensity to purchase. Additionally, several authors explored how managers may 

use CL V calculation results to make strategy decisions and apply scarce resources. 

The model proposed by Berger and Nasr ( 1998) was a clear choice tor testing the 

reliability and accuracy of the CLV model to predict future states of customer value. 

This was because the CL V calculation model proposed by Berger and N asr ( 1998) was 



the highest cited atiicle in the body of literature on this topic and from observation in 

this review as well regarded and referenced as a foundation approach. 

There were however two key areas of enhancement to the CL V models reviewed in the 

literature. Several attempts were made to improve the retention rate or customer 

tenure calculation inputs. The literature discussed the use of methods such as Markov 

Chain Modelling (MCM) for calculating customer duration and introduced 

consideration of risk into the equation. The use of option theory was also suggested as 

an enhancement to the model. Both these proposed additions focus on the probability 

of future purchase. In both instances there was very little empirical suppmi and in 

general their contributions were of a conceptual basis. It is surprising given the desire 

marketing managers and academics have expressed in the literature to develop models 

to financially account tor benefits in marketing decision making. Overall, it was 

observed that there is a relatively limited amount of empirical testing presented in the 

literature, with a dispropmiionate amount of conceptual papers contributing to the 

model development literature in this area. 

The application of the CL V models were incorporated to illustrate decision making 

about customers, segments, products and discuss inputs/variables that may influence 

the outcomes and impacts on managerial decision making. The momentum of new 

contributions has continued under the assumption the foundation model(s) were valid 

and accurate. These have tended to extend further Blattberg and Deighton's (1996) 

discussion on resource allocation decision making. 



The primary contribution of this research is empirical testing of the established Berger 

and Nasr's ( 1988) CL V calculation model. This research investigates the predictive 

accuracy of the model at both aggregated and segment levels and assesses the fit 

between forecast and accurate calculations. In addition, the study examines the input 

variables to the model and the influence they have on the CL V model calculation 

outcome. 



3 Research question 

This study empirically examines Berger and Nasr's (1998) Customer Lifetime Value 

(CLV) calculation model, identified as a foundation CLV calculation fl-om review of 

literature. The purpose of this research is to contribute to academic and managerial 

confidence that suitable rigor has been applied to Berger and Nasr's ( 1998) CL V 

calculation model. The validation of this model is important as it is the basis from 

which further theory has developed in the area of CL V calculation. 

3.1 Principal research question 

There are several elements to this research. The primary goal is to test the accuracy 

and reliability of Berger and Nasr's ( 1998) model and the sensitivity of the models 

input variables. Secondly, a number of propositions have been identified from the 

literature and this research presents opportunity to also empirically examine these. The 

research question is presented and examined in two parts: 

Ql 

What is the accuracy ol the Berger and Nasr's (1998) CLV calculation model to 

predict a future state (fit- between the model and actual data based calculations)? 

Q2 

How sensitive is the Berger and Nasr 's (1 998) model calculation output to variation 

vvith the input variables? 



3.2 Related propositions for examination 

In review of the literature several relevant propositions to the principal research 

question were identified tor examination. The propositions are detailed below. 

Propositions 6 and 7 did not come directly from literature. The access to available data 

in this study has provided opportunity to examine these questions. 

Pl Businesses lose 15%- 20% of' their customer each year. 

This proposition arises directly from a claim by Reichheld and Sasser ( 1990). 

P2 Companies lose hall their customers everyfive years. 

If proposition I is accepted then it follows that this proposition by Reichheld ( 1996), 

based on their research of USA corporations, follows and can also be examined. 

Whilst propositions 1 and 2 are linked, the purpose tor treating these propositions (PI 

and P2) independently is because they were identified in different papers. 

P3 Customers l1ho stay longer increase cash flow over time (cash flow being the 

incremental revenue receivedfrom sale ol a product or service). 

Reichheld and Sasser (1990), Reichheld and Teal ( 1996), and Berger and Nasr ( 1998) 

observe that customers who stay longer increase cash t1ow, as sales (revenue) earned 

by a firm from a customer over the period of time of the relationship, and profits over 



time. This challenges the assertion of Dowling and Uncles ( 1997) particularly in the 

context of non-contractual settings. The proposition for examination in this research is 

limited to cash flow. There are a number of inputs to profitability and all the 

contributing elements of the profit equation were not available from the data source 

Rata Energy. 

This proposition is similar to the findings of Reinartz and Kumar (2000) who noted 

two relevant findings. Profits were reported to increase for a customer over time and a 

cotTelation was f(mnd between tenure and profitability. These findings were not 

directly examined in this research due to missing input data on customer profitability. 

P4 Retention rate ii·i the most critical input variable in the CLV calculation. 

This proposition is derived from Gupta et al. 's (2004) research. They found that the 

retention rate, being the ratio of likelihood a customer will be retained in a following 

period, had a larger impact on customer and firm value than the discount rate or the 

cost of capital used in the CL V model tested. 

P5 Different customer segmentc'l' exhibit different patterns of attrition. 

This proposition arises directly from Wyner's (1999) paper where they state ditlerent 

customer segments exhibit different patterns of attrition, switching and reactivation. 

This research is limited to testing part of the overall proposition by Wyner ( 1999), due 

to the lack of suitable input information on switching and reactivation from Rata 



Energy. Wyner ( 1999) noted that this presents considerable risk to the accuracy and 

role of many subsequent enhancements ofthe CLV model. 

P6 Using input variables (based on actual 2003 input data) derived at segment 

level will result in more accuracy in the CL V model calculation. 

P7 The u ... ·e of an average retention rate derivedfrom the actual cohort data will 

lead to highly accurate results. 

Propositions 6 and 7 arise fiom the logic that a greater level of detail will lead to 

improved accuracy in the CL V calculation. The availability of actual data over the 

tour year period from the Rata Energy provides the unique opportunity to not only 

calculate actual retention rates, being the ratio of likelihood a customer was retained in 

a following period, but provide the ability to segment the cohort for further analysis. 



4 Methodology 

This study identified from literature a suitable 'foundation' customer lifetime value 

calculation model. In addition, relevant propositions identified in literature will also 

be examined. 

Data of four years from 2003 2006 inclusively, is profiled usmg descriptive 

statistical analysis to better understand the cohort characteristics. The profiling of the 

data is done at aggregated and segmented levels. The key research problem is 

explored following a three step process of calculating CLV for a group of customers 

over a projected period of 3 years. The next step was to calculate the actual value of 

that cohort using actual data for the 3 year examined period. Lastly, the two sets of 

results are compared to identify the level of variance and make related assertions as to 

the level of accuracy the CL V model provides. 

In addition, the sensitivity of the chosen CLV model to change in the input variables is 

examined to understand the level of influence each variable has on the outcome of the 

CL V model's calculation. The sensitivity of the input variables was examined to 15% 

variation in the calculation result as by industry standards would be perceived as 

considerable. The sensitivity analysis led to several propositions examined that related 

to this topic of CL V calculation identified form relevant literature and presented in 

Section 3.2. 



4.1 Research design 

The research whilst using empirical data is exploratory by nature. It uses statistical 

analysis to determine how closely the actual calculation findings compare to those 

made by the Berger and Nasr (1998) model and examine sensitivity characteristics of 

the input variables in the model when in the context of a comparison to actual data. A 

finding of more than I 0% variance by industry standards would be perceived as 

considerable and would put in doubt the value of the calculation findings to business 

decision making. 

This research adopts the approach to customers introduced by Jackson (1985) where 

customers are either part of lost-for-good or always-a-share segments this approach 

was used as it represents a common context taken in literature for the application of 

Berger and Nasr's (1998) CL V model. The specific context for this research was the 

Lost-for-good segment. This assumes a customer is either totally committed to the 

vendor or totally lost and committed to another vendor. This means there is no 'switch 

back' activity as part of this customer group. This approach was adopted to simplify 

the context of the model evaluation, and enable clear assessment of the model fit and 

sensitivity around input elements. Berger and Nasr' s ( 1998) model used in this study 

application to this cohort and based on the lost-for-good scenario. 



4.2 Data 

The data extract was sourced from a large energy retailer in New Zealand which tor 

the purpose ofthis research is called Rata Energy. The extract of customer data for the 

cohort was taken from the core transaction billing system tor the use in this research 

was extracted March 2007. The cohort data extraction was from 1 January 2003 to 31 

December 2006. 

The cohort data from Rata Energy was provided in a way as to ensure no compromise 

of Rata Energy's customer privacy by using only two data elements tor each customer 

being: 

• Account number (allocated by the Rata Energy billing system) 

• Consumption volume in kWh (kilowatt hours) each month tor each consumer. 

Initially, 'billed amount per month' was provided in the extract but this was rejected 

due to a number of inconsistencies in the recorded financial data (not present in the 

energy volume data). Additionally, the risk of utilising the billed amounts included a 

highly complex approach to applying various network charges and other levies that did 

not necessarily ret1ect a consumer's consumption activity. The measurement of kWh 

(kilowatt hours) per month was the preferred means of representing customer activity. 

The initial data extract contained 28,492 suitable customers. The data did require 

'cleaning' to ensure no switch-back consumers or general data anomalies were 



included. A switch-back is a customer who had a gap in consumption data recorded. 

A customer was also deemed to have detected was taken as someone where there was 

no longer recorded consumption tor that customer in that year or subsequent periods. 

Following consultation with Rata Energy, 272 consumers captured in the original 

extract were removed. In addition to any evidence of switch-back, customers were 

removed from the extract due to discretions in the data held. It was reported by Rata 

Energy that these data discrepancies were not usual and most likely a result of billing 

processing or intemal data transfer anomalies. An example is where power meter 

multiplier errors impact on the billing calculation process. The result of the cleansing 

process was a final extract reduced from 28,492 to 28,220 customers tor the final 

cohort. 

Other input variables such as marketing spend per customer per annum and the 

discount rate, were sourced directly from Rata Energy. These were attained from 

either historical records or by interview with key marketing and finance staff 

4.3 Limitations 

4.3.1 Marketing spend 

Rata Energy only had recorded marketing expenditure on their residential consumer 

base available tor the year 2006 (this was due to poor record handling and the 

transition of several intemal operating systems over the period data relates). After 



consultation with the management of Rata Energy, it was identified that the marketing 

expenditure was a relatively consistent amount budgeted from preceding years. Rata 

Energy provided the spend on marketing per customer for 2006 and endorsed the use 

of that amount as a proxy for the preceding periods which covers the period of this 

study. 

4.3.2 Costs 

The cost to serve customers was not provided by Rata Energy. This did not impact on 

the ability to undertake this examination. However, the absence of accurate cost input 

data limited the ability of this study to test propositions observed in literature on the 

profitability of a customer and the potential reduction of cost to serve over the lifetime 

of a customer. 

4.3.3 Value 

The pricing information is very complex and was not available at a detailed level. A 

suitable extraction was not possible of the related network charges and other associated 

charges relating to a consumer account. A contribution per kWh was identified as 

$0.37 per kWh following consultation with Rata Energy's finance team. This figure 

was applied to all consumption data to provide a monetary representation of the value 

ofthe customer. 



4.3.4 Customer tenure 

A customer was deemed to not be a Rata Energy customer when their annual 

consumption was nil. The consumption data for the cohort was calculated and 

aggregated to an annual figure per customer. Where a customer left during a year they 

were still counted as a customer and not lost until the following year when they would 

have a 'nil' consumption recorded. 



5 Results and discussion 

5.1 Introduction 

In review of the relevant literature on this subject, Berger and Nasr's (1998) CLV 

calculation model is the selected model to be applied in this research. The context for 

this research is the residential energy retail sector, specifically 28,220 customers of the 

company Rata Energy. The analysis as outlined in the methodology has been 

undertaken and this chapter presents the findings and relevant discussion. The results, 

observations and discussion are structured into tour parts: 

I. Cohort description descriptive statistics of the cohort including a profile 

of the relevant general market conditions (retention and consumption over 

time at an aggregated level). 

2. General application of Berger and Nasr's (1998) model and appropriate fit 

(actual vs. modelled) assessment. 

3. Examine the input variables used in Berger and Nasr's (1998) model to 

understand the level of sensitivity and how the model is influenced by 

change in the input variables (retention, marketing expenditure and 

discount rate). 



4. Take a closer look within the cohort to provide greater insight into the 

customers and possible implications on the models effectiveness and 

research findings. Including further testing of Berger and Nasr's ( 1998) 

model using segments identified within the cohort and actual based input 

variables. 

5.2 Cohort description 

5.2.1 General market conditions 

The extract of customers used in this cohort was taken fi·om the New Zealand energy 

sector. The subject company, Rata Energy produces an annual repoti that captures 

observations about the electricity sector and the following extract presents a context of 

the market conditions for this study. "New Zealand's demand for electricity has grown 

consistently over the last 20 years. Electricity consumption has increased 1:i-om 

approximately 27.7 TWh (Terawatt hours) in 1985 to 41.5 TWh in 2005, an average 

growth rate of2.2 percent per annum" (Rata Energy, 2007, p. 6). 

The electricity sector in New Zealand has gone through considerable change in the last 

few years, which resulted in varying levels of switch activity over that period of time. 

With deregulation in 1999 there was a short period (one-two years) of high switching 

activity (with up to 30% customer loss estimated by Rata Energy management) as the 

companies jostled tor market share. The most notable period of unusual activity was 

in 2001 where lakes were at critically low levels and consumers experienced forced 



black-outs by network compames to manage the scarce electricity resource. This 

occurred again in 2006 when New Zealand experienced one of its driest winters in 30 

years, however the industry took a more proactive approach that year, learning from 

2001 and consumer marketing promotions widespread power black-outs were avoided. 

From observations by Rata Energy management, the competitive context has settled 

considerably since deregulation. They were unable to provide specific switching 

metrics but commented that in the initial years following deregulation in 1999 there 

was considerable switching activity as consumers came to understand the new market. 

The new retailers were active in the 'lolly scramble' for customers that resulted from 

deregulation. In addition there were poor early systems put in place which has led to 

many down-stream challenges for these relatively young retailers. This soon settled 

and between the years of 2003 and 2006 (the period of the coh01i data extract) the 

switching activity in the residential consumer market calmed considerably. 

5.2.2 Retention 

A critical dependency on the profitability of a customer over time is the rate at which 

customers defect or leave the organisation (or where a customer stops buying the 

product in the context of non-contractual settings). There are a number of managerial 

decisions that rely on an accurate understanding of the defection rate such as 

application of scarce resources to acquisition or retention activities. 



Figure 4 presents the number of surviving customers each year for the cohort. It shows 

a relatively consistent defection of customers and a net loss from 2003 to 2006 of 3 7% 

(10,322 customers). This represents an average annual defection rate of 14%. This is 

a large number of customers lost- particularly if it is found that these lost customers 

represent lucrative lifetime customers. 

Figure 4: Number of surviving customers per annum 
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An average defect rate of 14% as outlined in Table 1 presents an interesting finding 

when considering Reichheld and Sasser's (1990) somewhat bold and sensational 

statement that "It is common for a business to lose 15% to 20% of its customers each 

year" (Reichheld and Sasser, 1990, p. 1 08). Whilst the finding was an average of 14% 

this result provides some support for their proposition. 
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Table I: Customer attrition by year 

2004 2005 2006 

Number oflost customers (non-cumulating) 4583 3485 2239 
-· 

%of original customers lost (non-cumulating) 16% 15% 11% 

Average of lost customers per annum 14% 

Table I details a relatively consistent reduction in the total cohort -being the level of 

detection each year of 16%, 15% and 11% respectively. The rate of decline raises the 

important question of when the rate is likely to plateau and at what level that is likely 

to be. 

Reichheld and Sasser's ( 1990) article did not acknowledge the context for managerial 

decision-making where risk is present in relying on calculations that use aggregated 

input variables. This was raised by Wyner ( 1999) when observing the variance that 

can exist in segments of a customer base. The risk of this is discussed in more detail in 

Section 5. 7 Segment analysis, and investigates variance found in the cohmi at a 

segment level. 

The retention of 86%, in the base year, is used for this analysis based on the findings in 

Table I. 



Table 2: Cumulative customer attrition 

2004 2005 2006 

Number of lost customers (cumulating) 4,598 8,098 10,322 

% of customers lost (cumulating) 16% 29% 37% 

This research findings presented in Table 2 allow for examining the sensationalised 

finding of Reichheld (1996) that "On average, the CEO's of U.S. corporations lose half 

their customers every five years" (Reichheld, 1996, p.56). As the data is only 

available for the first three years, extrapolation of the data is required to comment on 

the proposition by Reichheld ( 1996). 

One approach for calculation is to use the average defection rate of 14% p.a., if this 

rate was simply extrapolated over a five year period then 14% * 5 = 70%. This 

represents a higher rate than suggested in the proposition. 

Another approach is to use the average % change between the defection rates. This is 

calculated as 17%. The 17% average change in the reduction rate is based on 

calculating the average% reduction over the 3 years (with 6% reduction between years 

1 and 2 and a 27% reduction between years 2 and 3 defection rates). Applying this 

average reduction of 17% to the years 4 and 5, the 5 year defection rates are: 

• 16%- actual year 1 

• 1 5% actual year 2 

• 1 1 % - actual year 3 



• 9%- calculated year 4 (9.13%) 

• 8%- calculated year 5 (7.47%) 

The sum of these defections is a 59% defection of customers from the original cohort 

in 5 years. This result supports the proposition based on the variability of the unknown 

years 4 and 5. Another recommendation would be to change the proposition statement 

to include "at least 50%" to the context of lost customers. 

The context of customer switch backs (i.e. a previous customer who left returns as a 

customer to the organisation) does not seem to be addressed in Reichheld's (1996) 

proposition. It is not clear if Reichheld ( 1996) gave consideration to the issue of 

customers returning during the t1ve year period as this would influence the level of 

actual 'lost' customers. 

5.2.3 Consumption 

Table 3 illustrates the level of annual consumption activity for the customer cohort. 

There was a decline in consumption from 2003 to 2004 of -13%, strong growth in 

2005 of 40%, followed by growth in 2006 of 11%. There is an average growth of21% 

for the cohort over the examined period which is considerably more than repmied at 

average industry level with growth of 2.2% p.a. repotied over that period however 

following consultation with Rata Energy this was put down to the industry level being 

heavily influenced by significant volume commercial consumers. Table 3 combines 



customer and consumption together illustrating the strong growth m average 

consumption for survivors. 

Table 3: Cohort profile (total customer base) 

2003 2004 2005 2006 

Number of survivors each year 28,205 23,622 20,122 17,898 

Total consumption (kWh) 246,034,288 213,192,263 298,364,470 331,145,770 

% change in consumption p.a. -13% 40% 11% 

Ave volume p.a. (survivors) 8,723 9,025 14,828 18,502 

Ave value p.a. (survivors) $323 $334 $549 $685 

These results present strong support for the relationship marketing paradigm being the 

tenet that investing in long-term relationships results in benefits to the organisation. 

Whilst the segments reduce in numbers they increase in total and average per customer 

consumption. 

Whilst not directly relating to the purpose for this research it was appropriate to 

provide some background to the high consumption activity observed. As such, Rata 

Energy management were questioned about possible explanations for the variation in 

the reported consumption and why this was so much higher than growth activity at 

industry level. Several observations stated as opinions were suggested by Rata Energy 

management in relation to the difference between industry and cohort consumption 

growth. At industry level, the proportion of corporate consumers dominates the rate of 

growth whereas the cohort is an extraction fl-om the residential segment only. This 
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does present the risk that a level of selection bias in this research may influence the 

findings ofthe analysis. 

An additional observation made by Rata Energy management was the change in the 

residential standard of living in recent times. The introduction of new energy 

consuming devices in the home such as the shift from fires to heating appliances, 24 

hour security systems, or additional appliances could have contributed to increased 

consumption in the residential space. 

The relationship of reported financial value and consumption in this research has been 

assumed to be direct. The tariffs applied by Rata Energy in usual billing processes 

were made up of a number of elements. Records were not available on the make up 

and proportions. For the purpose of this research it is not possible to use actual tariff 

charges and effectively differentiate the marginal contribution component. As such, 

contribution is represented by multiplying the consumption volume by a 'per kWh' net 

contribution amount recommended by the finance team of Rata Energy to generally 

represent a variable margin figure per kWh. 

With an understanding of the retention and consumption profile this research now 

turns to examining Berger and Nasr's ( 1998) CL V model tor predictive accuracy. 



5.3 Application of the CL V model- appropriate fit 

The Berger and Nasr's ( 1998) CLV model used in this study is founded on the 

accepted method of discounting future cash flows. The model requires a small number 

of relatively accessible input variables in retention rate, marketing expenditure and 

discount rate. 

It has been observed in this paper that literature on the CLV calculation model has 

been predominantly conceptual, with little empirical testing. This paper addresses this 

weakness which is to contribute empirically to the knowledge of how accurate and 

reliable Berger and Nasr's (1998) CLV calculation is by comparing the model with 

actual data. The first step in the model application is identification of the input 

variables. 

5.3.1 Input variables 

The appeal of Berger and Nasr's (1998) CLV calculation model is the relatively 

accessible input variables, as it does not use subjective variables. This research 

examines the sensitivity of each of these variables to understand how each potentially 

impact on the calculation result. 



1. Marketing costs 

The approach was to calculate annualised marketing spend per customer by 

dividing the variable marketing spend for that cohort and dividing by the number 

of customers in the cohort. 

2. Discount rate 

This is the company discount rate used in discounting marketing investments 

(obtained fi-om Rata Energy's finance team). 

3. Retention base year 

This variable is a set number used from calculating the retention of customers in 

period ending 2004. This presents an aspect of risk for the predictive accuracy 

of the model due to using the retention rate for each subsequent year that was 

established from the first year. Many authors such as Levett et al. ( 1999) 

proposing Option Theory and Pfeifer and Carraway's (2000) application of 

Markov Chain Modelling were contributions designed to introduce a probability 

element in the selection ofthe retention variable. The calculation of retention for 

use in this analysis is taken at 2004 and is 84%. This is the retention rate 

variable used for this analysis as prescribed in the Berger and N asr ( 1998) 

approach. 



5.4 Model calculation compared to actual state 

The testing ofthe model against actual data for the cohort customers was undertaken in 

three steps: 

1. Calculation of the actual value of the cohort based on consumption data 

over the examined period using the Net Present Value (NPV) approach. 

2. Calculation of CLV for the cohort using Berger and Nasr's (1998) model. 

This uses the retention rate of the base year (as that would normally be 

what organisations have on hand - 'this years' retention rate, marketing 

spend per customer and discount rate). The formulae proposed by Berger 

and Nasr (I 998) presented in Figure 1 calculates gross contribution, then 

the amount of cost in marketing and subtracts the marketing value from the 

gross contribution value to reveal the CL V. The discount rate is applied 

during the two respective calculation steps. 

3. Lastly, we compare the findings and calculate the size of variance from 

actual, average difference and average absolute error. 



The results ofthe calculations are presented as follows. 

Table 4: Model vs. actual comparison 

Actual retention Actual Model 0/o variance Av. Av. absolute 
rate 2004 from actual ditlerence error 

84% $1,150 $922 -20% $228 $507 

The result of these calculations shows a sizable variance of 20% between the actual 

and model calculations. This leads to the conclusion that Berger and Nasr's (1998) 

model has not provided accurate reliable measurement of the value of this cohort at the 

end of 2006. Examining the input variables further may aid in identification of the 

model calculation vanance. This sensitivity analysis is presented in Section 5.5 

Sensitivity. 

The variance of 20% observed has a number of potential attributing factors. A key 

consideration is that the model relies on a constant retention rate variable applied to 

each year. This differs from the actual occurrence where the retention identified was 

found to reduce over time and not at a constant rate. This research investigates in 

Section 5. 7 Segment analysis, customers at a segment level and highlights sizable 

variation between each segment when compared to the aggregated cohort. As such, 

the use of a constant retention rate and the level of customer heterogeneity present a 

potential limitation to accurate calculation ofthe future customer lifetime value. 



5.5 Sensitivity 

A clever arrangement of had eggs will never make a good omelette. 

C S Lewis (1898 - 1963) 

Have we got the right inputs to ensure the CL V model calculation is accurate? 

In addition to testing the accuracy of Berger and Nasr's (1998) CLV calculation 

model, this research examines the input variables relationship to the calculation result. 

Specifically the sensitivity the model has for each of the individual input variables 

retention rate, marketing spend and discount rate. 

The approach to testing the sensitivity of the model was to identify the level of change 

in the input variable required to achieve a 15% change (increase or decrease) in the 

result of the model calculation. A model calculation result of 15% was selected as 

results 15% above or below would be sufficient to show the influence each variable 

has on the result. The calculation process used the other input variables consistently in 

order to isolate the impact of changing only one variable. 

The results are presented in three sections (retention, marketing spend and discount 

rate). Each section will discuss the results of changing that specific variable and the 

impact on the model outcome. 



5.5.1 Retention 

Analysis ofthe retention variable is presented below in Table 5 illustrating the level of 

variation needed to affect a 15% change in the model's calculation output. 

Table 5: Sensitivity analysis on the retention (rtn) input variable 

Required Required% 
Variance in Model value model input change in the 

model $ result calculation variable input variable 

rtn 
(retention) + 15% $1,060 91% +9% 

0% $922 84% 

-15% $783 75% -10% 

To achieve the target 15% difference in the model's calculation outcome, the table 

shows the retention variable would need to be adjusted by 9% positively or 10% 

negatively to get the respective shift in outcome. 

There are important implications to managers understanding the level of sensitivity 

that the retention variable presents in their modelling. It is impOiiant as it may 

influence the way they view the outcomes of the calculation. This analysis provides 

insight into how Reichheld and Sasser ( 1990) made the proposition that "Companies 

can boost profits by almost 100% by retaining 5% more of their customers" (Reichheld 

and Sasser, 1990, p. 1 05). 



Sharp (2005) presented a paper that should be considered when discussing this finding. 

It outlined the lack of an empirical foundation to the claim and revealed a number of 

"wonderfully unrealistic assumptions" (Sharp, 2005, p.2). The assumption by 

Reichheld and Sasser's ( 1990) is made about company profitability but uses a basis of 

customer profitability. Sharp (2005) made other observations that the proposition 

lacks consideration of costs (such as customer acquisition) in the process. A practical 

observation was that Reichheld and Sasser's ( 1990) seem to ignore the ease at which 

organisations could successfully halve defection rates. 

The headline statement that 100% increase in profits from 5% customer defect 

reduction is also challenged by M. Wright, personal communication, March, (2004), in 

a review ofthe data presented by Reichheld and Sasser (1990). Where, Wright (2004) 

observes considerable variation in actual findings from Reichheld and Sasser ( 1990). 

To illustrate, M. Wright's, personal communication, March, (2004), reported that the 

increase in profit from a 5% customer defect reduction for several industries being far 

from 100% such as credit insurance at only 25%. The actual average increase in profit 

was found to be closer to 48% than the sensationalised headline by Reichheld and 

Sasser ( 1990). 

The CLV calculation model's sensitivity to variation in the retention rate over time or 

between customers presents a risk that decisions such as resource allocation may be 

made with poor input information. This is in addition to the observed weakness of 

application of the constant retention rate in this model. Further investigation has been 

undertaken to understand the subject cohort and possible segments that existed within 



it. The result of this analysis highlights an additional area of concern when using an 

aggregated retention rate being the considerable variability found between segments 

within the base. 

5.5.2 Marketing spend 

Table 6: Sensitivity analysis on the marketing (M) input variable 

Model Required Required% 
Variance in value model input change in the 

model $ result calculation variable input variable 

M 
(marketing) + 10% $1,024 $0.00 100% 

0% $922 $26.00 

-15% $783 $60.98 +135% 

This analysis exammes the sensitivity of the model outcome to change in the 

marketing variable. The analysis adjusted the marketing variable to the point where 

15% difference in the calculation result was achieved. 

The findings show the relative insensitivity of the model change in to the marketing 

variable. The CLV result was re calculated in each instance reducing the marketing 

input variable, to the point where the marketing input variable was reduced to $0. This 

resulted in an increase in the CL V of only I 0%. 

Table 6 illustrates that in order to establish a CL V value 15% lower than the base 

calculation then marketing expenditure per customer would need to increase by 135%. 



It is concluded that marketing expenditure in the calculation has a modest impact on 

the CL V calculation model. 

Consideration has not been gtven to the impact of how marketing expenditure is 

applied. It is possible marketing efficiency plays a potential role on the level retention 

based activities that tocus on elements such as reducing cognitive dissonance, or 

introducing loyalty recognition programmes. This would potentially have a positive 

affect on the level of defects that would take place. The work by Blattberg and 

Deighton ( 1996) posit that an accurate understanding of CL V modelling and relevant 

input variables will allow tor accurate decision making for business. 

The context of the competitive environment and the characteristics of the financial 

relationship also have roles in the level of retention and decisions on marketing 

expenditure investment. In relation to competitive threats organisations may 

proportionally increase marketing spend relative to the competitive environment to 

ensure their retention rate stays at an acceptable level thereby nullifying the impact 

ofthe marketing spend on the retention. This would have to assume that organisations 

make consistent decisions around investment based on competitor threat, or activity in 

the market. 

5.5.3 Discount rate 

The following table provides analysis on the variation needed in the discount rate to 

affect a targeted 15% change in the CL V model calculation outputs. 



Table 7: Sensitivity analysis on the discount rate (d) input variable 

Required Required% 
Variance in Model value model input change in the 

model $ result calculation variable input variable 

d 

(discount rate) + 13% $1,055 0% -100% 

0% $922 8.67% 

-15% $783 21.55% +149% 

The findings of this analysis show low sensitivity of the CL V model to change in the 

discount rate. Table 7 illustrates that similar to the tl.ndings of the marketing 

expenditure input variable the discount rate was increased to 22% in order to realise a 

drop in customer value of -15%. In reducing the discount rate it was calculated that 

even at 0% there was only a 13% increase in the value calculated using the model. 

5.6 Summary- model calculation 

5.6.1 Accuracy of findings 

The analysis on how closely the model calculation compares to calculation using 

actual data does not suppoti confidence in Berger and Nasr's ( 1998) model, as rep01ied 

in Table 4, the variance between actual and modelled calculation was 20%. This 

indicates a need to investigate further if elements such as the use of aggregated data or 

the use of constant retention rate have implications on the accuracy the model. 



5.6.2 Sensitivity - retention rate 

Analysis ofthe input variables supports Gupta et al.'s (2004) finding that the retention 

input variable has the most impact on the customer value calculation. This finding 

supports the proposition (P4) that the calculation of the lifetime value of a customer 

has a modest sensitivity to retention, and reveals retention is the most influential of the 

three input variables examined. The model did not accommodate effectively the level 

of customer heterogeneity in establishment and subsequent yearly treatment of the 

retention rate. 

5.6.3 Sensitivity- marketing spend and discount rate 

The marketing spend and discount rates will be discussed jointly as the results were 

found to be relatively similar in relation to the impact on the model. Both input 

variables had very low influence on the model calculation outcome. The level of 

change needed to achieve a 15% variance in the CL V model's calculation result (either 

positively or negatively) would require such a considerable change in investment that 

this presents a highly impractical and unrealistic context in business. 

The findings of this research leave a number of questions as to the driver for the 20% 

variance found in fit between the model calculation and actual data. Additionally, the 

sensitivity of the model to change in the retention rate variable raises the question; if 

reducing the size of the cohort would improve the accuracy of the input variables 

estimated and improve the predictive accuracy of the model. The next stage of this 
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study investigates the profiles of identified segments in the cohort and re-applies the 

model using the smaller customer groups with revised input variables. The aim is to 

understand if this will have the impact of improving the 'fit' of the model to actual 

data. 

5.7 Segment analysis 

The headline of a newspaper doesn't always tell the true story ... 

Having conducted descriptive analysis on the total cohort of 28,205 customers, the 

investigation turns to understand if there are dynamics within cohort that may impact 

on the models predictive accuracy. The study profiles segments based on consumption 

profiles within the cohort. This aims to highlight any weakness in accounting for 

customer heterogeneity. 

The profile analysis of any segments within the cohort provides opportunity to 

examme the claim by Wyner ( 1999) that customers exhibit ditierent patterns of 

attrition. It also enables re-testing of Berger and Nasr's (1998) model using segment 

level inputs and report if this application produces greater accuracy m the result 

relative to actual data. 

Customers within the cohort were grouped according to their consumption profile. 

This facilitates examination of the proposition outlined by Wyner ( 1999) regarding the 

different behaviours that exist at more detailed levels. The cohort was divided into 



three groups reflecting heavy, medium and light levels of consumption. The three tiers 

are based on Rata Energy's volume segmentation system. 

• 

• 

• 

Heavy 

Medium 

Light 

10+ MWh p.a. consumption (8,951 customers 2003) 

7+- 10 MWh p.a. consumption (6,939 customers 2003) 

0 7 MWh p.a. consumption ( 12,330 customers 2003) 

5.7.1 Lost customers 

Analysis undertaken in the earlier phase identified a retention rate of 84% in 2004, 

which represents a defection rate of 16%. It was this rate that was applied to the CL V 

modelling. Under the proposed theoretical approach proposed by Blattberg and 

Deighton (1996) and Berger and Nasr (1998) organisations may use this aggregated 

defection rate in managerial decision making. 

This research presents a different story. Table 8 presents the findings for the cohort 

and three segments. The research showed large differences between the total cohort 

and individual segment levels in 2004 of 5% (Heavy), 7% (Medium), and 30% (Light). 

This presents a dilemma of what retention rate would be accurate to use for modelling 

and predicting the value of customers in the future. 



Table 8: Percentage of customers lost each year 

2004 2005 2006 Average 

Total cohort 16% I5% II% 14% 

Heavy 5% I3% 10% 9% 

Medium 7% 15% 11% 11% 

Light 30% 16% 12% 20% 

The results presented in Table 8 question what the result of the fit analysis will be 

using segment specific inputs. Additionally, it may lead to flawed investment 

decisions when considering use of resources on retention activities. The 16% 

detection rate at cohort level would disguise the urgency or scale of investment in 

marketing activity for retention initiatives needed tor the light segment and potentially 

lead to over-spend on the heavy and medium groups. 

5. 7.2 Consumption profile 

Further analysis was undertaken to profile the behaviours of the customers in each 

segment and show change in segment membership within the cohort over time. Figure 

5 illustrates the actual number of customers per segment and the reduction that occurs 

in light and medium segments and the increase in the heavy segment. 



Figure 5: Number of customers per annum in each segment (2004 classification) 
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The results shown support the proposition derived from Reichheld and Sasser (1990) 

that customers who stay longer increase consumption and hence revenue in the form of 

cash flow (for the purpose of this research regarded as proposition P3). There are 

some customers who did remain in their respective categories, and a very small 

number of customers who moved from heavy to medium or light segments. These 

were interpreted as outliners and the examined proposition P3 is supported. 

Figure 6 below is a holistic view of the make-up and change of the cohort over time. 

The graph illustrates lost and surviving customers by showing the make up of the total 

customer group over the examined period between 2003 and 2006 with the make-up of 

years 2004, 2005 and 2006 illustrated based as 2003 being the base year. 
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Figure 6: Proportional make up of customer numbers by segment 
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The graph above illustrates the declining number of customers in segments medium 

(pink) and light (yellow) and it can be observe the growth of the number of customers 

who fell into the heavy segment (blue) fo r 2005 and 2006. 

5.7.3 Consumption per customer 

Another way to view these customers is to understand how the make up of the 

respective segments changes over time if reclassified based on consumption each year. 

Figure 7 below presents the average consumption per customer and illustrates the 

relati vely steady growth in each segment in average consumption for the customers in 

each segment each year. 
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Figure 7: Average consumption per customer per annum (rolling reclassification) 
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The relationship of consumption to tenure is one of the interesting findings of this 

research and supports the proposition derived from Reichheld and Sasser ( 1990) that 

customers who stay longer increase cash flow. Detailed information regarding 

customer vo lume consumption activity is provided below. 

The findings challenge Reinartz and Kumar 's (2000) paper where they suggest there is 

no correlation between tenure and profitability. Reinartz and Kumar 's (2000) focus 

was so lely on non-contracted settings and as such the context for the study is limited 

the contractual based customer relationship. 
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Table 9: Total cohort and segment profile 

2003 20041 20051 2006 

Number of customers 

Heavy 8,951 8,136 13,715 14,197 

Medium 6,939 5,848 2,794 1,706 

Light 12,330 9,638 3,613 1,995 

Total consumption volume by segment (kWh p.a.) 

Heavy 136,279,048 117,159,661 161,916,729 177,088,650 

Medium 58,393,395 52,864,607 74,463,825 83,713,247 

Light 51,361,845 43,167,995 61,983,916 70,343,873 

Average volume by customer (kWh p.a.) 

Heavy 15,225 13,706 21,890 26,574 

Medium 8,415 8,154 13,497 17,102 

Light 4,171 5,025 8,599 1 1,097 

5. 7.4 Comparison- ad hoc segmentation 

Organisations have traditionally segmented the customer bases on an ad hoc criteria 

basis and little understanding is undertaken at the customer level to appreciate change 

in the customer relationship with a firm. The following illustrates the profile of 

customers in 2003 by segment and then again in 2006 to compare how the segments 

are made up. Figures 8 and 9 illustrate the considerable shift in customer numbers for 

each segment as a proportion of the total customers in that year. 



This section highlights the risk to informed managerial decision making many 

practitioners face when not tracking individual customer consumption activity and 

undertaking segmentation in an ad hoc manner i.e. the profitability of a segment at a 

point in time in contrast to understanding the actual relationship with a customer over 

time. 

Figure 8: Comparing customer number by segment in 2003 and 2006 
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Figure 9: Comparing average consumption by segment in 2003 and 2006 
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A number of observations are made from the analysis presented in Figure 8 and 9. 

These observations lead to questioning the merit of using an aggregated approach in 

customer profiling. 

• Rata Energy's largest proportion of customers is in the light segment in 2003 

with 44% (12,330 customers dropping to 1,995 in 2006 - Table 9). In 2006 this 

profile changes as the heavy segment at 79% (from 8,951 to 14,197 customers in 

2006) dominates the profile. This illustrates the shift from low to high 

consumption for a large number of the customers over the period of the study. 

• The consumption profile in the heavy segment is a different story. It is largely 

unchanged at the segment level between 2003 and 2006. This is an interesting 

occurrence when the light segment remained relatively consistent at 21% 

consumption proportion, yet lost 33% of the customers in that segment through 

to 2006. 

• The medium segment analysis is an interesting profile with customer numbers 

reducing 15% and yet consumption remaining high at 31% from 2003 compared 

to 2006. 

• The profiles present challenging questions in relation to the behavioural profile 

and decision-making of these consumers for consumption behaviour and 

remaining with Rata Energy. In the scenario where lost customers are replaced 

as a matter of course between 2003 and 2006, profiling customers in this manner 
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illustrates how at customer level aggregation leads to a different view of an 

actual state. This is illustrated in Section 5. 7.5 Segment profile 2006. 

The somewhat crude application of segmentation in this manner is common and 

reflects the approach used to date by Rata Energy. The analysis now turns to exploring 

what actually happens to the customers in the segments we have used so far (light, 

medium and heavy based on 2003) to achieve greater understanding of the weakness in 

use of 'point in time ' segmentation approach. This is achieved by profiling each of the 

segments defined in 2003 , and comparing the consumption of the actual customers 

from the 2003 segments in 2006. 

5.7.5 Segment profile 2006 

The analysis below shows the constituency of each 2003 segments and how each 

group of those customers profiled in 2006. This profile uses categories for those 

customers who have been lost to Rata Energy as well as the existing consumption 

categories of light, medium and heavy. 
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5.7.5.1 Light segment 2003 

Table 10: Light segment of2003 profiled in 2006 

Light segment- customer numbers 

2003 2006 %in 2006 

Lost - / 6,002 49% 

Light 12,330: 
~ 

1,424 12% 

Medium - "\:: 1,364 11% 

"" Heavy - 3,540 29% 

The profile ofthe light segment in Table 10 changes considerably with only 12% with 

this consumption profile in 2006. Of the customers in the light segment in 2003, 40% 

migrate to higher consumption profile segments with 11% to medium and 29% to the 

heavy segment as seen in Table 10. 

Table 10 also shows 49% of the customers from the 2003 light segment were no 

longer customers in 2006. The result of the light segment profiling supports the 

proposition of Reichheld and Sasser (1990) that longer term customers return more 

consumption activity, which is the proxy for revenue through cash flow, as only 23% 

of the surviving customers from the light segment remain as a light profile customer 

and the remaining light segment customers increased their consumption. 
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5.7.5.2 Medium segment 2003 

Table 11 : Medium segment of2003 profiled in 2006 

Medium segment- customer numbers 

2003 2006 %in 2006 

Lost -
/ 2,050 30% 

Light -~ 271 4% 

Medium 6,939 
/ 

225 3% 
-...... 

Heavy - ~ 4,393 63% 

There are a number of notable changes in the medium segment profiled in Table 11. 

63% of the original medium segment customers migrate to the heavy segment. A 

relatively small number of customers remain a medium profile (3%), and there is a 

sizable loss of 30% customers between 2003 and 2006 and is more than observed in 

the light category. 
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5.7.5.3 Heavy segment 2003 

Table 12: Heavy segment of2003 profiled in 2006 

Heavy segment- customer numbers 

2003 2006 %in 2006 

Lost - j 2,291 26% 

Light - /Jl 279 3% 

Medium - I~ 117 1% 
t, 

~ 6,264 Heavy 8,951
1 

70% 

The heavy segment profile differs from the light and medium segment customer in the 

customer consumption behaviour. Table 12 shows 70% of the 2003 customers 

remaining in this consumption category in 2006. The loss of customers from this 

category (26%) is at a similar scale to that of the medium segment (30%) but 

considerably lower than the light segment (49%). A notable difference in the segment 

profile was the low level of customer migration to medium and light consumption 

segments being 1% and 3% to respectively. This level of attrition indicates a tendency 

for customers to leave in contrast to their consumption profile reducing. 

These findings support the propositions of Reichheld and Sasser ( 1990), Reichheld and 

Teal (1996) and Berger and Nasr (1998) that longer term customers contribute greater 

cash flow. As observed in the analysis presented in Tables 8, 9 and 10, the profile of 

light and medium over time progressed to heavy consumption activity thereby 

supporting the proposition. Survivors from the light and medium segments showed 



considerable migration activity to heavier segments in 2006 with 40% (light) and 63% 

(medium) customers changing profile. 

The heavy and medium segments show relatively the same proportion of lost 

customers with 26% from the medium segment and 30% lost from the heavy segment. 

The highest loss of customers was in the light segment with 49%. 

An area for further investigation is identification of the contributing factors to the loss 

of customers or the result in change in consumption profile for each segment. The 

specific reasons for customers leaving Rata Energy are not clear. They may be varied 

such as dissatisfaction with Rata Energy's service offering, competitive threats, or 

simply change in lifestyle. 

The step of segmenting customers enables us to return to further reliability testing of 

Berger and Nasr's (1998) CLV calculation model. Undertaking analysis using these 

smaller groups and inputs has potential to reduce any aggregation bias. 

5. 7.6 Re-testing for fit and sensitivity 

The re-testing ofBerger and Nasr's (1998) model was undertaken at the segment level. 

This used the input variables derived from actual defection rates of the first year and 

not the forecast defections rates based on average previous activity. These were found 

to be 5% (Light), 7% (Medium) and 30% (Heavy) as outlined in Table 8: Percentage 

of customers lost each year. This differs from previous analysis in Section 5.4 Model 
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calculation compared to actual data, where the model was studied for accuracy in the 

comparison in results using the retention rate of the base year for the total cohort of 

customers and not for each of the segments within 

The proposition as identified as P6 proposes that this should lead to a closer finding of 

fit. Table 13 shows that in each instance the model poorly calculated an accurate 

result. The closest segment was the medium and yet it still had an 8% variation 

between the model and the actual CL V calculation. The proposition was that using 

more granular data (not total cohort average but segments within) then the input 

variables would have less variation, be more accurate and hence lead to more accurate 

model calculations. The results of -12%, 8%, and 48%, as observed in Table 13, 

showed large variation and hence did not support P6. This result questions the 

reliability of Berger and N asr' s (1998) model for use in the context of segment and 

total cohort levels. 

Table 13: Fit of model to actual- total cohort and segments 

o;o Av. Std dev 
Retention Av. from absolute of 

rate Actual Model difference actual error difference 

Total cohort 84% $1,150 $922 $228 20% $507 $649 

Segment 

Heavy 97% $2,058 $2,313 -$245 -12% $688 $1,094 

Medium 93% $1' 155 $1,068 $87 8% $360 $416 

Light 70% $548 $287 $261 48% $274 $310 
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5. 7. 7 Is hindsight perfect vision? 

To this point the analysis has been undertaken using the base year only input variables 

as prescribed by Berger and Nasr (1998) for use when applying their proposed CL V 

calculation model. The use of segmentation and access to each year's actual data 

presents opportunity to define the ' actual' defections rates for each year for each 

segment. This provides the ability to re-run the model using the knowledge of a future 

state of retention and forms the basis for P7 being that the accuracy of the model 

would be improved using this level of input data (i.e., would it be more accurate to use 

the actual retention rate for the four year period than using the 2004 retention rate 

alone?). The results show disappointing outcomes in relation to improving the models 

accuracy. 

Table 14: Re-calculation based on using an actual average defection rate 

Av. 
Rtn Av. %from absolute Std dev of 
rate Actual Model difference actual error difference 

Total 
cohort 86% $1,150 $961 $189 16% $494 $654 

Segment 

Heavy 91 % $2,058 $2,070 -$11 -0.55% $711 $1,029 

Medium 89% $1 ' 155 $982 $173 15% $398 $425 

Light 81 % $548 $361 $186 34% $274 $285 
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Whilst the heavy segment achieved a close fit to the model prediction ( -0.55% 

variation), the findings of the other segments were no closer being 15% for the 

medium and 34% for the light segment variation respectively. This is considerable 

variation and hence implies a lack of accuracy in the model. 

The results presented in Table 14, with the exception of the heavy segment group, 

show considerable variation between actual and calculated results. Consequently, P7 

is not supported and puts further doubt on Berger and N asr' s (1998) model's ability to 

accurately assess a future state. 

5. 7.8 Propensity to repurchase (retain) 

Dwyer 's (1997) proposition introduced a propensity variable to the repurchase variable 

to account for the level of risk that a customer is likely to repurchase. However, this is 

overshadowed by the use of aggregation data for this model as illustrated in the 

analysis presented in Section 5. Dwyer (1997) focused on non-contractual interactions 

where purchase recency played a contributing factor in the retention of customers and 

suggests the issue of recency is not relevant in the contracted context. As such, 

Dwyer's ( 1997) contribution to the CL V calculation approach was limited in 

application as it still carries the risk to accurate calculation identified earlier in this 

paper of operating with aggregated data. 
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5.8 Contribution 

The research problem identified the opportunity to contribute to CL V calculation 

theory development by providing empirical evidence to the accuracy and predictive 

reliability of Berger and Nasr's (1998) CLV calculation model. The need for this 

research stems from the desire to establish confidence in CL V theory development 

following papers by Blattberg and Deighton (1996) and Berger and Nasr (1998) and 

particularly the work relating to the CL V calculation model proposed by Berger and 

Nasr (1998). The study extends the knowledge ofhow Berger and Nasr's (1998) CLV 

calculation model can accurately and reliably forecast the future state of value of a 

group of customers. 

This research has identified a sizable variance when testing for fit between Berger and 

Nasr's (1998) model forecast and the actual state of customers. The finding of 20% 

variance as reported in Table 4 Model vs. actual comparison is considerable and brings 

into doubt confidence that Berger and Nasr's (1998) CL V model can be relied on to 

predictively calculate a future state. 

The sensitivity of the input variables of retention rate, marketing spend and discount 

rate were examined. The variable retention rate presented the highest level of 

sensitivity. The research found the marketing and discount rate variables have little 

impact on the variability of the value calculation. 
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An important finding was the weakness the model has in relation to accommodating 

the heterogeneity of customers. The use of aggregated data provides a challenge to 

determining an accurate future state of specific customer segments. 

A weakness in Berger and Nasr's (1998) CL V calculation approach is the reliance on a 

constant retention rate. This presents sizable risk to managers who would use Berger 

and Nasr's (1998) CLV calculation model outcomes in resource allocation decisions as 

the model was not capable of reflecting change over the period of a customer 

relationship. 
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6 Conclusion 

The greater our knowledge increases the more our ignorance unfolds. 

John F. Kennedy (1917 -1963) 

It was clear from the literature reviewed on Customer Lifetime Value (CLV) that the 

foundations for calculation models came from the seminal work of Berger and Nasr 

(1998). Their CLV model is commonly referred to in subsequent literature in this area, 

with over two hundred and fifty citations noted on the Google Scholar website. The 

literature review highlighted that the development of CL V calculation modelling has 

generally focused on two areas; managerial decision making based on the model 

results, and the model calculation itself with consideration of the model input 

variables. The literature highlighted a lack of empirical validation and subsequent 

testing of the model and related propositions claimed in literature. The assumed 

accuracy of the model seemed to be unchallenged with a majority of contributions 

being conceptual in nature. 

Highlighted by Reinartz and Kumar (2000) is that Berger and N asr' s ( 1998) model 

operates best when applied to situations where customers are in contractual 

relationships. This was positive as it allowed for examination of Berger and Nasr ' s 

(1998) model to the most suited application, being Rata Energy's contracted customer 

context. Whilst the findings of this research did not support a position that the model 

calculates accurately the future state of customers, when compared to calculations 

based on actual data the key area of limitation was identified as the use of the constant 



retention rate and hence the weakness of this models application to non-contractual 

customer relationships. 

The outcome of this research forms an important contribution to academic theory 

development. This empirical study examined the predictive accuracy of Berger and 

Nasr' s (1998) model and has enabled examination ofthe affect the input variables have 

on model calculation result. In addition, seven propositions identified in the literature 

were examined in the course of this research. 

The research has shown considerable variation between the model calculation and the 

actual data. This presents doubt on the predictive nature ofBerger and Nasr's (1998) 

CL V model. The conclusion is that this may lead managers to poor strategic and 

resource allocation decisions based on this calculation of value. This has considerable 

implications on Blattberg and Deighton's (1996) proposed approach to resource 

allocation and has ongoing impacts on the model development as it may have 

developed under a wrong assumption of the models accuracy. The variation observed 

in these findings leads to a lack of confidence in the accuracy of Berger and Nasr's 

(1998) model given the variation in calculation findings relative to comparing those 

calculations to actual data. The results also did not indicate any clear bias in the results 

and will make identification ofthe model error challenging. 

The research also examined input variables of retention rate, marketing spend and 

discount rate, to provide insight into Berger and Nasr' s (1998) model 's dynamics. It 

revealed that the retention rate variable was the most influential of the three input 
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variables and as a result the most important input to accurately calculate. The use of a 

consistent retention rate is flawed and presents a concern as it does not adequately 

allow for the change in retention over time. Berger and N asr ( 1998) suggest their 

model may be further enhanced through introducing brand loyalty and customer 

satisfaction variables into the calculation. This may further improve the retention rate 

input however it does not serve to resolve the issue of variation within an aggregated 

base or variation of the retention levels over time. Reichheld and Sasser (1990) 

discussed the challenges for organisations to accurately measure and applying 

customer satisfaction as an input for buyer behaviour prediction and as such 

challenged the role this would play in enhancing the model calculation. 

The primary conclusion from this research is there is reasonable doubt that Berger and 

N asr' s (1998) CL V calculation model ' s can accurately calculate a future value state for 

a group of Rata Energy residential retail customers. The model does not adequately 

address customer heterogeneity and is flawed in use of a constant retention rate. 

Additionally, the model seems relatively insensitive to the input variables particularly 

the marketing and discount rate inputs. 
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6.1 Summary of findings 

The following Is a summarised view of the examined research questions and 

propositions: 

Research question 

Ql 

What is the accuracy of the Berger and Nasr 's (1998) CL V calculation model to 

predict a future state (fit - between the model and actual data based calculations)? 

The model is not accurate in predicting the future customer lifetime value of the 

cohort. 

The results indicate the model does not have a close fit for purpose. As outlined in 

Table 4, the findings of 20% difference between actual and modelled calculations, 

is a cause for concern. The resulting conclusion is that managerial decisions such 

as resource allocation on retention activity must be cautioned if using calculations 

ofthis model. 

91 



Q2 

How sensitive is the Berger and Nasr 's (1998) model calculation output to variation of 

the input variables? 

Little to no impact was observed in testing the sensitivity of the model calculation 

result to change in each of the input variables. The variable of retention rate was 

shown to be the most influencing on the CL V calculation outcome. 

The CL V model was used to recalculate the value of a customer group by changing 

each of the input variables to appreciate the level of change needed to affect a 15% 

change in the calculation result. Change in the retention variable was found to 

have a moderate impact on the calculation outcome and was the most influential 

variable in Berger and Nasr's (1998) CLV model calculations. The calculation 

outcome was only mildly affected by a change in the marketing spend and discount 

rate input variables. Tables 5 (retention rate), 6 (marketing spend), and 7 (discount 

rate) present the results of the sensitivity testing for the three input variables. 
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Propositions examined in this study 

P1 Businesses lose 15% - 20% of their customers each year 

Supported 

The findings of this research support the proposition above. Table 1 reported 

the average defection rate during the study period was 14%. This finding 

supports the proposition identified from Reichheld and Sasser (1990). Whilst 

these findings were on the low side of there proposed attrition rate (15% -

20%) they are found to be sufficient to be supportive of this proposition. 

P2 Companies lose half their customers every five years. 

Supported 

One approach for calculation is to use the average defection rate of 14% p.a. , if 

this rate was simply extrapolated over a five year period then 14% * 5 = 70%. 

This represents a higher rate than suggested in the proposition. Taking a more 

appropriate approach an average % change in defection rate is calculated as 

17% to identify what the level of reduction may be in years 4 and 5. This is 

based on calculating the average % reduction over the 3 years (with 6% 

reduction between years 1 and 2 and a 27% reduction between years 2 and 3 
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defection rates). Applying this average reduction of 17% to the years 4 and 5, 

the 5 year defection rates are: 

• 16% - actual year 1 

• 15%- actual year 2 

• 11 % - actual year 3 

• 9%- calculated year 4 (9.13%) 

• 8%- calculated year 5 (7.47%) 

The sum of these defections is a 59% defection of customers from the original 

cohort in 5 years. This result supports the proposition based on the variability 

of the unknown years 4 and 5. Another recommendation would be to change 

the proposition statement to include "at least 50%" to the context of lost 

customers. 

P3 Customers who stay longer increase cash flow over time. 

Supported 

The proxy of consumption has been used in this study to represent cash flow. 

This is based on the assumption that revenue has a direct correlation to the 

amount a customer purchase/uses. 

The finding outlined in Table 3 showed strong growth in the average volume 

per customer per annum. Customer consumption grew over the four year 

period from 8,723 kWh in 2003 to 18,502 kWh in 2006. This demonstrates 
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that the flow of revenue (as represented in consumption) does not remain static. 

This finding shows on average a large increase in volume which would directly 

translate to revenue for Rata Energy supporting the longer a customer stayed 

with Rata Energy, revenue increased over those subsequent periods. As such, 

the proposition is supported. It is acknowledge that this fmding is may over 

simplify the issue in that the growth in consumption may not be due to any 

aspect of a relationship with Rata Energy and as such acquiring a new customer 

in later years may show the higher consumption levels immediately. 

Additionally, other elements need to be factored such as the possible increase 

in consumers chosen standard of living where electricity consumption increases 

i.e. people seek warmer houses in winter or use more electronic devices in the 

home. 

P4 Retention rate is the most critical input variable in the CLV calculation. 

Supported 

Sensitivity analysis was undertaken for each of the input variables identifying 

that the retention rate had the strongest influence on the model output. Table 5 

presents the analysis and shows that to effect a 15% variation in the CL V 

model calculation would require +9% or a -10% change respectively in the 

retention rate. 

95 



The retention rate had the most influence on the CL V calculation result. The 

marketing spend and discount rate variables were not found to be as important 

to the calculation as outlined in the findings presented in Tables 6 and 7. 

Acknowledged in this finding was the absence of recorded marketing spend 

specifically on retention activities by Rata Energy. Rata Energy indicated 

anecdotally that marketing spend was 'modest' however had no granularity on 

how marketing spend was allocated. Whilst the sensitivity analysis indicated 

the model had a low level of impact from change in the marketing spend 

variable, it is not clear the role Marketing Spend had directly on the size ofthe 

retention variable itself prior to calculation. This aside, the actual variable of 

retention in this calculation was the most influential on the outcome of the 

calculation. 

P5 Different customer segments exhibit different patterns of attrition. 

Supported 

The cohort was sorted into three segments (light, medium and heavy) based on 

consumption in 2003. Analysis found substantial variation in retention rates in 

each segment, consumption behaviours and activity in relation to defection 

from Rata Energy or migration to other segments. These findings support the 

proposition that segments exhibit different characteristics to that of an 

aggregated profile is supported. 
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P6 Using input variables (based on actual 2003 input data) derived at segment 

level will result in more accuracy in the CL V model calculation. 

Not supported 

The logic that with more detailed and granular information applied to the 

model the more accurate the calculation outcome. The outcome of the analysis 

is presented in Table 13. The results show considerable variation within the 

cohort at the aggregated level but also between each of the segments. 

P7 The use of an average retention rate derived from the actual cohort data will 

lead to highly accurate results. 

Not Supported 

Table 14 presents the findings ofthe research when using the average retention 

rate of the cohort over the period. The results revealed no improvement and 

variation was found in the accuracy of the prediction achieved by the model. 

97 



6.2 Related observations 

Two areas are discussed to contribute to future insight and discussion on the topic of 

customer lifetime value calculation. 

6.2.1 The RFM approach 

Recency, frequency and Monetary model introduced by Cullinan (1978) and extended 

by Baur (1988) is a common methodology used to make segmentation and investment 

decisions. The analysis and findings presented in this paper have supported the 

observation of several authors (Fader, Bruce and Berger, 2004 and Kumar, 2006) as 

articulated by Gupta et al. (2006) "these models [RFM] predict behaviour in the next 

period only. However, to estimate CLV, we need to estimate customers' purchase 

behaviour not only in Period 2 but also in Periods 3, 4, 5, and so on" (Gupta et al. 

2006, p. 142). 

The analysis and findings in this paper indicate there is a level of risk to managerial 

decisions when using the recency, frequency and monetary value of transactions as the 

profile of a customer in an early period of a relationship. The analysis conducted in 

this study showed there was a large change in the make-up of segments based on 

consumption activity over the study period. Take for example the light consumer 

group identified in the research. RFM would suggest not investing in these customers 

and focusing more on the heavy customer groups in Period 2 due to a relatively low 

consumption and value per customer in Period 1. As was illustrated in Section 5.7 

Segment analysis, 49% of the light segment customers were lost to Rata Energy and 
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yet 40% of that segment in 2003 migrated to larger volume consumer profiles by 2006. 

Neglecting a growth group of customers based on their ' current profile' in this context 

would be a poor decision. Further insight into the reasons for customers leaving Rata 

Energy and for change in their consumption profiles over time will assist further 

examination of the RFM model however this study has highlighted potential 

vulnerability in use ofthe outcome to make resource allocation investment decisions. 

6.2.2 Retention 

The area of risk in customer decision making for purchase was discussed by several 

authors such as Pfeifer and Carraway (2000) and Rust et al. (2004) who suggested the 

introduction of Markov Chain Modelling (MCM) to add a probability of customer 

retention to each year for retention. 

Options theory was introduced by Levett et al. (1999) and Rust et al. (2004). Ryals 

and Knox (2005) introduced a risk adjustment component to the revenue variable. 

These represent several initiatives by authors to address the challenge of improving 

predictability of future behaviours and the accuracy of the model. This research has 

highlighted the challenges of relying too heavily on predictive models that require 

input assumptions, when the inherent nature of consumer consumption behaviours is 

variable at all levels, individual, segment and cohort. 

The development of model literature has several authors proposing that the CL V 

calculation can be applied to the valuation of a firm (Gupta and Lehman, 2003; Gupta 
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et al., 2004). The model did not produce accurate results when compared to actual 

data. This was the case for both aggregated and more detailed level segment based 

application. Therefore there is considerable risk in valuing a business based on this 

application of the CLV calculation model ofBerger and Nasr (1998). 
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7 Limitations and future research 

This research has made an important contribution in providing empirical evidence in 

testing Berger and Nasr' s (1998) CLV model accuracy along with examining a number 

of propositions identified in the review of related academic literature. There were 

however limitations that are acknowledged in the context ofthe research findings and 

several recommendations for future research are presented. 

7.1 Limitations 

Time period 

The period of available data from Rata Energy was limited to four years. Extending a 

research period would enable deeper insight into the activities associated with the 

retention rate of the cohort and the segment profiles over time. In addition the period 

at which a customer was classified as defected was where no consumption was 

included in that year. This had potential to skew the level of "light" segment 

customers in one period. 

Marketing spend 

The quality of data for defining the marketing spend variable was limited. Ideally, the 

model should have used the actual spend per customer in 2003 through to 2005. 

However, due to no record management at Rata Energy the marketing spend 

information was only available for 2006. As such, a further study may benefit from 
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more specific data inputs. The sensitivity of the marketing spend variable on the 

model as identified in Section 5.6.3 presents a modest limitation. 

Revenue 

The lack of adequate accurate revenue billing data was disappointing, as it would have 

allowed analysis by volume and value from the billing records. Future research using 

accurate billing data would enable further testing of propositions, such as Reichheld 

and Sasser's (1990) on profitability. Given the complexity of the energy retail industry 

it would still be challenging to accurately identify the marginal revenue of the energy 

component of billing. This is where empirical analysis of other sectors may provide 

additional value. 

Customer Selection 

Section 5.2.3 Consumption, discussed the potential difference between industry and 

the cohort's consumption profile. There is the potential that the use of only residential 

customers in the cohort used for this analysis presents bias when comparisons are 

made with industry level consumption trends and limited direct comparison. Future 

analysis may look to present a full spectrum of consumption profiles from business 

and residential segments. 

7.2 Future research 

Based on the fmdings of this research, there are several areas to extend the 

investigations and empirical validation of this subject. This is particularly important 
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given the findings of this study where the predictive accuracy of Berger and Nasr's 

(1998) model was not supported and include: 

• Further empirical testing using data from other industry contexts. Identification 

of the buyer relationship would be valuable i.e. consumer versus household 

decision making. This will add a level of detail to the findings that is not 

present from current studies. 

• Further empirical studies are suggested to broaden the application of the model 

to different. Specifically it would be beneficial to apply the model to situations 

in different categories such as FMCG. This would provide further insight into 

what results the model produced in different scenarios. 

• A based assumption in this research was the treatment of customers. The 

approach that was adopted was that proposed by Jackson (1985) where we used 

the context of customers were in the lost-for-good category. Testing consumers 

in the always-a-share context would add to the robust nature of empirical 

validation of this model. 

• Testing data from a non-contractual transactional context would be beneficial 

in understanding the accuracy of Berger and Nasr's (1998) CLV model to 

. . 
vanous scenanos. 

• The largest proportion of customers is in the light segment in 2003 however the 

largest representation is in the heavy segment in 2006. Section 5.7.5 Customer 

profile identified considerable defection (at least greater than 20%) existing in 

all three segments. Further examination of the reasons for losing the customer 
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would provide greater insight into the practical ability for management to 

reduce the defection. 

• Modelling for the optimal level of segmentation is suggested to understand if 

this will address the issue of customer heterogeneity. Whilst the study grouped 

customers into three categories, additional segments can be established by 

adjusting the consumption thresholds. This change would further reduce the 

size of the customer groups and potentially increase the accuracy of the input 

variables (specifically retention rate). 

• Introducing elements of profitability would add to the findings and insights 

gained. Cost to serve data would enable examination of the dynamics of 

profitability as part of understanding CL V better during the relationship with 

the customer (especially in the context of new electronic channels, which 

arguably reduce cost to serve when the customer migrates from expensive 

physical or other channels such as telephone) . This also has an implication on 

the profitability of the customer. 

• The treatment of customer acquisition costs is absent and further consideration 

is recommended when modelling the value of the customer to a firm. As 

understanding the potential pay-back period for investment in acquisition 

activity is vital to investment decision making for managers and the lifetime 

value ofthat customer. 

There are additional considerations that relate specifically to the CL V model and 

future enhancements: 
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• The assumption of a constant probability of retention rate forms a key area for 

future development and a notable weakness in Berger and Nasr's (1998) CLV 

model. Establishing an accurate approach to address the future retention rate is 

vital to improving Berger and Nasr's (1998) CLV model calculation accuracy. 

• Broadening the input variables to capture brand, customer satisfaction (Gruca 

and Rego, 2005) and the competitive context (Berger et al. , 2006). 

• Addressing the issue of customer heterogeneity is necessary to accurate future 

application ofthis model. 
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