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Abstract

A direct approach is taken to modelling New Zealand electricity
prices, in which extreme value theory is used to augment a basic time
series model. Despite its simplicity, the resulting model is suitable
for answering fundamental questions of interest to risk managers, who
might not find it worthwhile to apply a more sophisticated and com-
plex approach to statistical modelling.

*Tower Insurance, Auckland, New Zealand
¥School of Economics and Finance, Victoria University, Wellington.
email: leigh.roberts@vuw.ac.nz



Moy-Roberts June 2, 2011 2

1 Introduction

While modelling market behaviour is rarely straightforward, electricity mar-
kets seem to present the modeller with greater challenges than other markets.
One reason is that it is virtually impossible to store electricity, so that con-
ventional economic theories of market behaviour do not apply; another is that
transmission of electricity to the national grid entails substantial leakages,
which is a particular problem in a large sparsely populated country such as
New Zealand. A third point is that the strategic importance of electricity
means that the industry is subject to manifold constraints.

Analysis of the electricity markets when they were operated as state spon-
sored monopolies was hardly easy either; but in one sense one could then
approach the problem as a large scale operations research or decision sci-
ences problem. Now that the electricity industry in developed countries is
largely deregulated, the situation for the modeller has become vastly more
intricate. Even at the most basic level of understanding the outworkings of a
market, it is often not easy to comprehend institutional arrangements of an
industry in which participants operate at several levels, with various stages
of vertical integration, some of which are encouraged and others prohibited.
In New Zealand, for instance, generators and retailers are frequently jointly
owned, but are forced to be independent of lines companies (eg see Macrae

and Wolak (2009)).

Faced with complicated market structure and behaviour, a modeller’s reac-
tion naturally tends toward greater complexity, whether at the statistical
level; or at the level of the competitive games played in submitting bids in
the 24 hour forward auctions; or at the level of the regulator in attempt-
ing to control aspects of the industry for social ends. It is frequently the
case however that risk managers are not so interested in elaborate mathe-
matical modelling of a scenario. Their time horizon is often shorter rather
than longer, and an easily produced simple forecast may be quite adequate
for their purposes, especially in explaining to their superiors what they and
their traders in the market place are up to.
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Bearing this in mind, our paper deliberately aims at simplification of the
mathematical approach to modelling electricity prices. We adopt a basic
time series approach, and collateral information is ignored, although covari-
ates could easily be introduced into our model. Decision makers would nor-
mally wish to consider several perspectives of a situation before reaching
a decision; and the methodology suggested here is intended to complement
other methodologies for quantifying risk, not to supplant them.

Restricting our attention to a single representative node of the national elec-
tricity grid, and to a time window of 32 months of daily average prices
from 1 January 2006, we model the price time series as a seasonal ARIMA
(SARIMA) model. The residuals from this fitted model are heavy tailed,
and we fit a Pareto distribution to these residuals. This enables us to obtain
approximate answers to questions of interest to risk managers, viz. concern-
ing the level of Value at Risk or Expected Shortfall; or finding the profit or
loss to be expected from a forward contract, inter alia. We also investigate
the cyclical behaviour of this time serices by fitting wavelets, giving the risk
manager clues as to which frequencies he should focus on in his modelling,
and which contracts he might use to hedge.

The first section describes the data, and comments on the initial approaches
to modelling, looking at residuals obtained by differencing the original data;
inspecting autocorrelation functions; and looking at the data through wavelet
decomposition.

The next section describes the preferred model for the data, and we obtain
a series of normalised residuals from that model. This series is heavy tailed,
and a Pareto distribution is fitted to the positive tail. The Pareto model
allows us to consider some basic quantities of interest to the risk manager;
and a short conclusion terminates the paper.

Finally, all computations were effected in R, particularly using the ’evir’,
"POT’ and "wavelet’ libraries. Abbreviations utilised include ACF and PACF
for (partial) autocorrelation function; and cdf for (cumulative) distribution
function, pdf for probability density function. The acronyms MSE stand for
mean square error, and MLE for maximum likelihood estimation; ARIMA
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and GARCH have their usual meaning, and DC is direct current.

2 Modelling the data

2.1 A first look at the data
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Figure 1: Average daily electricity prices from 1 January 2006 - 31 August
2008, at Haywards grid point

The elctricity price data shown in Figure 1 is that for Haywards Hill, an
important node in the national grid in New Zealand because it lies at the
north end of the DC cable connecting the North and South Islands. The
daily data shown is an average of the original half hourly price data. There
are slight hiccoughs in the data shown because of two additional (half hourly)
readings taken when daylight saving ends, each year about April; and two
fewer readings when daylight saving is introduced, generally in October each
year. Accounting for the slight inconsistencies in the data at these times did
not materially impact the conclusions of this paper.

Average daily prices for two further grid points over the same time window
are compared with those for Haywards in Figure 2. Benmore is the grid
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Figure 2: Average daily electricity prices from 1 January 2006 - 31 August
2008, for Haywards, Benmore and Balclutha

point at the southern end of the inter-island DC cable, near Christchurch;
and Balclutha is the grid point nearest the aluminium smelter at the bottom
of the South Island, the biggest electricity consumer in New Zealand. At the
admittedly coarse level of this diagram the prices at the three nodes display
similar features. There are some 300 grid points in New Zealand, with those
displayed being three of the more important, and we choose to model the
Haywards prices in this paper.

2.2 Fitting an ARMA type model

It is clear from Figure 1 that some differencing will be required before one can
hope to fit ARMA or GARCH type models, since these classes correspond
to stationary time series.

A first look at the data would entail fitting models by differencing, first by
applying filters of the form 1 — L, where L is the lag or back shift operator;
then by applying filters of the form 1 — L®, where s is the periodicity of a
seasonal effect; and finally by combining these filters, viz. (1 — L)(1 — L*).
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The latter two models incorporate a moving average through the data:
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Figure 3: ACF and PACF for residuals of the simple differencing model

Figure 3 shows the autocorrelation and partial autocorrelation functions
(ACF, PACF) of the residuals when simple differencing is applied to the
data. The spikes at every Tth reading indicate the presence of a cycle of
period 7 days: this is expected on prior grounds, and most modelling of elec-
tricity pricing and/or demand contains a weekly cycle. So we take s = 7 in
the above.

The three models produced by differencing in the above ways produce resid-
uals plotted in Figure 4. None of these three models is sufficient in itself
for satisfactory modelling: we shall clearly need to fit additional parameters.
According to Moy (2010, p. 26), the SARIMA /EVT model outperforms the
GARCH/EVT model on this dataset, in that the former provides a lower
MSE and provides a better fit, judging visually. We therefore restrict our-
selves to the ARMA type models in this paper, which assume the following
form:

O (L) ¢ (L) (1-L)7 (1 - L) X, =0(L*)0(L) &
which may be denoted as ARIMA(p, d, q)(P, D, @Q)s, in a customary notation.
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Figure 4: Residuals from fitting the three basic differenced models

Our preferred model for this dataset is ARIMA(2,0,1)(0, 1, 1)7, the fitting of
which produces the coefficients

arl ar2 mal smal
152 -53 -81 -94
se. .05 .05 .04 .01

The fit of the coefficients is sharp, meaning that the standard errors are
relatively small; and the resultant ACF and PACF appear satisfactory, to
judge from Figure 5. The model is reasonably parsimonious, and is preferred
on the basis of the Akaike Information Criterion over other simpler models
considered.

Our fitted model is shown in red in Fig 6, superimposed on the original data.
Also shown are the conventional 95% forecasts for a month out of sample
(September 2008), the blue lines being two standard errors away from the
central green estimate. The influence of the weekly cycle is clear in the
forecasts.

Before proceeding to fit a Pareto distribution to the tails of the residuals
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Figure 5: ACF and PACF for residuals of the preferred SARIMA model
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Figure 6: Fitted (red line) and actual daily electricity prices from 1 Jan 2006
- 31 August 2008, Haywards grid point. The green lines are the point fore-
casts for September 2008; and the dark and light blue lines the conventional
confidence interval of width four standard errors.
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from our fitted model, we examine a wavelet decomposition of the data.

2.3 Wavelet analysis

A wavelet decomposition is essentially a fitting of cycles of various frequencies
on a roving basis throughout the data. One advantage of such an approach
is to allow the strength of a cycle of a particular frequency to vary over time,
in contrast to the situation with a conventional Fourier analysis of the data.
On the other hand, the association with frequency, via 'time scales’, is looser
than in Fourier analysis, basically because one is not fitting sine curves.

We have used the conventional discrete wavelet transform (DWT), with seven
levels of frequencies, or rather seven time scales. The data used is from March
2006 to August 2008, giving a multiple of 7 lots of 128 = 27 days, viz. from
the 79th to the 974th day inclusive: 974 — 79+ 1 = 7 x 128. One could have
used up to 9 levels, 2% = 512 still being less than 974, the length of our price
time series; but 7 levels seemed reasonable for our purposes. A standard
reference for wavelets is Percival and Walden (2000).

Principal features of the wavelet fit are shown in Figures 7 and 8: the first
graph shows the wavelet smooths, the second the wavelet details. The ver-
tical scale of the graphs has been adjusted for consistency as we compare a
subgraph with those above and below it, although there is no such consis-
tency between the two graphs.

At first glance, the lower frequencies for the smooths (towards the top of
Figure 7) do little more than confirm our impressions from the data itself in
Figure 1 on p. 4: there is greater activity when it is expected, viz. during
the first third of the data; to a lesser extent in the middle third; and to a far
greater extent in the final third. The higher frequencies have also a discernible
pattern of the same form. The persistence of this pattern of activity across
frequencies is a somewhat indirect indication of the usefulness of white noise
as a modelling tool for this data, although in itself this observation provides
little validation of the stationarity assumed in our fitted ARMA models.
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The wavelet spectrum indicates the overall strength of the signal at the given
time scale. Scaling these to sum to unity, the relative strengths of the signals
at the various time scales over more or less the whole period is indicated in
Figure 9. There is substantial strength at the 2-4 month time scale, corre-
sponding to the 6th level (cycles of length 26 = 64 days to 27 = 128 days).
This is presumably a 3 month or seasonal cycle, and was not picked up from
the ARIMA modelling previously carried out, although our ACFs were not
extended so far. Nor would this cycle easily be modelled, for 3 months is an
indeterminate number of days. The strength of the signal at the 6th level is
also indicated in the detail in Figure 8.

The consumption of electricity can be expected to have a seasonal influence;
but that is not to say that the price is necessarily subject to the same influ-
ence. The risk manager may have contracts which depend on both quantity
supplied to the grid as well as price; and the message is perhaps to signify the
potential usefulness of 90 day contracts for hedging, whether options, futures
and forward contracts, or contracts for difference (CFDs), or whatever other
type of derivative, are involved.

With the benefit of hindsight, after having seen the spectrum of the wavelets
over nearly the whole period in Figure 9, it is possible to discern the presence
of rough 3 month cycles in the data: perhaps most easily in the levels D4
and D5 in Figure 8.

The weekly cycle is hardly salient, to judge from the spectrum of the wavelet
fitting: it belongs within time scale 2 (cycles of length 2% = 4 days to 2% = 8
days). The time scale 2 contributed a little more to the overall signal than
did time scales 1 and 3, to judge from Figure 9; but there is not much in it.
This impression is corroborated by a further glance at the ACF in Figure 3
on p. 6, in which there are significant correlations at periodicities other than
weekly:.
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Figure 7: wavelet smooths
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Figure 8: wavelet details
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Figure 9: wavelet spectrum for March 2006 - August 2008

3 Fitting the Pareto distribution

One could fit a Pareto distribution to the unadjusted residuals from the
fitted model, but it is convenient to standardise those residuals first, largely
for ease of comparison with standard normal random variates, the statistical
cornerstone of our SARIMA model.

In standardising those residuals, we use the mean and variance of the earlier
unstandardised residuals, ignoring the residuals occurring later in the time
series. We do this partly because the innovations in ARMA or GARCH type
models arise from the immediate past, and are naturally not impacted by
the future; to some extent we are mimicking the operation through time of
fitting the assumed underlying model from the available data, except that
we are using the parameter values obtained from fitting the model over the
whole period.

Estimating the mean and variance from the preceding residuals in order to
standardise residuals produces the standardised residuals in Figure 10. It
is clear that one could well be interested in fitting Pareto distributions to
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the positive and negative tails separately, thereby modelling innovations in
the underlying SARIMA model as a mixture of positive and negative Pareto
distributions and a normal distribution.

We assume that the risk manager is worried about prices being too high
rather than too low, and fit a Pareto distribution to the positive tail only.
Innovations in the underlying SARIMA model are therefore considered as a
mixture of a positive Pareto distribution and a normal distribution.

One reason for eschewing the fitting of a Pareto distribution to the negative
tail is that, while we have a reasonable amount of data for time series pur-
poses, it is not much data for fitting extreme value distributions. A more
pragmatic reason is that in the forecast values shown in Figure 6, our ap-
proach is basically to increase the upper limit of the forecasting interval in
Figure 6, as indicated in Figure 12; extending the interval downwards may
well take us to zero and beyond, which is not useful in predicting prices. We
assume that extending the forecasting interval upwards is of more interest to
the risk manager; in the contrary case one could try the same approach with
logarithms, and model the negative tail with a Pareto distribution.

Our approach is to take the greatest 100 standardised residuals, use the
lowest of these as a threshold point, and take this as the basic data to which
we wish to fit a Pareto distribution. The other 874 points are taken to be
normally distributed. The weights in the mixture are chosen as 1/10 and
9/10 instead of the more precise 100/974 and 874/974.

Having fixed the weighting probabilities and fitted the distributions to be
used in the mixture, ideally one would fit a SARIMA model to the data
with innovations drawn from the mixture; or at least one would simulate the
SARIMA model already fitted (and thus using the parameters obtained from
the original fit) to simulate values, both within the basic period and beyond.
We do not do either of these: we simply adjust the forecast intervals in Figure
6 by increasing the upper limit in accordance with the Pareto distribution
fitted to the upper tail of the standardised residuals.
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Time.

Figure 10: Standardised residuals of the preferred SARIMA model

Following McNeil, Frey and Embrechts (2005, p. 281), the mean excess plot
of residual lifetimes for those top 100 points are plotted in Figure 11.

Figure 11: Mean excess plot

In theory, the parameters of the fitted gpd are to be found from the latter
part of this graph, the final straight line (see McNeil et al. (2005, p. 281)).
This would give a threshold of about 3. Depending on what one considers
to be a ’straight’ line, one could model the GPD by choosing the threshold
for fitting to be 2 or 3, or anywhere in-between. We tried 2, 2.5 and 3,
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and chose the lowest of these figures, partly because the shape parameters
for the higher two values had standard errors almost as large as themselves,
whereas the estimate at 2 was rather sharper; and partly because as a matter
of practicality, the shape parameter in the first case was less than one, which
is necessary if the Pareto distribution is to possess a finite mean value. The
lower the fitting threshold the better for the number of points used for the
fit; but also the harder to justify the fitting of an extreme value distribution.

Using 2 as the fitting threshold yielded the following MLE parameter fits:

scale shape
.82 .66
se. .34 37

This Pareto distribution is to be applied to residuals exceeding unity in the
standardised residuals, since the 100th greatest standardised residual is close
to unity. The remaining 874 lower values of standardised residuals produced
a mean and standard deviation of —.215 and .879 respectively, but we do not
need these values for our purposes, since we are not intending to simulate a
SARIMA model with a mixture for the innovations.

The cdf for this so-called Generalised Pareto distribution assumes the form

o1 (1 S5 .

§(x —u)
G
see McNeil et al. (2005, p. 276). The corresponding pdf is

g(z) = ~ (1 N y) 11/

for

1+ >0 and T > U

B

and the mean residual lifetime (Hogg and Klugman (1984, p. 58)) or mean
excess (McNeil et al. (2005, p. 277) is given, for u < v, by

_ BHEv—u)

— 2)

e(v) = E(X —v|X >v)
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The label of ’Generalised Pareto’ for the distribution given in (1) is a lit-
tle misleading. Models arising in extreme value theory would generally be
expected to produce a positive shape parameter &, in which case this 'Gen-
eralised’ Pareto distribution reduces to the ordinary Pareto distribution (eg,
Hogg and Klugman (1984, p. 222)).

One genesis of the Pareto distribution is that of a ratio of independent expo-
nential and gamma random variates; and the usual meaning ascribed to the
Generalised Pareto distribution by North American actuaries is when that
ratio has a general gamma random variate in the numerator rather than the
exponential: see Hogg and Klugman (1984, p. 54) and Panjer and Willmot
(1992, p. 121), inter alia. The usage of the Generalised Pareto distribution
in R follows that in McNeil et al. (2005, p. 276). The inconsistency of the
two definitions is unfortunate.

Denoting the standardised residuals by X, and the components of the mixture
comprising X by X; for the normal and X, for the Pareto; and setting xy to
be the 90th percentile of X5, one has

9 1 9 1
P(X<SL’0):1—OP(X1<SL’0)+EP<X2<$0):E+EX9:99

The 99th percentile of X is therefore the 90th percentile of the Pareto random
variate Xs.

Referring to (1),

(HM)“: 1

o
rearrangement of which yields
§(xo — u)
o

For the Pareto fitted to this data, the scale parameter is f = .82 and the
shape parameter £ = .66, while the lower threshold w = 1. Inserting these
values into the last equation yields

1+ = 10¢

xozgx (105 —1) +u=5.44.
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Forecasts for a month out of sample (September 2008) are shown in Figure
12. The expected point values are in green, and surrounding these central
values are 95% confidence intervals using normal residuals in the SARIMA
modelling: the limits are in blue, and the width is 4 standard errors. The
influence of the weekly cycle in the forecasts is apparent, with four obvious
cycles. The upper mauve forecast is of the 99% VaR point, substantially
above the upper limit of the conventional confidence interval, in dark blue.

500

T 1
0 1000

Figure 12: forecast upper quantiles

4 From a risk manager’s perspective

The highest ’forecasts’ in Figure 12, viz. the mauve coloured squiggles on
the top right corner, are in fact the 99th percentiles of the out of sample
price according to our model. One can go further and calculate the expected
price conditional on its exceeding that 99th percentile, given that our value
of the shape parameter is less than unity: from (2) on p. 15, the residual
lifetime of a Pareto random variate at value 5.44 is 11.0; in other words
the expected value of a Pareto random variable in our model conditioning
on its exceeding 5.44 is 16.4. Transferring this to the Figure 12 means an
expected shortfall of the forecast mean + a massive 16.4 times the forecast
standard error, whereas the Value at Risk (VaR) is the forecast mean + 5.4
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times the forecast standard error. For a 7 day ahead forecast, the Value at
Risk translates into $220, and the expected shortfall into $615; for a 30 day
horizon, these become respectively $356 and $936.

To be using our model in this way may be useful to give some ideas of more
realistic Values at Risk, but one clearly needs to be careful when interpreting
the expected shortfalls calculated in the above manner. To compound the
uncertainty, the standard errors for the above calculations are assuming that
there is no uncertainty in the parameters fitted to the basic model. More
significantly, our fitting of a Pareto distribution was also highly uncertain
in itself: quite reasonable fitting choices, for instance, resulted in Pareto
distributions with infinite mean.

That said, any model for the expected shortfall has to be extremely uncertain.
To be working with the upper reaches of a fat tailed distribution when that
distribution is itself highly uncertain is of course going to be fraught with
difficulties in interpretation of the results.

The above calculations also assume that the risk manager is only concerned
about one particular contract maturing on a given day. They will in fact
have hedged their positions in the various contracts, and be wishing to take
a holistic view of their financial commitments.

5 Conclusion

We have fitted a seasonal ARIMA (SARIMA) model to New Zealand elec-
tricity prices at a particular node in the national grid, and then modelled
the resulting outliers using extreme value theory (EVT) methods. The dou-
ble dipping approach of using EVT after the prior application of a previous
methodology of modelling is not new (see McNeil and Frey (2000)), but seems
not to have been applied to electricity markets, nor to ARMA type models.
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We have ignored other possibly relevant factors, such as water levels in the
dams which provide much of New Zealand’s electricity supply, quantity of
electricity demanded each day, and the weather. It is easily possible to insert
explanatory variables into our method, but we chose not to. It is one thing
to model the behaviour of electricity pricing as a function of covariates over
a time period; and another matter to provide satisfactory forecasts in the
future when those covariates need themselves to be forecast. Our approach
eschewing collateral information is intended as a serviceable guide to the
risk manager. As and when more elaborate mathematical models are fitted,
the risk manager should certainly incorporate the extra information into his
decision making.

In truth, the SARIMA and EVT models are not quite elementary either,
although they can readily be used to produce up to date forecasts; but our
stripping away any of the complications bedevilling the electricity industry
is appealing, and the use of the Pareto distribution allows us to formulate
approximate answers to some basic risk management questions quite neatly.
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