
State Estimation and

Smoothing for the

Probability Hypothesis

Density Filter

by

Sergio I. Hernandez

A thesis

submitted to the Victoria University of Wellington

in fulfilment of the

requirements for the degree of

Doctor of Philosophy

in Computer Science.

Victoria University of Wellington

2010



Abstract

Tracking multiple objects is a challenging problem for an automated system,

with applications in many domains. Typically the system must be able to

represent the posterior distribution of the state of the targets, using a recur-

sive algorithm that takes information from noisy measurements. However, in

many important cases the number of targets is also unknown, and has also

to be estimated from data.

The Probability Hypothesis Density (PHD) filter is an effective approach

for this problem. The method uses a first-order moment approximation to

develop a recursive algorithm for the optimal Bayesian filter. The PHD

recursion can implemented in closed form in some restricted cases, and more

generally using Sequential Monte Carlo (SMC) methods. The assumptions

made in the PHD filter are appealing for computational reasons in real-time

tracking implementations. These are only justifiable when the signal to noise

ratio (SNR) of a single target is high enough that remediates the loss of

information from the approximation.

Although the original derivation of the PHD filter is based on functional

expansions of belief-mass functions, it can also be developed by exploiting ele-

mentary constructions of Poisson processes. This thesis presents novel strate-

gies for improving the Sequential Monte Carlo implementation of PHD filter

using the point process approach. Firstly, we propose a post-processing state

estimation step for the PHD filter, using Markov Chain Monte Carlo meth-

ods for mixture models. Secondly, we develop recursive Bayesian smoothing

algorithms using the approximations of the filter backwards in time. The

purpose of both strategies is to overcome the problems arising from the PHD

filter assumptions. As a motivating example, we analyze the performance of



the methods for the difficult problem of person tracking in crowded environ-

ments.
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1
Introduction

1.1 Thesis scope

Scientific and engineering communities have long been interested in signal

tracking. Signals arise in different forms, such as price commodities in finance,

mammal migrations in population ecology or ship trajectories in radar signal

processing. Despite being very different in nature, all these applications share

the need to reconstruct a signal from noisy observations while incorporating

all available information. The theoretical foundation for signal tracking can

be regarded as a temporal data fusion problem, where one or multiple sensors

collect data that has to be integrated in order to perform inference about the

unobserved dynamic system.

While the statistical analysis of univariate and multivariate time series of

linear and non-linear dynamical models has a long history, the development of



2

modern computational methods have broadened the interest and scope of ap-

plications of signal tracking. The recursive estimation of a latent Markovian

process contaminated with noise can be naturally achieved in the Bayesian

framework [10], where conditional probabilities are propagated in time. In

many important cases, the expectation over the state of the dynamical sys-

tem can be written in closed form using the Kalman filter equations. In cases

where no closed form is available, Monte Carlo computational methods can

be used for the estimation task.

One of the key points in Bayesian inference is the idea of incorporating

and integrating information using basic probability rules. In the case of track-

ing systems, the position and velocity of a single target are represented as a

dynamic parameter or random vector, whose conditional expectation is han-

dled using Bayesian reasoning. However, when the number of targets is not

known apriori, it is not straightforward to extend the parametric inference

approach. In these cases, the model dimensionality is also part of the un-

certainty, so the expectation has to be computed over both parameters and

models [39]. Standard parametric inference, such as maximum likelihood

estimation requires a model selection step which consists of estimating the

order of the model, and this has to be performed before making inference

about the state of the system. Non-parametric inference on the other hand

can handle the model selection and on-line processing duality using the same

underlying Bayesian principle. Furthermore, the number of parameters in

non-parametric inference does not scale with the model order, so these mod-

els are more amenable to use in the non-constant dimensionality problem

[28].

Instead of using a parametric family for the prior and posterior distri-

butions, Bayesian non-parametric models use more general families of func-

tions to represent the prior and posterior distributions over infinitely many

targets. Suitable choices for non-parametric Bayesian inference are point

processes. Point processes are models for random numbers of random events

with irregular spatial and temporal distributions. Estimation of the state of
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the system is performed using a time-varying function that represents the

sufficient statistics of a stochastic point process [99]. With all the flexibil-

ity of the non-parametric approach, in order to develop tractable recursive

filters, computational models must rely on approximations and assumptions

about the underlying dynamic system. In target tracking, workable algo-

rithms can be achieved by assuming a particular family of density functions

for the prior and posterior distributions. The Probability Hypothesis Density

(PHD) filter developed by Ronald Mahler is a recursive algorithm in which

the Poisson process is used as a best-fit approximation to the real posterior

distribution [68]. The Poisson approximation allows us to factorize the com-

plete posterior distribution into the product of the marginal single target

densities while being characterized by its first-order moment. Nevertheless,

a remarkable property of the PHD filter approach is the direct interpreta-

tion of multi-target problems in terms of the classic non-linear non-Gaussian

filtering theory.

Apart from having an unknown number of targets, multi-target tracking

scenarios are usually contaminated with false alarms or clutter. In order to

estimate the state of the system, one has also to resolve which measurement

corresponds to which target. This process is usually named data associa-

tion, and depending on the application it has to be solved using hard or soft

assignments. Probabilistic Data Association (PDA) approaches update the

marginal probability of each single target by means of normalized weights

that represent the total probability of a measurement coming from a target

or being a false alarm [30]. Multiple Hypothesis Tracking (MHT) algorithms

on the other hand, enumerate all possible hard assignments, but unfortu-

nately the number of association hypotheses increases exponentially with

the number of targets [7].

The point process formalism provides a natural interpretation for the

non-constant dimensionality problem, and also allows both data association

schemes under the same framework [102]. By using a Poisson process approx-

imation, the PHD filter can be categorized as a soft PDA approach, so it can
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be appropriate for cases where one cannot distinguish between a new-born

and an existing target. One such application can be found in visual tracking

in crowded scenarios, where it is still a challenge to have unambiguous mea-

surements from a single person using standard image processing techniques

[29].

1.2 Related work

One of the major challenges in statistical visual tracking consists of associ-

ating multiple and unknown objects [130]. The problem becomes even more

challenging when targets are dense enough not to be able to detect a single

object from image measurements. The problem with closely spaced objects is

that data association methods would have to perform reasoning from ambigu-

ous measurements due to partial or complete occlusions. Moreover, objects

might not be well defined so it is not easy to differentiate false alarms from

object generated measurements.

Early approaches for tracking multiple targets managed data association

implicitly, assuming that each object generates a single measurement [53]. A

more sophisticated method considers Markov Chain Monte Carlo (MCMC)

sampling method with an optimization criterion [129]. A drawback of the

method is that MCMC is only guaranteed to converge in the limit of an infi-

nite number of iterations, so reaching an equilibrium distribution is domain

specific [92], making MCMC based methods ill suited to on-line analysis.

Contrary, Sequential Monte Carlo (SMC) methods are well suited for on-

line processing. One of the first approaches for incorporating data association

into the SMC context can be found in [48]. The proposed method combines

SMC with MCMC for estimating a distribution for the association hypothe-

ses. In order to achieve on-line performance, data association priors have

to be carefully designed from some optimal proposal distribution. A more

advanced approach by [59] considers MCMC data association for interacting

targets using a Markov Random Field (MRF) prior. The method is well
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suited for tracking interacting targets, but is not easy to extend when the

number of targets is also unknown.

1.3 Contributions of the thesis

This thesis is concerned with sequential Bayesian inference for multi-target

tracking using a first-order moment approximation. In this context, the

state of the system is regarded as being composed of an unknown number

of targets characterized by a Poisson point process. PHD filters are emerg-

ing as potential replacements to standard multi-target tracking algorithms

using data association, however most developments assume a perfect model

or knowledge of the true underlying parameters. Parameter estimation in

multi-target tracking problems is not a direct extension of the single-target

case, therefore the first-order moment approximation might not be optimal

in more realistic scenarios.

The main objective of this dissertation is to propose improvement strate-

gies for the PHD filter in order to cope with real world multi-target tracking

problems, and more specifically visual tracking of pedestrians in crowded

environments. The novel contributions of this thesis can be summarized as:

1.3.1 Marked point process formalism for the PHD filter

The original approach for the PHD filter by Mahler is based on the random

finite sets (RFS) formalism, where most of the standard probability rules are

replaced by similar concepts in the RFS notation, using an ”almost parallel

worlds” argument. The method is highly appealing for general data fusion

problems, where imprecise information can be represented using set-valued

analysis. Instead, this thesis follows a Poisson point process approach and

develops a marked point process formalism for the PHD filter. The PHD

filter algorithm has no modification under this new approach, but separating

the intensity function into different marks is appealing to visual tracking,
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where dynamic and geometric features can be separated into different metric

spaces.

Computer vision and image analysis applications are well characterized

by object level models, such as marked point processes [21]. A novel con-

tribution of this thesis is to highlight the marked point process approach as

a natural extension to the PHD filter, which can be used in visual tracking

applications. In that context, The PHD filter achieves a good compromise be-

tween algorithmic complexity and model stability and can be implemented

using standard SMC techniques. The theoretical foundations required to

specify a density and compute estimates from a marked point process are

outlined in Section 3.1.

1.3.2 PHD with spatial discretization

The PHD filter calculates the probability of finding a target in any particular

region of the observation space by recursively computing the marginal pos-

terior density of a single target. Sequential Monte Carlo methods can then

be used for approximating the sufficient statistics or intensity of the Pois-

son process that represents the unknown number of targets. The method

replaces the parametric densities of standard Bayesian filtering equations by

means of set-valued integrals, so the resulting algorithm is well rooted in

non-linear and non-Gaussian filtering theory. However, a more intuitive in-

terpretation can be achieved considering a fixed-grid approximation to the

spatio-temporal intensity. In cases where the state-space can be separated

into spatial and (discrete-time) temporal components, a spatial discretization

can be used for estimating the posterior distribution of the locations of the

targets. We demonstrate in Section 3.3 that the conditional intensity of a

Poisson point process can be estimated by discretizing the state-space into

bins.

A similar model named the “bin-occupancy” approach, was recently pro-

posed in [26] for deriving the PHD filter equations. The new technique

presented on this thesis, is based on a discretization of the state space and
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provides a natural interpretation for a point process with independent scat-

tering. Both approaches are described in Section 3.3, and the application

of the spatial discretization technique to acoustic multi-target tracking was

proposed in [43].

1.3.3 Bayesian state estimation for the PHD filter

The PHD filter is a computationally attractive alternative to the traditional

multi-target tracking algorithms, especially when the Signal-to-Noise Ratio

(SNR) is sufficiently high that the posterior distribution can be approximated

by its first-order moment, and the number of targets can be estimated directly

from data. However, whenever the basic assumptions of the PHD filter are

broken, the algorithm loses its well-behaved performance.

In cases where the SNR is not high enough, target state uncertainty in-

creases so we propose Markov chain Monte Carlo methods for Bayesian state

estimation. Parametric estimation for the PHD filter using the EM algorithm

has been discussed in the literature for the standard SNR case [15]. More

recently, Bayesian state estimation using MCMC was proposed in [63]. In

Section 3.6, a new MCMC method for state estimation is provided, which

takes advantage of the noise conditions commonly found in visual tracking

applications.

1.3.4 Improved PHD filtering with smoothing

The sequential Monte Carlo implementation of the PHD filter has been suc-

cessfully used in highly cluttered tracking scenarios. Despite being a com-

putationally attractive alternative to traditional multi-target tracking algo-

rithms, in the presence of false alarms and missed detections, the filtered

estimates are unstable, degrading the overall performance of the algorithm.

While the instability issue can easily be remediated by averaging the car-

dinality estimates in a time window, a more principled Bayesian alternative

would consider smoothing or retrodiction [44]. Bayesian smoothing is a back-
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ward recursive alternative to filtering, which considers data frames later than

the current time step. An original implementation of the two-filter smoother

for the PHD filter is proposed in Section 4.2. This is then compared with

standard PHD filtering and an alternative smoothing scheme, using both

Bayesian and maximum likelihood state estimation.

1.3.5 People tracking and counting with PHD filtering and

smoothing

One application where the independence property of the PHD filter is easily

violated is found in pedestrian tracking in crowded scenarios. Persons can

walk alone or in groups, so in principle, the PHD filter is well suited for

overriding the combinatorial problem of associating detected persons with

existing tracks. Moreover, most of the state of the art pre-processing steps

required to generate observations from a single person in video are far from

being optimal, so existing data association methods have to maintain a large

set of association hypotheses in order to keep track of an unknown number

of targets.

In the case of pedestrian tracking in crowded scenes, occlusions and un-

known depth ordering makes it difficult to create and maintain association

hypotheses between observations and persons [42]. Chapter 6 discusses an

original application of PHD filtering and smoothing for the estimation and

tracking of an unknown number of persons in crowded environments.



2
Probabilistic inference in single target

tracking

Tracking a single object using measurements from one or several sensors is

an application of data fusion methods for temporal information processing.

Usually, the state of the system being tracked consists of kinematic informa-

tion, like position and velocity of a target, and conveniently modelled as a

random vector. The measurements or observations are also assumed to be

realizations from a random vector which is related to the state vector.

This chapter introduces probabilistic inference in single target tracking.

We will see that in order to achieve a tractable representation of the dynam-

ical state of the system, Markovian dependence between the current and the

previous state as well as conditional independence between the current ob-

servation and all previous states has to be assumed. Moreover, the current
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observation is also assumed to be independent from the previous states and

observations. Therefore, the resulting dynamical model is a stochastic pro-

cess with time-ordered Markovian structure, and this means that the state

of the system can be estimated recursively using all measurements available.

Estimation of the state of the system is performed recursively using fil-

tering and smoothing equations. These techniques are explained in Section

2.1, which also describes the general form for modeling the dynamical sys-

tem in tracking applications. Section 2.2 describes filtering and smoothing

methodologies for the estimation problem in the special case when the model

is linear and Gaussian. Filtering for the non-linear and non-Gaussian case

is described in section 2.3 and the related smoothing approaches are then

described in Section 2.4.

2.1 State space models

A dynamic system can be written as a first-order probabilistic generative

model, known as a hidden Markov model in the discrete case or more generally

as a state space model. These models are used to characterize the sequential

structure of the dynamical system, and the evolution of a hidden state of the

system. The state is considered to be not directly observable, but some of

its properties are available at discrete or continuous observation times. The

state-space model can be regarded as a dynamic Bayesian network, where

the nodes are connected through a sequence of pairs with a state and its

observation.

The state-space model contains two equations for describing the dynami-

cal behavior of the system and the observational process. As seen in Figure

2.1, the state-space representation is conceptually a graph for sequential prob-

abilistic inference over a partially observed stochastic process. The state x

is an unobserved first-order Markov process and the observations z are con-

ditionally independent given the state process.
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Figure 2.1: Schematic representation of a state space model. The state of the

system xk at time k is a Markov process observed via the measurement zk.

xk = f (xk−1, vk) process equation

zk = g (xk, wk) observation equation

The noise sources {vk} and {wk} are assumed as being mutually indepen-

dent and identically-distributed (i.i.d.) sequences of random variables, which

are also independent of the state and the observations xk and zk respectively.

The functions f and g represents possibly non-linear mapping from xk−1 to

xk and from xk to zk respectively.

Bayesian inference provides a sound framework for building a model for

a sequence of unobserved states given noisy measurements. The informa-

tion about the hidden state (or latent variable) and the observations can

be integrated recursively, leading to a functional form for the conditional

expectation of the posterior distribution of the current state of the system

given all previous observations. However, a general solution for recursively

estimating the posterior distribution of the state is not always available in

analytical form. In the case of linear Gaussian models, the recursive formula

admits a closed form and an optimal estimator can be achieved using stan-

dard methods like the Kalman filter or the recursive least squares algorithm

[1].
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For non-linear or non-Gaussian models, the marginal distribution of the

current state has no analytical expression in general and global or local ap-

proximations must be made. Local approximations can be achieved by means

of analytic expansions of the posterior distribution. Methods like the ex-

tended Kalman filter (EKF) and the unscented Kalman filter (UKF) are

examples of local approximations using Taylor series expansions and sigma-

points regression respectively. On the other hand, global approximations to

the posterior distribution are possible when the expectation of the latent vari-

able is calculated by means of deterministic or non-deterministic integration

[91]. In that sense, we will see that Monte Carlo integration plays a crucial

role in sequential methods for the global approximation of non-linear and

non-Gaussian dynamic models.

2.1.1 Filtering

Under the Bayesian inference framework we are interested in recursively

estimating the posterior distribution of the hidden states x1:k given the

past observations z1:k, and more specifically the marginal or filtering den-

sity p(xk|z1:k). This procedure is also called Bayesian filtering, and consists

of a prediction step and an update step to calculate the following quantities:

p(xk|z1:k−1) (Prediction) (2.1)

p(xk|z1:k) (Update) (2.2)

The prediction step uses all information from the past in order to esti-

mate a value of the hidden state xk. Under the assumption of a first-order

Markovian process dynamic system, the distribution of xk conditional on the

history x1:k−1 is only determined by the previous state xk−1. Consequently,

the conditional distribution of the current observation yk given all previous

states and observations y1:k−1 is also determined by its relationship with xk.

A recursive formula for the state xk at time k can be achieved by first con-
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sidering a prior density p(x0), so the prediction density p(xk|z1:k−1) can be

decomposed by using the Chapman-Kolmogorov equation [54]:

p(xk|z1:k−1) =

∫

p(xk|xk−1)p(xk−1|z1:k−1) dxk−1 (2.3)

As a result of Bayes theorem, the filtering density can be decomposed as:

p(xk|z1:k) = p(xk|zk, z1:k−1) (2.4)

=
p(zk|xk, z1:k−1)p(xk|z1:k−1)

p(zk|z1:k−1)
(2.5)

where the normalization p(zk|z1:k−1) constant can be written as:

p(zk|z1:k−1) =

∫

p(zk|xk)p(xk|z1:k−1) dxk (2.6)

Using the filtering density p(xk|z1:k), a filtered estimate x̂k|k of the hidden

state can be calculated as the expected value or first-order moment of the

posterior distribution:

x̂k|k ! E[xk|z1:k] (2.7)

=

∫

xk p(xk|z1:k) dxk (2.8)

2.1.2 Smoothing

Although the filtering density provides a fairly accurate way to calculate an

instant estimate of the state of the system, we might expect an improvement

if we incorporate more information in the production of the estimate. Rather

than considering only the past and current observations, the accuracy of the

filtered estimate can be improved by also taking into account future obser-

vations. This procedure, which is also named smoothing, can be performed
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by either delaying the production of state estimates by some time-lag or

by post-processing the entire observations data set [1]. In both cases, the

smoothed estimate x̂k|k+L considers a lengthier data frame k + L than the

filtered estimate, which only examines observations up to the current time

step k. In the case of maximum-likelihood estimation of the inferred state,

the improvement due to smoothing at any time k is monotonically increasing

with the smoothing lag L > 0 [87]. Nevertheless, a more general formula-

tion of the smoothing problem can be achieved by considering the smoothing

distribution:

p(xk|z1:k+L) =

∫

p(xk|xk+1)p(xk|z1:k+L) dxk+1 (2.9)

The estimator x̂k|k+L takes more information into account, so it is ex-

pected to be more accurate than its filtered counterpart x̂k|k. Since the

smoothed estimator x̂k|k+L depends on future, current and past observations

of the process, it is also said to be a non-causal function of the observations.

Just as in the filtered case, the smoothed estimate can be obtained from the

smoothing distribution:

x̂k|k+L ! E[xk|z1:k+L] (2.10)

=

∫

xk p(xk|z1:k+L) dxk (2.11)

A remarkable feature of smoothing algorithms is that they are completely

determined by their corresponding filters. Once we have computed a filtered

estimate, it is possible to derive a backward Markovian recursion (or a suit-

able re-parameterization) that represents the smoothing distribution [10].

Any method for computing the recursion in Equation 2.9 gives a smooth-

ing algorithm, and depending on how much extra information is incorporated,

three different strategies have traditionally been followed for implementing

the method [57]:
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1. Fixed-interval: Estimates the state x̂k|T at time k < T , where T repre-

sents the final time step for all available observations.

2. Fixed-lag: Estimates the state x̂k−L|k at time k − L with L being a

positive valued number for the time lag.

3. Fixed-point: Estimates the state x̂k|k+N at time k using an observation

from N steps ahead.

2.2 Filtering and smoothing recursions for linear

state-space models

When the state-space is linear with Gaussian additive noise, the well-known

Kalman filter [58] achieves the solution for the optimal estimation problem.

Next, we formulate the filtering and smoothing equations for the liner Gaus-

sian case.

2.2.1 Kalman filter and smoother

The Kalman filter is the most popular technique for handling linear models

with Gaussian distributed noise. Since its formulation in the seminal paper by

Kalman [58], it has been widely adopted in several engineering branches such

as automatic control, computer vision and signal processing. Nevertheless, its

use has also been extended to more general filtering and time series problems

like economic forecasting and neural networks modeling [40].

When the state space can be written as a linear dynamic model with

zero-mean Gaussian noise sources vk ∼ N (0, Qk) and wk ∼ N (0, Rk), the

posterior density is also Gaussian so it can be completely parameterized

by its mean and covariance. Let Ak and Bk be two matrices defining a

linear transformation for the process and observation equations. Qk and Rk

represents the process and observation noise covariance respectively.

The linear Gaussian state space can be written now as:
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xk = Ak xk−1 + vk Linear process equation (2.12)

zk = Bk xk + wk Linear observation equation (2.13)

In this case, equations 2.3 and 2.4 have known closed form, so the solu-

tions can be written in terms of Gaussian distributions:

p(xk−1|z1:k−1) = N (x̂k−1|k−1,Σk−1|k−1) (2.14)

p(xk|z1:k−1) = N (x̂k|k−1,Σk|k−1) (2.15)

p(xk|z1:k) = N (x̂k|k,Σk|k) (2.16)

The Kalman filter [58] computes the optimal conditional mean and covari-

ance of xk by recursively predicting and updating a Gaussian distribution.

The recursive method is optimal since using the following equations mini-

mizes the mean square error of the observations and the predicted state:

x̂k|k−1 = AK x̂k−1|k−1 (2.17)

Σk|k−1 = Qk + AkΣk−1|k−1A
T
k (2.18)

x̂k|k = x̂k|k−1 + Kk(zk − Bkx̂k|k−1) (2.19)

Σk|k = Σk|k−1 − KkSkK
T
k (2.20)

The term Sk denotes the covariance of an innovation matrix εk = zk −

Bkx̂k|k−1 that (disregarding the orthogonality condition of the observations)

generates a sequence of uncorrelated terms. The Kalman filter and Kalman

smoother algorithms can then be derived from least squares techniques and

by using properties of orthogonal projections in the Hilbert space of linear

combinations [57]. The superscript T denotes matrix transposition and Kk

is the so-called Kalman gain. Both terms Sk and Kk can also be written as:

Sk = BkΣk|k−1B
T
k + Rk (2.21)

Kk = Σk|k−1B
T
k S−1

k (2.22)
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The smoothed estimate x̂k|T is also a Gaussian distribution with co-

variance Σk|T . The optimal solution for the linear Gaussian problem was

presented in [88], and is widely known as the Rauch-Tung-Striebel (RTS)

smoother. The corresponding equations are:

x̂k|T = x̂k|k + Gk(x̂k+1|T − Akx̂k|k) (2.23)

Σk|T = Σk|k − Gk(Σk+1|k − Σk+1|T )GT
k (2.24)

where the smoothing gain Gk is computed as:

Gk = Σk|kA
T
k Σ

−1
k+1|k (2.25)

Although the optimal linear estimator can be completely derived from a

“geometric” formulation [57], the algorithms can also be formulated in terms

of probability density functions, providing a more general Bayesian filtering

framework for solving the filtering and smoothing equations [45].

2.2.2 Numerical example

In order to exemplify the improvement of the smoothed estimate over the

filtered one, a linear Gaussian dynamical model is estimated with the Kalman

filter and smoother. A 1-dimensional linear Gaussian tracking model with

constant velocity ẋk = ẋ was simulated using Ak = 1, Bk = 1, ẋk = .1

,vk = N (0, 2), wk = N (0, 5). The priors x0 = 0 and v0 = 2 were used to

simulate the data.

The model simulates a constant velocity trajectory of a target observed

with Gaussian noise. Table 2.1 and Figure 2.2 shows the estimation results

of the Kalman filter and smoother. As expected, the Kalman smoother

outperforms the estimates from the Kalman filter.
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Figure 2.2: Kalman filter and smoother. Ground truth (red line) is plotted against

the observed values (circles). Kalman filter and smoother estimates are also plotted

(blue and black lines respectively).

Kalman filter Kalman smoother

RMS Error 8.54 4.01

Table 2.1: Performance comparison for the Kalman filter and smoother.

2.3 Filtering for non-linear and non-Gaussian state-

space models

The Chapman-Kolmogorov equation (see Equation 2.3) forms the basis for

the optimal Bayesian filtering solution, but in general it cannot be solved

through an analytical formulation. Apart from the linear Gaussian and the

discrete state space models, the equations have no closed form and their

solution usually requires high-dimensional numerical integration. For that

reason, several sub-optimal methods have been proposed in the literature for
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solving the problem of estimating the state of a dynamical system under a

noisy observation model.

Monte Carlo and Markov chain Monte Carlo (MCMC) methods have a

long tradition in statistical physics, since their fist appearance in 1949 in the

seminal paper by Metropolis and Ulam [73]. Their use has been widespread

among several disciplines where the use of a randomized sampling scheme can

be helpful. In Bayesian statistics for example, some problems require high

dimensional integration to compute expectations, therefore the analytical

result might be forbidden in these cases [91].

Importance sampling is a Monte Carlo method for performing stochastic

integration. When it is not feasible to draw samples from a posterior distri-

bution, a Monte Carlo method using importance sampling can draw several

independent samples from a proposal distribution, such that the samples are

easy to draw and are in the support region of the posterior distribution.

Let’s suppose we are trying to approximate a multidimensional integral

I =
∫

g(x)dx, where g(x) = x f(x) represents the expectation of a probability

density function (pdf) f(x), such that f(x) ≥ 0 and
∫

f(x)dx = 1. Since

f(x) is a proper density, the integral
∫

x f(x)dx is also defined and finite for

all x. When it is not possible to directly take samples from f(x), we can

generate samples from a density q(x), which is also termed an importance or

proposal density and which is similar to f(x) [92]. In this case, the integral

I can be written in terms of the proposal density:

I =

∫

x
f(x)

q(x)
q(x)dx (2.26)

Let {xi, wi}N
i=1 be a set of N i.i.d. samples from q(x) with the weights

wi = f(xi)/q(xi). According to the law of large numbers, the stochastic ap-

proximation of the self-normalized integral Î represents an unbiased estimate

of x, such that:
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Î =
1
N

∑N
i=1 xi wi

∑N
i=1 wi

=
N
∑

i=1

xiw̃i

(2.27)

Where w̃i represents the normalized importance weights. Figure 2.3 shows

a schematic diagram outlining the importance sampling principle.

Figure 2.3: Schematic diagram for the importance sampling procedure. A pro-

posal distribution q(x) (plotted in red line) is used to generate weighted samples x

(circles with radiuses being proportional to the importance weights) from a target

distribution f(x) (plotted in blue line).

In the case of filtering, the target distribution p(x1:k|z1:k) is a valid proba-

bility density, but due to non-linearity, multi-modality or non-Gaussianity it

becomes difficult to take samples from directly. However, it can be evaluated

using a related density q(x1:k|z1:k) that is designed to be easy to sample, so



21

it is used for generating weighted samples {xi
1:k, w

i
1:k}

N
i=1. In this case, the

importance weights are proportional to the posterior distribution:

wi
1:k ∝

p(xi
1:k|z1:k)

q(xi
1:k|z1:k)

(2.28)

Using the samples generated from q(x1:k|z1:k), the posterior distribution

can be described by a set of discrete stochastic points xi
1:k. For the sequential

imputation of importance sampling, the proposal distribution can be chosen

to have the ability to be factorizable. The importance density can then be

written incrementally as:

q(xi
1:k|z1:k) ! q(xi

k|x
i
1:k−1, z1:k)q(x

i
1:k−1|z1:k−1) (2.29)

Replacing the importance density from Equation 2.29 into Equation 2.28

leads to the following recursion on the weights:

wi
k =

p(xi
1:k|z1:k)

q(xi
k|x

i
1:k−1, z1:k)q(xi

1:k−1|z1:k−1)

=
p(zk|xi

1:k, z1:k−1) p(xi
1:k|z1:k−1)

p(zk|z1:k−1) q(xi
k|x

i
1:k−1, z1:k)q(xi

1:k−1|z1:k−1)

=
p(zk|xi

k) p(xi
k|x

i
k−1) p(xi

1:k−1|z1:k−1)

p(zk|z1:k−1) q(xi
k|x

i
1:k−1, z1:k)q(xi

1:k−1|z1:k−1)

(2.30)

Taking out the normalization constant p(zk|z1:k−1) yields the following

approximation for the weights:

wi
k ∝

p(yk|xi
k) p(xi

k|x
i
k−1) p(xi

1:k−1|z1:k−1)

q(xi
k|x

i
1:k−1, z1:k)q(xi

1:k−1|z1:k−1)

= wi
k−1

p(zk|xi
k) p(xi

k|x
i
k−1)

q(xi
k|x

i
1:k−1, z1:k)

(2.31)

A special case of the algorithm is when the prior distribution of the states

is used as an importance density, leaving q(xi
k|x

i
1:k−1, z1:k) = p(x1:k). In this
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case, the weight recursion can be written just in terms of the likelihood of

the samples:

wi
k ∝ wi

k−1 p(zk|x
i
k) (2.32)

This methodology is known as sequential importance sampling (SIS) [90]

and yields the following approximation for the marginal filtering density:

p(xk|z1:k) ≈
N
∑

i=1

wi
kδ(xk − xi

k) (2.33)

The SIS algorithm is computationally simple and straightforward to im-

plement, and it forms the basis of the sequential Monte Carlo approach for

non-linear and non-Gaussian state space models. However, it also has some

undesired behavior that leads to a degeneracy of the algorithm. The following

subsections show some strategies to overcome those problems.

2.3.1 Sequential Importance Resampling : Particle Filter

The optimal proposal distribution q(x1:k|z1:k) should be chosen to be as close

as possible to the target distribution p(x1:k|z1:k). Because this is not possible

in most situations, sub-optimal choices must be taken. However this can

also lead to an increase in the estimator variance over time. This issue has

been called the degeneracy problem and means that most of the samples will

have negligible weights after a few steps. The degeneracy problem has a deep

impact on the SIS estimate, leaving the filtering distribution p(xk|z1:k) being

approximated by a single Dirac measure [10].

The sequential importance resampling (SIR) filter (aka particle filter)

[38] solves the problem of the skewed distribution of the weights of the SIS

method, by means of eliminating low weighted samples (particles) and mul-

tiplying samples in the important regions. This is achieved by resampling

with replacement N times from the discrete representation of the marginal



23

posterior density in Equation 2.33. The rationale behind this is that after

having acquired a set of weighted samples with normalized weights, a new

set of samples can be generated by sampling with replacement with proba-

bility of sampling proportional to the weights. Figure 2.4 shows a schematic

diagram for this procedure.

Figure 2.4: Schematic diagram for the importance resampling procedure. A target

distribution (plotted in blue line) is approximated by a set of weighted samples

(circles with radiuses proportional to the weights). When resampling, particles

with low weights are discarded and particles with high weights are multiplied. New

particles have equal weights.
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The weight wi
k of each particle is used for eliminating low weighted par-

ticles and resampling the surviving samples. This procedure is the same as

sampling the number of offspring for each particle according to a multino-

mial distribution with parameter wi
k, and returning a set of equally weighted

propagated particles. The weighted measure {xi
k, w

i
k}

N
i=1 is transformed into

an un-weighted measure {xi∗
k , 1

N
}N

i=1, but each xi∗
k is not an i.i.d. sample from

the posterior density anymore. However, theoretical results shows that the

new set of samples is asymptotically independent as the sample size N goes

to infinity [10].

A comparison of different strategies for implementing resampling on the

SIR algorithm can be found in [22].

2.3.2 Auxiliary particle filter

The SIR algorithm uses resampling schemes to help the degeneracy problem

of the SIS filter. Although this is a great improvement on the basic method-

ology, there is still no clue on how to approximate the optimal proposal

distribution. In that sense, the introduction of auxiliary variables into the

SIR filter can overcome some of the weaknesses of such loss of information

[85].

The key idea in the auxiliary SIR (ASIR) is to perform resampling at time

step k − 1 using information from time k, before propagating the particles.

This is achieved by introducing an auxiliary index j in the importance density

q(xk, j, z1:k), such that {xj
k, j}

N
j=1 is a sample from p(zk|µ

j
k)p(xk|x

j
k−1)w

j
k−1,

where µj
k is a projection of xk given xj

k−1.

2.3.3 Numerical example

In order to achieve better understanding of the methodologies, the SIR and

ASIR algorithms are implemented for the test problem in the previous exam-

ple. Both sequential Monte Carlo methods are implemented for estimating

the position and velocity of the target. Figure 2.5 shows the particle approx-
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Figure 2.5: SIR and ASIR particle filter estimation for a linear Gaussian model.

imation of the SIR algorithm and the SIR and ASIR estimates along with

the ground truth and the observations.

Table 2.2 shows the performance of the SIR and ASIR particle filters

with the same dataset using a different number of particles each time. In

this example, the ASIR algorithm does not provide an improved estimate

over the SIR algorithm. Nevertheless, it is easy to see that both algorithms

improve the RMS error of the estimated values as the number of particles

increases.

Sample size SIR ASIR

100 particles 9.85 9.78

300 particles 9.44 9.45

500 particles 9.31 9.12

1000 particles 9.08 9.11

Table 2.2: Performance comparison of the SIR and ASIR particle filters.
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2.4 Smoothing for non-linear/non-Gaussian state-

space models

Monte Carlo approximations to the posterior distribution of the filtering den-

sity p(xk|z1:k) can be achieved by sequentially propagating a set of weighted

samples. The output of the algorithm is the approximate expected value of

the state xk, computed from the weighted samples. However, a by-product

of the algorithm is a set of particle trajectories and weights describing dif-

ferent paths of the system state. Interestingly, the weights of the particles

can also be seen as an approximation to the smoothing distribution of the

past trajectories [61]. However, this approach will only be effective for small

fixed-lag smoothing, and becomes less reliable due to the successive resam-

pling schedules.

An alternative approach for approximating the smoothing distribution

would consider a backward recursion, which is an extension of the Kalman

smoother to the non-linear non-Gaussian case. Once a Monte Carlo parti-

cle filtering has been performed in a forward-pass, a backward-pass can be

used to modify the existing weights conditioning on future states. Using

the weighted samples from the forward-step, it is relatively easy to elabo-

rate a particle approximation to smoothing distribution, by re-weighting the

existing particles and leaving the locations of the particles xi
k without any

change.

2.4.1 Forward-Backward smoothing

It is possible to derive the marginal smoothing distribution p(xk|z1:T ) using

the following factorization:
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p(xk|z1:T ) =

∫

p(xk, xk+1|z1:T )dxk+1 (2.34)

=

∫

p(xk+1|z1:T )p(xk|xk+1, z1:T ) dxk+1 (2.35)

=

∫

p(xk+1|z1:T )p(xk|xk+1, z1:k) dxk+1 (2.36)

= p(xk|z1:k)

∫

p(xk+1|z1:T )p(xk+1|xk)

p(xk+1|z1:k)
dxk+1 (2.37)

In [23], it has been shown that algorithm (1) can be derived from such

factorization:

Algorithm 1 Forward-Backward smoother

1: Forward pass.

2: for k = 0, .., T do

3: Perform SMC to get particles and weights {xi
k, w

i
k}1≤i≤N .

4: end for

5: Choose wi
T |T = wi

T .

6: Backward pass

7: for k = T − 1, .., 0 do

8: for all i ∈ {1, . . . , N} do

9: Calculate wi
k|T =

∑N
j=1 wj

k+1|T

wi
k p(xj

k+1
|xi

k)
PN

l=1 wl
k p(xj

k+1
|xl

k)

10: end for

11: Normalize modified weights wk|T

12: end for

The resulting algorithm has O(N3) complexity for each smoothed time-

step, but it can be easily reduced when computing the normalization constant

outside of the main loop, so the complexity is reduced to O(N2).
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2.4.2 MAP particle smoothing

Since the joint smoothing distribution p(x1:T |z1:T ) can be factorized as:

p(x0:T |z1:T ) = p(xT |z1:T )
T−1
∏

k=1

p(xk|xk+1|T , z1:T ) (2.38)

where:

p(xk|xk+1|T , z1:T ) ∝ p(xk|z1:k)p(xk+1|xk) (2.39)

and the new weights can be constructed as:

wi
k|k+1 =

wi
k p(xk+1|xi

k)
∑N

j=1 wj
k p(xk+1|xk)

(2.40)

As given in [35], algorithm (2) describes a particle re-weighting method

for the smoothing recursion.

The algorithm is again independent of the filtering scheme that has been

used, but the smoothing recursion has the nice property of having O(N) com-

plexity with respect to the number of particles. Although backward simula-

tion is implicitly assumed when sampling x̃k, this is automatically achieved

when simulating an auxiliary backward index, so no backward filtering has

to be performed.

Despite the O(N) complexity, the method achieves convergence to the

joint smoothing distribution by iterating the algorithm several times.

2.4.3 Two-filter and generalized information smoother

An alternative solution for the marginal smoothing estimation problem can

be achieved when considering a Markovian backward kernel. In this case,

apart from the forward filtering step, a backward prediction step is also

conducted. The marginal smoothed distribution can now be written as the

product of two filtering schemes:



29

Algorithm 2 MAP particle smoother

1: Forward pass.

2: for k = 0, .., T do

3: Perform SMC to get particles and weights {xi
k, w

i
k}1≤i≤N .

4: end for

5: Choose x̃T = xi
T with probability wi

T .

6: Backward pass

7: for k = T − 1, .., 0 do

8: for all i ∈ {1, . . . , N} do

9: Calculate wi
k|k+1 ∝ wi

k p(x̃k+1|xk)

10: end for

11: Normalize modified weights wk|k+1

12: Choose x̃k = xi
k with probability wi

k.

13: end for

14: x̃1:T = {x̃1, . . . , x̃T} is an approximate realization from p(x0:T |z1:T ).

p(xk|z1:T ) = p(xk|z1:k−1, zk:T ) (2.41)

=
p(xk|z1:k−1) p(zk:T |xk)

p(zk:T |z1:k−1)
∝ p(xk|z1:k−1)p(zk:T |xk) (2.42)

While the first part of equation (2.41) remains as the usual forward filter-

ing recursion, the second part p(zk:T |xk) is sometimes named the backward

information filter [71]. The backward in time equation can be computed

recursively using the following equation:

p(zk+1:T |xk) =

∫

p(zk+1:T |xk+1)p(xk+1|xk) dxk+1 (2.43)

p(zk:T |xk) = p(zk|xk) p(zk+1:T |xk) (2.44)

In the specific case of linear Gaussian models, this decomposition is

achieved by the so-called two-filter formula [32]. It has been noted in the
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literature that the integral in Equation 2.43 might not be defined as a valid

probability density function, so it is not possible (in general) to approximate

as a probability measure [9]. However, in certain cases the integral is known

to be finite and therefore can be approximated using common stochastic ap-

proximation techniques [61],[52]. In these cases, the prior distribution of the

states has known analytical form and the following algorithm can be written:

Algorithm 3 Two-Filter smoother

1: Forward pass.

2: for k = 0, .., T do

3: Perform SMC to get particles and weights {xi
k, w

i
k}1≤i≤N .

4: end for

5: Choose wi
T |T = wi

T .

6: Backward pass

7: for k = T − 1, .., 0 do

8: for all i ∈ {1, . . . , N} do

9: Calculate wi
k|T =

∑N
j=1 wj

k|T

wi
kp(xj

k+1
|xi

k)
PN

l=1 p(yk|xl
k)p(xj

k+1
|xl

k)

10: end for

11: Normalize modified weights wk|T

12: end for

A solution for the general backward filtering problem is to define an ar-

tificial backward distribution γk(xk), such that p̃(xk|z1:T ) ∝ γk(xk)p(z1:T |xk).

From Equation 2.43:

p̃(xk|zk:T ) ∝ γk(xk)p(yk|xk)

∫

p(xk+1|xk)
p̃(xk+1|zk+1:T )

γk+1(xk+1)
dxk+1 (2.45)

Having achieved a forward-pass, a backward-pass filtering is used to simu-

late new particles from the marginal smoothing distribution. A re-weighting

scheme can be used to combine the estimates from the forward-pass with the

ones from the backward-pass.
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2.4.4 Numerical example

The forward-backward, the MAP and the two-filter smoothers are imple-

mented for the linear Gaussian problem. Figure 2.6 shows the filtered and

smoothed estimates.
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(a) FB smoother
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(b) MAP smoother
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(c) TF smoother

Figure 2.6: Particle smoothing for the linear Gaussian model. The Forward-

Backward in (a) and the Two-Filter smoother in (b) provide improved results over

the filtered estimates. This is not the case for the MAP smoother in Figure (c),

which requires multiple iterations in order to converge.

Table 2.3 compares the forward-backward, the MAP and the two-filter

smoothers for the linear Gaussian problem. Both, the forward-backward and

the two-filter smoothers provides improved estimates, but this is not the

case for the MAP smoother. The reason is that the MAP smoother requires
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several iterations to converge.

Sample size Forward-Backward MAP Two-Filter

100 particles 5.41 15.97 4.48

300 particles 5.34 14.95 4.29

500 particles 4.52 11.22 4.04

1000 particles 4.34 10.19 4.02

Table 2.3: Performance comparison of particle smoothing strategies.

Comparing the results of the three smoothers in Table 2.3 with the SIR

and the ASIR particle filters in Table 2.2, shows that forward-backward and

the two-filter smoothers both improve the RMS error over the filtered esti-

mates. Increasing the sample size also improves the RMS error of all the three

smoothers, but more dramatically in the MAP smoother which locates a can-

didate particle from the forward pass. In this linear Gaussian example, the

support of the filtering distribution provides a good approximation to the

optimal smoothing distribution, therefore the forward-backward smoother

achieves the best performance of the three algorithms. In strongly non-linear

cases, we should expect expect some level of discrepancy between the filter-

ing and smoothing distributions, so a two-filter approach would be a better

alternative.
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2.5 Summary and Contributions

In this background chapter we introduced the most common approaches

for estimation in dynamic models. The Kalman filter was first discussed

for the task of recursively obtaining a filtered estimate of a dynamic linear

model. Since these models are commonly found in visual tracking problems in

surveillance, this case was also illustrated with numerical examples. Once we

established the correspondence between state-space models and the sequen-

tial estimation procedure, smoothing was introduced as a backward-recursive

method for reducing the variance of the estimator. More specifically, filtered

estimates use previous and current observations, while smoothed estimators

depend on arbitrary larger time frames.

When the state-space is discrete, the expected value of the system state

can be calculated as a sum of discrete probabilities. But when a continuous

state-space is under consideration, the sum becomes an integral, so the esti-

mation problem consists of computing the integral of the random vector over

the sample space with respect to a base reference measure [4]. This interpre-

tation of the state-space model is not needed for describing linear Gaussian

dynamic systems, but it becomes the key to the non-linear and non-Gaussian

case.

Sequential Monte Carlo approaches, such as the SIR and ASIR algorithms

can be regarded as more general simulation-based algorithms for the recursive

estimation task. Although the SMC approach can approximate complex

non-linear and non-Gaussian posterior distributions, the method can be also

used for the dynamic linear case, where all related densities are Gaussian.

Moreover, the importance sampling procedure also allows the linear Gaussian

state equation to be used as proposal distribution, and this leads to the

aforementioned methods having straightforward implementations.

The Forward-Backward and the Two-Filter Monte Carlo smoothers were

then introduced. The Forward-Backward particle smoother performs a backward-

recursive pass where particles are re-weighted by means of the state transi-
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tion model. The Two-Filter smoother on the other hand, can theoretically

re-weight a new set of samples in the backward pass, however there is no obvi-

ous proposal distribution as in the forward pass. Furthermore, the existence

of a backward filter is not guaranteed, so artificial kernels have to be used

instead. Again, the choice of the artificial distributions has to be carefully

designed for the application, with no general recommendations for approx-

imating the optimal backward kernel. Fortunately, this is not the case for

linear Gaussian models, where the backward information filter is also Gaus-

sian and the smoother can be evaluated without changing the support from

the filtering distribution.

In this Chapter, sequential Monte Carlo filters and smoothers for the

linear Gaussian model are compared each other. Kalman and Monte Carlo

smoothers outperform the corresponding filters in the dynamic linear model

numerical example. The Forward-Backward smoother does so by comparing

samples at different time steps, while the Two-Filter smoother also takes

into account the observation data. It has been recently noticed that since

the standard particle smoothers do not change the sample support, they

could also cause degeneracy problems when some level of discrepancy exists

between distributions and specially when the smoothing interval increases

[27]. Section 2.4 shows that this discrepancy problem does not affect the per-

formance of fixed-interval particle smoothers for the linear Gaussian model.

However, in a more general (non-linear or non-Gaussian) setting, fixed-lag

particle smoothing would be preferred where limited dissimilarity between

the successive distributions may exist.



3
Probabilistic inference in multi-target

tracking

Real world tracking applications like urban surveillance, radar and sonar usu-

ally involve finding more than one moving object in the scene. In these cases,

it remains a great challenge for the standard single-target Bayesian filter

to effectively track multiple targets. The dynamic system in consideration

must take into account targets appearing and disappearing possibly at ran-

dom times, while also coping with the possibility of clutter and non-detected

targets. Moreover, additional uncertainty in the dynamic and the sensor

model can make the single target likelihood function a poor characterization

of the real system, so the performance of multiple coupled filters can be far

from optimal [108].

A Bayesian method for dealing with multiple and unknown numbers of
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targets was developed by Ronald P. Mahler [68] and the resulting algorithm

was called the probability hypothesis density (PHD) filter. The method uses a

first-order moment approximation for the posterior distribution of a random

set, or equivalently a multi-dimensional random point process. A previous

formulation of the multi-target problem using the point process formalism

was proposed in [124], where a time-varying finite set of observations is rep-

resented as a random counting measure being defined as a point process.

Instead of considering the multiple target observation model as a list of mea-

surements, the approach proposed by Washburn used a representation in

terms of random scattered points. The method was developed theoretically

by assuming a known number of targets, and had a naturally appealing in-

terpretation in terms of radar or sonar returns being monitored on a screen.

Further explorations of the point processes approach considered an unknown

and time-varying number of targets that has to be estimated alongside the

individual target states. In this context, the approach taken by Miller, Sris-

tava and Grenader considered a continuous-time model for the estimation

and recognition of multiple targets [74]. The approach taken by Mahler was

theoretically developed using a re-formulation of point process theory named

finite-set statistics (FISST) [67] and significantly differs from the previous

works, since it considered random finite sets (RFS) evolving in discrete time.

In FISST, the multi-target and multi-sensor data fusion problem is treated as

an estimation problem of a single “global target” observed by a single “global

sensor”, both being represented by random sets. Given that the expected

value of an RFS cannot be mathematically expressed using the standard

Bayesian filtering equations from Chapter 2, filtering and update equations

for the PHD filter were developed using set derivatives and set integrals of

belief mass functions [37].

The expectation of a random set requires set integration, which can be

calculated by considering all singletons (sum of indicator functions) that

almost surely belongs to the random set [2]. In FISST, the expectation of a

random set is calculated (in a similar way as generating functions of random
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variables) by taking functional derivatives of a sum of bounded functions that

characterize the distribution of a point process [70]. This derivation leads

to analytical forms for the Bayesian prediction and update equations of the

recursive multi-target densities. However, an alternative derivation can be

also achieved if the state-space is discretized into a finite number of disjoint

bins containing a single target. The multi-target density is then recovered

by taking the sum of the probabilities of all bins and the volume of each bin

taking infinitesimally small values. This technique was called the physical-

space approach and was explored in [25] and [43]. More recent formulations

suggest that filtering and update equations can be also obtained by means

of transformations of a point processes (see references [97] and [105],[104]).

The posterior multi-target density is not (in general) a Poisson process, but

it can be approximated to be Poisson distributed by taking the product of

all normalized and unit-less marginal single-target densities.

In this Chapter, we present the point process formalism for the multi-

target problem. Section 3.1 describes some aspects from point processes

theory that will be useful for modeling multi-target densities, and Section 3.2

presents the PHD filter. The PHD filter develops a recursive approach for the

multi-target problem by propagating multi-target densities and interestingly,

as shown in Section 3.4, the SIR algorithm from Chapter 2 can be used

without any extra modification. However, instead of a single (vector-valued)

Monte Carlo estimate, the particle approximation to the PHD filter is used

to estimate multiple targets. Section 3.6 presents a novel Bayesian approach

to the multi-target state estimation problem.

3.1 Finite point processes

A point process is a random pattern of points in a possibly multi-dimensional

space. A simple or finite point process can be defined in one dimension,

which is usually time, and can be used to describe the random times where

some event can occur. Examples of such point processes are the times of
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Figure 3.1: Realizations of a point process.

vehicle collisions in a particular street, or the times when a hospital receives

emergency calls. A stochastic point process can be used to describe the

random number of events in a specified time frame and the instant of time

of the events.

Point processes in spaces of higher dimensionality are called spatial point

processes [51]. For example, if we analyze earthquake epicenters or crime

locations in a determined time period, the locations of the events are situated

in a 2-D or 3-D region. As in the 1-dimensional case, there are a random

number of points located at random positions, but the points may have also

some extra associated information (“marks”). In the crime analysis case, the

times of occurrence are the points so the marks could be the locations of

the crimes in a particular neighborhood and time frame. In this case the

stochastic process would be named a marked point process.

A 1-dimensional point process in time can be studied by observing either

the number of events or the inter-arrival times. Sometimes, we can take ad-

vantage of the independence of the events in disjoint subsets of the temporal

dimension, so the number of events arriving up to a specific time can be

obtained by summing all of them, and the counting process is a continuous

function of time. In higher dimensions, the events do not follow any natural

ordering, so there is no analogue for the inter-arrival times of the counting

process. For this reason, it is more useful to generalize the disjoint intervals

defined in a state space B. Figure 3.2 shows a realization of the spatial point

process in a subset of R2.

An approach to define a RFS is to count the numbers of events in a

specified region. If the region B is also defined as a closed subset, then a

locally finite point process can be used to construct the RFS for any bounded

subset B ∈ B [89].
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Figure 3.2: Spatial point process. The number of events in a region B is a point

process in R2.

Definition 1. A measure is called a counting measure N(B) if it only takes

non-negative integer values and is locally finite.

A finite point process can also be defined by a counting measure N(B).

A consequence of the counting measure formalism is that a random finite set

Ξ can be generated by a point process. The number of occurrences of the

process in the set B can then be expressed as N(B) =| Ξ∩B |. Furthermore,

B can be also expressed as a family of bounded closed sets in a generic

topological space B, so it can also be written as a union of disjoint sets

B = B1 ∪ B2 ∪ · · · ∪ Bn, such that:

N(B) =
n
∑

i

N(Bi) (3.1)

Equation 3.1 gives the intuitive notion of a counting measure as a sum-

mation over disjoint sets Bi. Such a formulation is useful for describing a

random set Ξ, since any bounded subset B of B is also defined as being locally

finite.
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3.1.1 Moments and transformations of a point process

An important feature of point processes is their invariance under several trans-

formations. It is possible to construct new point processes by modifying or

changing an existing point process, so the basic properties remains closed

under transformations [16]. Although these properties are fairly general for

most point process models, it is particularly useful to define superposition,

thinning and translation for a Poisson process. The Poisson process is the

simplest point process, where events are independent of each other. Further-

more, if there is also no preferred location of the events, the process is said to

be homogeneous and the rate or intensity λ is a constant number that speci-

fies the average density of the points per unit area. The expected number of

points is then proportional to the total area of B:

E [N(B)] = λArea(B) (3.2)

A more general formulation for the expectation of a point process given

in Equation 3.2 would allow the process to take different values from place

to place. In this case, the intensity of the process is a function λ(x). The

probability of an event has to be estimated in a small area dx around a

location x, so the number of points in a unitary area dx is λ(x) dx. The

expected number of points in a region B can then be calculated by integrating

the intensity function λ(x):

E [N (B)] =

∫

B

λ(x)dx (3.3)

The first-order moment of a point process, given by the intensity measure

Λ(B) can then be defined as:

Definition 2. Given that Λ(B) ≤ ∞ for all B. The intensity measure Λ(B)

also defines a measure on B such that:

Λ(B) =

∫

B

λ(x) dx (3.4)
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Let’s suppose now we are observing multiple queues in the branch of a

bank. If each queue has its own Poisson (homogeneous) arrival rate, then we

can say that the total number of customers at a particular time is Poisson

distributed and the mean corresponds to the sum of the individual arrival

rates of each cue. This is called the superposition property of a Poisson

process and can be defined as:

Definition 3. If N1, N2, . . . , Nn are independent Poisson processes in B with

rates λ1, λ2, . . . , λm, then N = N1 + N2 + . . . + Nn is a Poisson process with

intensity λ1 + λ2 + . . . + λn.

Another transformation of a Poisson process occurs when splitting the

process into several processes. Let’s suppose now we want to estimate how

many bank customers are male or female. If we know the probability of

each independent event (male or female), then the number of arrivals of

each gender is still a Poisson process with mean rate proportional to the

probability of survival (”retention”) p of each event. Splitting a Poisson

point process into one or several point processes with probabilities p is called

a p-thinning:

Definition 4. Let N(B) = N(B1) + N(B2) + . . . + N(Bn) be a Poisson

process with intensity λ. N(B1), N(B2), . . . , N(Bn) are independent Pois-

son processes with rates λ1, λ2, . . . , λm, then N(Bj) is a πj-thinned Poisson

process of N with
∑n

j πj = 1 and rate λj = πjλ.

A useful transformation for studying the evolution of a spatial point pro-

cess is translation. Mapping each individual point of a point process to

another point process by means of fixed transformation can be useful for

describing the dynamics of individual targets, while the resulting process is

still a Poisson process. A more formal definition is:

Definition 5. A point process Nk is stationary if for each xk ∈ B there is a

transition kernel p(xk+1|xk) such that the translated point process Nk+1|k is

a point process with intensity function:
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λk+1|k(x) =

∫

B

p(xk+1|xk)λ(xk)dxk (3.5)

Example : Binomial process Suppose we take a fixed number of n targets

in a surveillance region W ⊂ R2. Let x1, x2, . . . , xn be i.i.d. random samples

uniformly distributed in B. Since we have only conditioned the number of

points in a subset B of W , the intensity function λ(x) of the point process

is constant, so the probability density of each point can be written as:

f(x) =







1/Area(W ) if x ∈ B

0 otherwise
(3.6)

Since each target xi is uniformly distributed in a 2-dimensional space, for

any bounded set B we have:

P (x ∈ B) =

∫

B

f(x)dx (3.7)

=
Area(B ∩ W )

Area(W )
(3.8)

The resulting process N(B) has a binomial distribution with parameters

n and p = Area(B ∩ W )/Area(W ), and is called a binomial process.

3.1.2 Poisson process

Another characterization for the number of counts in a point process is given

by the Poisson process. For this case, the number of elements N(B) are

Poisson distributed. The model has been used extensively for studying queues

and other discrete processes. Let’s take for example an unreliable bus driver,

for which we might want to know the time of arrival given that we have

waited a certain a amount of time. If the arrival time of a new bus does not

depend on the time we have already waited, then all subsequent events will
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be independent and identically distributed with the exponential distribution.

However, the total number of arrivals follows a Poisson distribution with the

intensity rate being proportional to the time spent [16]. A general definition

of the Poisson process would be:

Definition 6. A Poisson process in B with intensity function λ(x) satisfies:

1. For every bounded closed set B, the number of points N(B) has a

Poisson distribution with mean measure M(B) =
∫

B
λ(x)dx.

2. If B1, . . . , Bn are disjoint regions, the random measures M(B1), . . . , M(Bn)

are independent.

Following the same derivation of the binomial process, the number of

counts for the Poisson process with the intensity measure M(B) can be writ-

ten as:

P{N(B) = k} =
[

M(B)k/k!
]

e−M(B) (3.9)

Example : Homogeneous Poisson process A homogeneous Poisson process

with intensity λ > 0 has N(B) ∼ Poisson(λArea(B)), so the intensity

measure is proportional to the area of B.

3.1.3 Distribution and density of a point process

A point process can be described in statistical terms by defining the space of

all possible events and then assigning probabilities to the different outcomes.

The event space of a point process in B is the set of all counting measures on B.

So far, we have considered finite point processes defined bounded sets B ⊂ B.

Therefore, a point process in B is a mapping from the probability space

generated by the Borel σ-algebra of B to the set of all counting measures.

By considering the space of all counting measures on B, the distribution

of a point process is then specified by its finite-dimensional distributions
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N(B). Using Definition 1, we can calculate the probability of finding exactly

k elements in B:

E[N(B)] = P{N(B) = k} (3.10)

= M(B) (3.11)

Moreover, the distribution of the point process also specifies joint proba-

bilities such as P{N(Bi) = ni ∧N(Bj) = nj}, and the probability of finding

no points P{N(Bi × Bj) = 0} in any disjoint sets Bi and Bj. Higher-order

moments of a general finite point process (where points may have multiplicity

greater that 1) can be defined then by considering a moment measure Mn on

the joint distribution of (N(B1), . . . , (N(Bn))). Higher-order moments, such

as the covariance may now be defined as:

Cov(N(Bi), N(Bj)) = M2(Bi × Bj) − M(Bi)M(Bj) (3.12)

where M2(Bi × Bj) = E[N(Bi)N(Bj)].

The general n-th order moment measure Mn describes the properties of

a set of events distributed over disjoint regions Bi. However, if the regions

are not independent each other, a single event xi can occur in more than one

region of the state space. This multiplicity leads to a diagonal concentration

or singularity on the density when xi = xj with i .= j. For point processes

with non-repeated events, the nth-order factorial moment measure is defined

as follows:

Definition 7. Given a product space B = B1 × . . . × Bn, the nth-order

factorial moment measure M[n](B1 × . . . × Bn) can be written as:

M[n](B) = = E

[

n
∏

k=1

N(Bk) − N(B1 ∩ . . . ∩ Bn)

]

= E[
$=
∑

x1,...,xn

f(x1, . . . , xn)]
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where f is any non-negative bounded function.

The factorial moment measure M[n] is useful for describing the expecta-

tion of a random number of elements with no multiplicity. The n-th order

product density m[n](x1, . . . , xn) is related to the factorial moment measure

by:

M[n](B) =

∫

m[n](x1, . . . , xn)dx1 . . . dxn (3.13)

For the homogeneous Poisson process, the factorial moment measure can

be written in terms of the intensity function λ(x) = λ and is proportional to

the area of B.

M[n](B) =

∫

B1

λ(x1)dx1 . . .

∫

Bn

λ(xn)dxn (3.14)

= λnArea(B1) × · · · × Area(Bn) (3.15)

When considering the more general finite point process, a further distri-

butional simplification can be achieved by restricting ourselves to a family of

symmetric distributions over all permutations on the numbers 1, . . . , n and

a discrete probability distribution pn for the number of points.

Πσ
n(B1 × · · · × Bn) =

1

n!

∑

perm

Πn(Bσ1
× · · · × Bσn) (3.16)

The factorial moment measure can then be represented as a superposition

of a finite or countably infinite family of permutation invariant measures

called Janossy measures Jn(·).

Jn(B1 × · · · × Bn) = n!pnΠ
σ
n(B1 × · · · × Bn) (3.17)

= pn

∑

perm

Πn(Bσ1
× · · · × Bσn) (3.18)
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In this case, all events {x1, . . . , xn} are permutation invariant so no pref-

erence is made over any particular order. The probability of finding exactly

n points, one at each of infinitesimal locations dx1, . . . , dxn can then be spec-

ified by Janossy densities jn [18].

Lemma 8 (Daley and Vere-Jones (2003)). If the k-th factorial moment mea-

sure M[k] exists, then it is absolutely continuous if and only if the superpo-

sition of measures are absolutely continuous for all n ≥ k, in which case the

k-th order product density m[k](·) and the Janossy densities jn(·) are related

by:

m[k](x1, . . . , xk) =
∞
∑

n=0

1

n!

∫

B

jk+n(x1, . . . , xk, x1′, . . . , xn′) dx1′ · · · dxn′

(3.19)

Janossy densities also have the property to be jointly normalized by the

factor 1/n!, so the total probability sums to one:

∞
∑

n=0

1

n!

∫

jn(x1, . . . , xn)dx1 . . . dxn = 1 (3.20)

For the homogeneous Poisson process, we can demonstrate that the in-

tensity function λ(·) is a valid probability density since:

∞
∑

n=0

1

n!

∫

jn(x1, . . . , xn)dx1 . . . dxn = e−λ

∞
∑

n=0

1

n!

∫

λ(x1)dx1 . . . λ(xn)dxn

= e−λ

∞
∑

n=0

λn

n!

= e−λeλ

= 1

(3.21)
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Now we can use factorial moment measures and symmetric densities from

Equation 3.21 to calculate the expectation of the sum over all permutations

on the events xi. Let h : B 0→ R be a measurable function, such that the

summation of the test function h(x) is a random variable with expected value:

M(B) = E[
∑

x∈B

h(x)]

=

∫

B

h(x)λ(x)dx
(3.22)

This is also true for indicator functions h(x) = 1B(x), and the general

result is known as Campbell’s formula [51]. In the case of the Poisson process,

the factorial moment measure can be written as:

M[n](B1 × · · · × Bn) = E[
$=
∑

x1,...,xn

1B1
(x1) . . .1Bn(xn)] (3.23)

And the first-order moment measure can now be written as:

M(B) = E[
∑

x∈B

1B(x)] (3.24)

3.1.4 Probability generating functionals and their derivatives

Moment generating functions and more specifically, factorial moment gener-

ating functions can be used to evaluate the mean, variance and higher-order

moments of discrete random variables. The nth-order derivative of the mo-

ment generating function evaluated at some point, gives the nth-order mo-

ment of the random variable. Construction of generating functions by means

of sums of convergent series has been demonstrated to be a valuable tool

in statistics and engineering for a long time [110]. In the same way, facto-

rial moment measures and Janossy measures can also be approximated by
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means of sums of convergent series, where the power series used in generat-

ing functions for random variables are replaced by the power expression of a

real-valued test function h(x), such that 0 ≤ h(x) ≤ 1.

Definition 9. Let j(x1, . . . , xn) be a density of X and let hX be a power series

expansion of a test function h(x), then the probability generating functional

(p.g.fl) G [h] is denoted by:

G [h] !

∫

hX p(X)dX

= p(∅) +

∫

h(x1)j(x1)dx1 +
1

2

∫

h(x1)h(x2)j(x1, x2)dx1 dx2 + . . .

(3.25)

where

hX !







1 if X=∅
∏

x∈X h(x) otherwise

The sum in Equation 3.25 can be identified with an integral with respect

to the factorial moment M[n](·). As a result of the fundamental theorem

of calculus, the moments of the point process N(·) can be computed from

functional derivatives of G[h]:

δG

δX
[h] ! lim

ε↘0

G [h + εδx] − G [h]

ε
(3.26)

The Janossy density j(·) can now be written using p.g.fl. notation by

means of iterated functional derivatives:

jn(x1, . . . , xn) =
δnG

δx1 . . . δxn

[0] (3.27)

And the first-order factorial moment measure:
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M[1](B) =
δG

δx1 . . . δxn

[1] (3.28)

The extension to conditional Janossy densities and conditional expecta-

tion is done by simply introducing the conditioning factor on each equation

[18]. Using this notation, Bayesian filtering equations are developed in the

following section.

3.2 The Probability Hypothesis Density (PHD) fil-

ter

The problem of performing joint detection and estimation of multiple objects

has a natural interpretation as a dynamic point process, namely a random

counting measure N(· · · ) where the stochastic intensity λ(· · · ) of the model

is a space-time function. In this case, a model for detection and estimation

of multiple objects can be performed using the conditional expectation of the

point process under transformations.

Using the point processes approach, we can predict the state of multiple

objects, given the history of observations. The resulting model is powerful

enough to allow a time-varying number of objects to appear and disappear.

Furthermore, if we approximate the prior density by a Poisson process, we

can also use Poisson processes for target births and clutter, therefore the

posterior multi-target density is also a Poisson process.

Let Xk = {x1, x2, . . . , xn} and Zk = {z1, z2, . . . , zm} be two RFS. Each

one of the random finite sets has time-varying dimensions, so two random

counting measures N(X) and N(Z) can be also defined. Bayesian filtering

equations can be constructed in a similar fashion to the single target filtering

equations 2.3 and 2.4 from Chapter 2:

p(Xk|Z1:k−1) =

∫

p(Xk|Xk−1) p(Xk−1|Zk−1)δXk−1 (3.29)
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p(Xk|Z1:k) =
p(Zk|Xk) p(Xk|Z1:k−1)

p(Zk|Zk−1)
(3.30)

Since Xk is also represented by a point process N(X), the expectations for

the RFS prediction and update equations (Equations 3.29 and 3.30) can be

calculated as sums of counts in disjoint intervals. As we saw in Section 3.1,

these expectations are also random measures having associated symmetric

densities. Using this framework, the rest of the section develops a recursive

algorithm for computing multi-target densities.

3.2.1 The Probability Hypothesis Density filter

The Kalman filter propagates the sufficient statistics for the single target

case, namely the mean and covariance of the target state. If the SNR ratio is

high enough, the second-order moment can be neglected and the prediction

and update operators can just use the first-order moment (i.e., constant gain

Kalman filter) [5]. While this assumption is too restrictive for most tracking

applications, it might be justifiable when extending the case to a multiple

object tracking problem. An estimate of the first-order moment of a point

process can be calculated in closed form in the case of a Poisson process prior.

In this case, the probability hypothesis density (PHD) D(·) is defined as the

first-order moment measure or intensity measure of the posterior distribution

of a point process with density p({x1, . . . , xn}|Z1:k) = jn(x1, . . . , xn). More

formally, the PHD can be defined as:

Definition 10 (Probability Hypothesis Density). The PHD represents the

family of Janossy densities of a point process N(·) using a single function

D(x) that takes the place of the first-order factorial moment density m[1](x),

such that:
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D(x) !

∫

p({x} ∪ X)δX (3.31)

=
∞
∑

n=0

1

n!

∫

p({x, x1, . . . , xn}) dx1, . . . , dxn (3.32)

The recursive PHD corresponds to the first-order moment of the multi-

target densities in Equations 3.29 and 3.30.

Dk|k−1(x) !

∫

p({x} ∪ Xk|Z1:k−1)δXk (3.33)

Dk|k(x) !

∫

p({x} ∪ Xk|Z1:k)δXk (3.34)

3.2.2 Bayesian point process predictor

The PHD Dk|k−1(x) of the predicted point process can be written as the

linear superposition of a thinned point process with Markov translations and

a Poisson birth process. If we let πs(x) and πd(x) be the probabilities of

survival and detection of each target, then the point process representing

the predicted number of targets can be written as the sum of the number of

targets that have survived from time k− 1 to k, the number of targets being

spawned from other targets with probability γ(x), and the number of targets

appearing from spontaneous birth with density b(x). The predicted point

process Nk|k−1 for survival and spawning targets with spontaneous birth can

be written as:

Nk|k−1 = N s
k|k−1 + N b

k|k−1 + Ng
k|k−1 (3.35)

where:
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N s
k|k−1 =

∫

Ds
k−1|k−1(x)dx (3.36)

Ng
k|k−1 =

∫

Dg
k−1|k−1(x)dx (3.37)

N b
k|k−1 =

∫

Db
k−1|k−1(x)dx (3.38)

Here Φ(x) = πs(x) p(x′|x) + γ(x) is an operator that describes the evolu-

tion of survived targets from time k−1 to k. The number of surviving targets

N s
k|k−1 is then a πs-thinned Poisson process, p(·) is a Markov transition ker-

nel, γ(x) is a probability law for spawning targets and bk|k−1 represents the

distribution of spontaneous births. It follows from definition 3 that the result

from the superposition, translation and thinning transformations is a point

process with intensity Dk|k−1.

The probability of surviving targets is a πs-thinned point process corre-

sponds to a an i.i.d. sequence of Bernoulli probabilities with probability πs

of success. Using the fact that each target is subject to independent dis-

placements and independent deletions, also known as independent scattering

which by Definition 6 gives a form for a Poisson process. Therefore, the num-

ber of survival targets follow a Binomial distribution with mean or expected

value being dependent on the number of targets n′ = |Xk−1|. However, it can

be shown that the limiting posterior Poisson process has intensity function
∫

(1 − πs(x) + πs(x)p(x)) dx [105]. Leaving the density function

p(Xk|Xk−1) =







∏n′

i=1 (1 − πs(xi)) if Xk = ∅,

if Xk = {x1, . . . , xnk
}

Using Equation 3.33, the PHD equation for surviving targets Ds
k|k−1 is

then calculated by induction:

Ds
k|k−1(x) =

∫

πs(x) p(x|x′) Dk−1|k−1(x
′) dx′ (3.39)
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Using the same induction principle, Dg
k|k−1 can be written as:

Dg
k|k−1(x) =

∫

γk|k−1(x|x
′) Dk−1|k−1(x

′) dx′ (3.40)

Since target births are modeled via an independent Poisson process, the

density for N b new born targets can be written as:

p(Xk|Xk−1) = eb(x)
n
∏

i=1

bk|k−1(xi) (3.41)

with the PHD Db
k|k−1 for the new born targets being:

Db
k|k−1(x) = bk|k−1(x) (3.42)

Therefore, the total predicted PHD yields:

Dk|k−1(x) =

∫

(

πs(xk)p(x|x′) + γk|k−1(x)
)

Dk−1|k−1(x
′)dx′ + bk|k−1(x)

(3.43)

3.2.3 Bayesian point process update

Using the Poisson process prior, the observed number of measurements |Zk| =

m can be approximated as a Poisson process by taking into account a proba-

bility of detection πd of the targets and spatial Poisson clutter with intensity

κk(z) = λc ck(z). Similarly to the case of the prediction step, the posterior

point process consists of the superposition of a πd-thinned point process of

the detected targets Nd
k|k−1 and the non-detected targets N\d

k|k−1.

The density for the detected targets corresponds to the summation on the

power set of equally likely hypotheses of targets and observation assignments.

This density cannot be factorized (in a general setting) as a Poisson process,

therefore the updated point process Nk|k is not itself a Poisson process. Even
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so, Mahler showed that a best-fit approximation can then be estimated from

the current observations [68].

Firstly, the non-detected targets point process N\d
k|k is then a 1−πd-thinned

Poisson process for the surviving targets in the prediction step. The likeli-

hood for the non-detected targets can be written as a symmetric density over

all permutations σk−1 of Xk−1:

p(Xk|Z1:k) ∝ p(∅|Xk) p(Xk|Xk−1) (3.44)

=
∑

σk−1

nk
∏

i=1

(1 − πd(xi) p(xi|xσk−1
)) (3.45)

The PHD Dk|k(x)\d for the non-detected targets can then be written as:

Dk|k(xk)
\d = 1 − πd(xk) Dk|k−1(xk) (3.46)

Secondly, the detected point process Nd
k|k can be estimated in the update

step by taking into account the observations Zk. Nd
k|k is not a Poisson process

but it can be approximated by taking the product of the single target densities

[105]. The Poisson approximation was discussed by Mahler in terms of the

Kullback-Leibler distance [68], and a quantitative evaluation was performed

in [77].

If we don’t take into account any false alarm, the observations are almost

surely being originated by a target. Therefore, we can write a the likelihood

function of the observed data as a symmetric density over all permutations

σk of Xk:

p(Zk|Xk) = eΛz(Z)
∑

σk

mk
∏

i=1

p(zi|xσk
) (3.47)

In order to estimate the locations of the targets from data, Streit devel-

oped a framework using likelihood inference for point processes [105]. This
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derivation was later extended, by comparing the data update step of the

PHD filter with a previously proposed algorithm used for Positron Emission

Tomography [104]. The later derivation uses the EM algorithm to estimate

the locations of the targets as being missing information, so the conditional

density of the locations becomes the ratio of two densities. The resulting

PHD for detected targets Dd
k|k(x) can be written as:

Dk|k(x) =
∑

z∈Zk

πd(x) p(z|x) Dk|k−1(x)
∫

πd(x) p(z|x) Dk|k−1(x)dx
(3.48)

Introducing clutter into Equation 3.47 yields an augmented state space for

permutations between target originated observations and clutter originated

observations.

Dd
k|k(x) =

∫

πd(x) p(z|x)

λc c(z) +
∫

πd(x)p(z|x)Dk|k−1(x)dx
Dk|k−1(x)dx (3.49)

And the total number of targets corresponds to the targets being detected

in clutter and the targets non-detected Nk|k = Nd
k|k + N\d

k|k.

Consequently:

Nk|k(E) !

∫

E

Dk|k(x)dx (3.50)

The PHD update equation can be finally written as:

Dk|k(x) =

[

1 − πd(x) +
∑

z∈Zk

πd(x)p(z|x)

λc c(z) +
∫

πd(x)p(z|x)Dk|k−1(x)dx

]

Dk|k−1(x)

(3.51)

The updated posterior multi-target density consists of the summation of

the undetected and the detected targets. This is not an independent scat-

tering process, so it is not a Poisson process. Using a first-order moment
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approximation to the posterior density leaves an averaged intensity from all

the conditional likelihoods of a measurement being originated by any partic-

ular target. Since the underlying Janossy density is symmetric under per-

mutations, all association hypothesis are equally weighted and no preferred

association is considered. Therefore, the PHD filter keeps no track of the

individual target identities or “tracks”, so additional steps have to be taken

for performing track-to-estimate associations [15].

3.3 Spatial discretization for the PHD filter

A physical interpretation for the PHD filter was given in [26]. In this ap-

proach, the state space is discretized into a large number of small cells ci, so

the first-order moment represents the probability surface of a single target

existing on each one of the cells.

Using the physical-space approach, the predicted and updated PHD equa-

tions can be written as:

Dk|k−1(c) !

∫

c

Dk|k−1(x) dx = Pr(c ∈ X
′

k) (3.52)

Dk|k(c) !

∫

c

Dk|k(x) dx = Pr(c ∈ Xk) (3.53)

As the volume of the cells |c| tends to zero and the number of cells in-

creases to infinity, the equations for the spatial discretization model are equiv-

alent to the continuous-time prediction and update equations obtained from

the corresponding p.g.fl..

Dk|k−1(c)

|cx|
0→ Dk|k−1(x) (3.54)

Dk|k(c)

|cx|
0→ Dk|k(x) (3.55)
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Due to the infinitesimally small volume of the cells ci, all transformations

are mutually exclusive, so the total probability that the particular bin ci

contains a target can be written as:

Dk|k−1(ci) = pb(ci) +
∑

e

ps(ce) pk|k−1(ci|ce) Dk−1|k−1(ce)

+
∑

e

pγ(ci|ce) Dk−1|k−1(ce) (3.56)

And so:

Dk|k−1(ci)

|ci|
=

pb(ci)

|cx|
+
∑

e

[

ps(ce)
pk|k−1(ci|ce)

|ci|
+

pγ(ci|ce)

|ci|

]

Dk−1|k−1(ce)

|ci|
|ce|

(3.57)

Taking the limit |ci| 0→ 0 and i 0→ ∞, the equation for the spatial dis-

cretization PHD predictor converges to the standard PHD equation. In the

case of spatial Poisson measurement process, the number of observations

|Zk| = mk on each disjoint bin of the state space follows a Poisson distri-

bution with non-homogeneous intensity measure Λz(Z) =
∫

Z
λ(z)dz, such

that:

p (m|Λz(Z)) = Λz(Z)mk
e−Λz(Z)

mk!
(3.58)

This gives an expression for the likelihood p(Zk|Xk) in terms of the con-

ditional intensity λ(z|x):

p(Zk|Xk) = eλz(Z)
mk
∏

i=1

λ(zi|X) (3.59)

= eλz(Z)
mk
∏

i=1

[

λc +
n
∑

j=1

λj(zi|xj)

]

(3.60)
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The spatial discretization approach described here provides a less for-

mal derivation for the multiple target tracking equations, without requiring

measure-theoretic concepts, while at the same time, being specifically well

suited for signal processing applications such as joint detection and estima-

tion of multiple acoustic signals [43].

3.4 Sequential Monte Carlo implementation of the

PHD recursion

A particle implementation for the PHD recursion was proposed by [127, 116,

96] as a method for simulating the conditional expectation of the unknown

number of targets given the current observations. The SMC implementation

of the PHD filter approximates the intensity measure of a dynamic point

process with a set of weighted particles. Convergence results and a central

limit theorem for the particle approximation are given in [14, 55].

The importance sampling estimator for random variables given in Chapter

2 is used now to approximate the first-order moment Dk|k(x). Using the

discrete estimation formula from Equation 3.24, Monte Carlo integration is

used here instead for approximating the first-order moment measure of the

multi-target posterior density. A set of particles {xi, wi}Lk
i=1 is sampled from

a proposal density q(·) leaving Dk|k as being:

∫

B

Dk|k(x)dx = E[
∑

xk∈B

1B(xk)] (3.61)

≈
Lk
∑

i=1

1B(xi
k)w

i
k (3.62)

Algorithm 4 describes the particle approximation to the PHD recursion

as given in [116].
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Algorithm 4 Particle PHD filter

Require: k ≥ 1 ∧ {wi
k−1, x

i
k−1}

Lk−1

i=1

1: Step 1: Prediction step

2: for i = 1, .., Lk−1 do

3: Sample x̃i
k ∼ qk(·|xi

k−1, Zk)

4: Compute predicted weights w̃i
k|k−1 =

φ(x̂i
k,Zk)

qk(x̂i
k|x

i
k−1

,Zk)
wi

k−1

5: end for

6: for i = Lk−1 + 1, .., Jk do

7: Sample x̃i
k ∼ pk(·|Zk)

8: Compute predicted weights for the new born particles

w̃i
k|k−1 = 1

Jk

γ(x̂i
k)

pk(x̂i
k |Zk)

9: end for

10: Step 2: Update step

11: for all z ∈ Zk do

12: Compute Ck(z) =
∑Lk−1+Jk

j=1 ψz,k(x̂
j
k)w

j
k|k−1

13: end for

14: for i = 1, .., Lk−1 + Jk, update weights do

15: w̃i
k =
[

ν(x) +
∑

z∈Zk

ψz,k(x̃i
k)

κk(z)+Ck(z)

]

w̃i
k|k−1

16: end for

17: Step 3: Resampling step

18: Compute the total mass N̂k|k−1 =
∑Lk−1+Jk

j=1 w̃j
k

19: Resample {w̃i
k/N̂k|k, x̃i

k}
Lk−1+Jk

i=1

20: return {wi
k, x

i
k}

Lk
i=1

3.4.1 Numerical example

As an example of a multiple target tracking model, consider a 1-dimensional

scenario with targets appearing at random with uniform distribution over

the surveillance region [−80, 80]. As shown in Figure 3.3, the state of each

target consists of position and velocity xk = [px, ṗx] and the observations zk

are linear measurements of the position embedded in Gaussian noise wk ∼
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Figure 3.3: Multiple object tracking model. Targets are represented with blue

squares and observations with red circles. Several targets appear at random times

(horizontal axis) and random locations (vertical axis).

N (0, 5). Target dynamics are also linear with Gaussian noise vk ∼ N (0, 1).

Probabilities of survival and detection are state independent, ps = 0.98

and pd = 0.99 respectively. Birth rate is set at λb = 1e−3, giving an average

number of 0.16 targets appearing on each scan. Clutter is also simulated

as a spatial Poisson process with intensity rate λc = 4e − 2 with uniform

distribution over the region [−100, 100], giving an average number of 8 clutter

returns. For simplicity, target spawning is not considered here.

Figure 3.4 shows the SMC approximation to the PHD filter. The posterior

multi-target density is approximated using the sampling and re-sampling

scheme from the Algorithm 4.
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Figure 3.4: Particle filter approximation to the PHD filter. The posterior multi-

target density is approximated using particles (plotted in gray). Particles are clus-

tered around targets locations, so additional techniques have to be used for state

estimation. Different strategies for state estimation are discussed in Section 3.6.

3.5 Gaussian mixture implementation of the PHD

recursion

An alternative implementation can be used for the PHD recursion in the

case of linear Gaussian multi-target models. In this case, each single-target

Markov transition kernel is associated with a linear Gaussian model, so the

resulting intensity measure can be represented using a mixture of Gaussian

distributions also known as Gaussian mixture model [72]. Using a similar

derivation for the Gaussian-sum filter for the single target case [61], a closed

form solution for the PHD filter can be found by approximating the intensity

function by a piecewise deterministic function such as a Gaussian mixture

model [114].

In this approach, each target follows a linear Gaussian kinematic model

and the observation model is also linear and Gaussian, and the equations for
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each target can be written using the Kalman filter. Probabilities of detection

and survival are state independent, such that pd,k(x) = pd,k and ps,k(x) = ps,k.

Moreover, intensities for target birth bk|k−1(x) and spawning γk|k−1(x), as well

as the clutter probability c(z) are also approximated with Gaussian mixtures:

bk(x) =

Jb,k
∑

i=1

wi
b,kN (x̂(i)

b,k,Σ
(i)
b,k) (3.63)

γk|k−1(xk|xk−1) =

Jγ,k
∑

i=1

wi
γ,kN (A(i)

γ,kx̂
(i)
γ,k + dγ,k,Σ

(i)
γ,k) (3.64)

c(z) =

Jc,k
∑

i=1

wi
c,kN (x̂(i)

c,k,Σ
(i)
c,k) (3.65)

The linear Gaussian multi-target model has a straightforward interpre-

tation in the physical-space approach. A Gaussian mixture model for the

spontaneous births locates each mean x̂(i)
b,k as the peak of the location in a

discrete state-space, where a target is likely to appear scattered with covari-

ance Σ(i)
b,k. The weights wi

b,k are chosen to sum the birth rate on each bin.

Similarly, target spawning is modeled with an affine transformation of the

position occupied by the target xk−1.

Under these conditions, Vo et.al. [114] derived an analytical expression

for the posterior intensity of the resulting point process. More precisely, the

predicted and updated intensities are also Gaussian mixtures whose param-

eters are computed from Kalman prediction and update equations for each

component of the mixture.

3.6 State estimation for the particle PHD filter

Being the first-order moment of a multi-target posterior distribution, the

PHD represents the intensity function of an information-theoretic best fit

Poisson process approximation. The integral of that function over the field
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gives the estimated number of targets, and the positions of targets can be

estimated from the peaks of the same function.

In the SMC implementation of the PHD filter, Monte Carlo samples are

used to represent the intensity function, so a larger number of particles are

used in areas where targets are more likely to exist. Assuming that we

have sample from the posterior PHD distribution, clustering methods can

be used for estimating the targets states. K-means and the Expectation-

Maximization (EM) algorithms are the main approaches for state estimation

for the PHD filter [15]. The total number of targets corresponds to the

total particle mass, so target states are computed by clustering particles and

using the centroids of each cluster. Furthermore, the authors in [15] also

incorporated track continuity in the particle PHD filter by using validation

techniques in the state estimation.

K-means is an iterative algorithm which separates the data points into K

partitions and estimates the centres of each partition [6]. Each data point

is associated to only one of the clusters, and the algorithm iterates until

some utility function is minimized. On the other hand, the EM algorithm

performs probabilistic classification using a finite mixture model. In this case,

the probability of each data point belonging to a particular class is evaluated

using a normalized allocation vector to all latent classes.

Since the PHD filter assumes low observation noise, parametric estima-

tion using EM can be difficult. All data points would potentially be tightly

clustered around their centres, introducing numerical instability in the calcu-

lation of the variances [107]. Furthermore, having only access to a resampled

particle approximation, could also produce a mismatch between model com-

plexity and the amount of available data.

Maximum likelihood approaches for parametric estimation suffer from

local minima and over-fitting, as well dependency on the starting point.

Bayesian approaches can be used instead in order to overcome the prob-

lems of deterministic estimation using limited data [34]. Figure 3.6 shows

the EM algorithm and Bayesian estimation of a bivariate Gaussian mixture
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Figure 3.5: Positions and velocities of 3 target states are represented by the

particle PHD filter. Monte Carlo samples are tightly clustered around target states,

making it difficult to compute the model parameters using the EM algorithm.

model using the Gibbs sampler. Both methods are implemented with the

same number of iterations and the estimated parameter is plotted at each

step. It is easy to see the dependence of the EM algorithm on the starting

point, while the Gibbs sampler is able to explore the parameter space.

3.6.1 Bayesian state estimation

In parametric state estimation for the particle PHD filter, we represent the

target states as mixture model with parameters Θk = (θ1k, . . . , θ
Nk

k ) and mix-

ing proportions πk = (π1
k, . . . , π

Nk

k ), and each particle is sampled from the

mixture distribution. The mixture density is a weighted linear combination
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Figure 3.6: Bivariate Gaussian mixture model estimated with the EM algorithm

and the Gibbs sampler. After 100 iterations, the Gibbs sampler has explored differ-

ent configurations of the parameters (Gaussian mean parameter being represented

by red crosses), while the EM algorithm estimates are more dependent on the initial

setup.

of all the components of the mixture, with known parametric form. Estima-

tion consists of estimating the values of the weights for all components, as

well as the specific parameters for each one of the components. The number

of components is usually estimated from data, using information theoretic

methods such as the Akaike Information Criteria or the Bayesian Informa-

tion Criteria [92]. When performing state estimation for the PHD filter we

already have an estimate of the number of targets, which can instead be used

as the expected number of clusters.

p(xi|Θk) =
Nk
∑

j=1

πj p(xi|θ
j
k) (3.66)

The Bayesian approach for finite mixture modeling uses priors on the pa-

rameters, usually called hyper-parameters and the likelihood of the available

data with respect to the mixture density. Similarly to the EM algorithm,

allocation of the data instances to the mixture components is treated as a
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missing variable, but in this case a density over the unknown allocations is

used to perform inference. Estimation can be performed using Markov Chain

Monte Carlo methods such as the Gibbs sampler [92], where the available

data corresponds to the particle approximation to the PHD. After the update

step of the PHD filter at time k, the available data is a sample from the real

PHD distribution which is taken as the input for the parametric Bayesian

state estimator.

In the PHD filter case, each component is usually modelled as a multivari-

ate Gaussian distribution θj
k = N (x̂j

k,Σ
j
k). State estimation using the Gibbs

sampler was also considered in [63], where the authors compared estimation

using the EM algorithm and Bayesian estimation with the Gibbs sampler.

However, the authors proposed a complete mixture modeling estimation pro-

cedure and results were validated in a simple toy example.

We describe an algorithm for Bayesian state estimation using the Gibbs

sampler. State estimation from mixtures of multivariate normals with known

variances. This assumption holds when the target observation noise is used

as a prior for the Gibbs sampler, so estimation is constrained to the means

and mixing proportions. Instead of using a convergence criterion, both al-

gorithms are described using a fixed number of iterations. Algorithm 5

describes the Gibbs sampler for PHD state estimation with known vari-

ances. In this case, we use independent hyper-parameters for the means

x̂j ∼ N (µo,Σ0) and the mixing proportions from the Dirichlet distribution

(π1 . . . πNk) ∼ D(γ1, . . . , γNk).

3.7 Limitations of the PHD filter

As noted by Mahler, the motivation for using a first-order moment approxi-

mation is the same as that for using a constant gain Kalman filter. Because of

the computational cost of the Kalman gain matrix, which involves inversions

of potentially singular covariance matrices, the full posterior distribution can

be replaced with a scalar value for all time steps. In this case, the filter only
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Algorithm 5 Gibbs sampler mean state estimation for PHD filter

Require: Given a set of Lk particles {x1
k, . . . , x

Lk

k }, target independent ob-

servation noise Σk, and the estimated number of targets Nk.

1: Initialize Θ0
k

2: Perform Ni Gibbs sampler iterations

3: for i = 1, .., Ni do

4: Generate component allocations S = (s1, . . . , sLk)

5: for θn = {x̂n, πn} ∈ Θk do

6: sj = n ∝ πnN (xj
k − x̂n)

7: end for

8: Compute sufficient statistics

9: for j = 1, . . . , Nk do

10: νj =
∑Lk

l=1 1sj=n

11: ηj =
∑Lk

l=1 1sj=nx
l

12: end for

13: Sample mixture proportions πk ∼ D(γ1 + ν1, . . . , γNk + νNk)

14: Update means

15: Σj = ((Σ0)−1 + νj (Σk)−1)−1

16: µj = Σk ((Σ0)−1 µo + σ−1
k ν(j) η

j)

17: x̂j ∼ N (µj,Σj)

18: end for

propagates the mean, which corresponds to the first-order moment of the

whole distribution [5].

This assumption is only valid in cases where the sensor noise is small

compared with the signal power. In the case of the PHD filter, apart from the

sensor noise uncertainty, there is also uncertainty on the number of targets

as well as the corresponding interactions. Furthermore, in order to make

the process recursive, the functional form of the posterior distribution has

to be preserved. The Poisson approximation to the complete distribution

corresponds to a deterministic approximation, whose error is also propagated
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in time.

In order to improve these limitations, a generalization of the PHD re-

cursion has been proposed which also propagates the posterior cardinality

distribution [69]. The Cardinalized PHD (CPHD) is still first-order in the

states of individual targets, but is higher-order on the number of targets. An-

alytic implementations have been proposed in [120], but their scope is much

more limited when compared with the PHD filter. Furthermore, it has also

been noted that the complexity is cubic with respect to the observations and

the posterior cardinality distribution is also sensitive to missed detections.

3.8 Summary and Contributions

The PHD filter can be discussed in terms of random sets and point processes

theories. In both cases, a recursive solution for the multi-target tracking

problem can be achieved. There are subtle distinctions between the two

approaches, which might not be evident to practitioners, but which can make

a difference when modeling particular tracking scenarios. In visual tracking

problems, a richer representation of the targets might be required, so the

point process formalism can be used to model variations in the geometry

of an object [3]. Since the complete evaluation of all possible models with

unknown number of components is not tractable, it becomes reasonable to

approximate the complete posterior distribution by the first-order moment

of a Poisson process.

The PHD filter achieves a parsimonious representation of the multi-target

problem when data association is too expensive to evaluate. When consider-

ing a point process formalism, a richer object representation is also achieved

with no extra theoretical requirements. At the same time, the PHD filter can

be derived from the spatial discretization of a Poisson point process, which

provides an intuitive derivation of the intensity recursion. Birth and deaths

of objects can be modeled as transformations of a stochastic process that

remains closed under Poisson approximations to these events. Moreover, the
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number and locations of the birth and death events can be represented as

non-homogeneous Poisson processes, whose spatial distribution can be fitted

to the particular scenario.

A contribution of this Chapter is a modeling framework for object pro-

cesses. In order to reconstruct an unknown number of signals observed in

clutter, the PHD recursion assumes that every signal has a SNR that com-

pensates the loss of information incurred in the first-order moment posterior

density approximation. Nevertheless, the distributional approximation also

implies the density to be a completely random process, which neglects any

particular orientation or minimum distance between objects. While the usual

setup for stationary marked point processes considers a density with respect

to the Poisson measure [103], where mark-sum intensities and second-order

moments on the locations and marks describes correlations on the posterior

point process. Section 3.1 presents the theoretical foundations for the distri-

bution and density of such process, being the first-order moment posterior

density an approximation to a non-independent scattering process.

As a way to overcome the sensor noise assumption without leaving the

first-order formulation, a novel Gibbs sampler algorithm for state estimation

is proposed in Section 3.6. Since MCMC methods usually converge in the

limit of high number of iterations, the new algorithm consists of a constrained

version of the Gibbs sampler intended for real time estimation. The special

case of Bayesian estimation of mixtures of multivariate Gaussian distributions

was illustrated. The proposed algorithm uses the observation noise model for

the covariance structure, so only the means and mixing coefficients are left

to the stochastic algorithm. Furthermore, the use of a proper prior is also

recommended in order to find estimates in computational times closer to real

time.



4
Smoothing algorithms for the PHD

filter

The PHD filter algorithm provides an approximation to the expectation or

first-order moment of the intensity measure of a Poisson point process. The

method has the property of being able to explicitly model the birth and

deaths of targets, as well as clutter and mis-detections, which can also be

subject to spawning or merging. This model-based approach can be appeal-

ing in multiple tracking systems where the data association step is non-trivial

or cannot be optimally solved.

An alternative solution for improving the PHD filter’s instantaneous es-

timates is to perform smoothing or retrodiction. Filtered estimates of the

individual target states and the posterior cardinality distribution can be con-

siderably improved by considering a higher data frame than the history of
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observations. More specifically, PHD filtering can be extended to smoothing

and is expected to correct the abrupt changes on the estimated number of

targets and their states, that originate from errors propagated by the filtered

distributions.

Let Xk = {x1, . . . , xnk
} be a set target states and Z1:T a collection of

set-valued measurements collected up to time T ≥ k. The smoothed PHD

can be written as follows:

Dk|T (x) !

∫

p({x} ∪ Xk|Z1:T )δXk (4.1)

Accordingly, the smoothed number of targets can then be written as:

Nk|T !

∫

Dk|T (x)dx (4.2)

As with the standard linear and non-linear smoothing equations in Chap-

ter (2), the PHD smoothing problem might be approached as fixed-interval

smoothing, fixed-lag smoothing or fixed-point smoothing. The algorithms

presented in this chapter are not dependent on the data interval size, so they

can be implemented under each one of these schemes. Notice that, since the

PHD is only available for non-ordered sets, full PHD smoothing distributions

p(X1:k|Z1:T ) are not available, so only the marginal PHD smoothing Dk|T (x)

in Equation 4.1 can be approximated. Sections 4.1 and 4.2 describes two

possible approximations.

4.1 Forward-Backward PHD smoother

Following a similar approach to the particle forward-backward smoother in

Chapter 2, Nandakumaran et al. developed a Forward-Backward PHD (FB-

PHD) smoother [79] based on the physical-space approach presented previ-

ously in Section 3.3. Here, we present an alternative formulation based on

factorial moment measures. Using a factorization similar to the single target
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marginal smoothing case, Bayesian filtering equations can be extended to

compute the marginal smoothing distribution:

p(Xk|Z1:T ) =

∫

p(Xk, Xk+1|Z1:T )δXk+1 (4.3)

=

∫

p(Xk+1|Z1:T )p(Xk|Xk+1, Z1:T ) δXk+1 (4.4)

= p(Xk|Z1:k)

∫

p(Xk+1|Z1:T )p(Xk+1|Xk)

p(Xk+1|Z1:k)
δXk+1 (4.5)

The formulation seems to be an extension to the vector-valued smooth-

ing case, but in this case all related quantities are representing symmetric

densities of non-probability measures. In FISST notation, equations (4.5)

are used to represent the backward recursion required to obtain the marginal

PHD smoothing. Once the filtered and smoothed intensities are obtained

in the forward pass, the smoothed intensities are computed in the backward

pass.

Equation 4.5 is used to represent the backward recursion required to ob-

tain the marginal PHD smoothing. Once obtained the filtered and smoothed

intensities in the forward pass, the smoothed intensities are computed in the

backward pass. Replacing the first-order moment expression in Equation

3.34 into 4.5 leaves the first-order moment of the smoothing PHD Dk|T as

being:
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Dk|T (x) =

∫

p({x} ∪ Xk|Z1:T )δXk

=

∫

p({x} ∪ Xk|Z1:k)
[

∫

p(Xk+1|Z1:T )p(Xk+1|{x} ∪ Xk)

p(Xk+1|Z1:k)
δXk+1

]

δXk

=

∫

p({x} ∪ Xk|Z1:k)δXk

[

∫

p(Xk+1|Z1:T )p(Xk+1|{x} ∪ Xk)

p(Xk+1|Z1:k)
δXk+1

]

=

∫

Φ(x)Dk|x(x)dx

(4.6)

We can evaluate the backward kernel Φ(x) as:

Φ(x) =







1 − πs(x) if Xk+1 = ∅,
∫ p({x}∪Xk+1|Z1:T )p({x}∪Xk+1|Xk)

p({x}∪Xk+1|Z1:k) δXk+1 if Xk+1 = {x1, . . . , xnk+1
}

(4.7)

Consequently, taking the first-order moment of p(Xk+1|Z1:T ) can be also

achieved by the PHD approximation Dk+1|T (x) =
∫

p({x}∪Xk+1|Z1:T )δXk+1.

The denominator of Equation 4.6 can be evaluated in a similar fashion to

the prediction step of the PHD filter in Equation 3.43, so that the first-order

moment Dk+1|k(x) becomes:

Dk+1|k(x) =

∫

p({x} ∪ Xk+1|Z1:k)δXk+1 (4.8)

=

∫

(

πs(x)p(x|x′) + γk+1|k(x|x
′)
)

Dk|k(x
′)dx′ + bk+1|k(x) (4.9)

The term p({x}∪Xk+1|Xk) in the numerator can be evaluated as a density

for persisting targets at time step k + 1 from step k:

p({x} ∪ Xk+1|Xk) =
∑

σk

nk+1
∏

i=1

πs(x) p(x′
i|xσk

) (4.10)
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where σk represents all permutations on Xk.

The smoothed PHD can now be written as:

Dk|T (x) = Dk|k(x) (1 − πs(x)) + Dk|k(x)

∫

Dk+1|T (x′) πs(x) p(x′|x)

Dk+1|k(x′)
dx′

(4.11)

= Dk|k(x)

[

(1 − πs(x)) +

∫

Dk+1|T (x′) πs(x) p(x′|x)

Dk+1|k(x′)
dx′

]

(4.12)

A particle approximation to the smoothing multi-target density can be

written as:

∫

B

Dk+1|T (x)dx = E[
∑

xk+1∈B

1B(xk+1)] (4.13)

≈
Lk+1
∑

i=1

1B(xi
k+1)w

i
k+1|T (4.14)

By replacing Dk|k(x) by its particle approximation in Equation 3.62, we

can now write the backward recursion for the smoothing particle approxima-

tion as shown in Algorithm 6. For the SMC implementation of the PHD

filter, it has been shown that the SMC approximation of the PHD under

any bounded test function (i.e. indicator functions), the empirical measure

converges almost surely when both the true and the particle approximation

have finite masses [55]. In the case of the FB-PHD smoothing, there seems no

reason why the same results should not hold, however the theoretical analysis

becomes more complicated than the filter. Recently, Duouc et al. proposed

a framework for studying SMC approximations of smoothing distributions,

but it is not clear how it can be applied to the PHD smoothing case.
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Algorithm 6 Forward-Backward PHD smoother

Require: k < T ∧ {wi
k, x

i
k}

Lk
i=1 ∧ {wi

k+1, x
i
k+1}

Lk+1

i=1

1: for all i ∈ {1, . . . , Lk} do

2: µj
k+1|k = bk+1|k(x

j
k+1) +

∑Jk

l=1 wl
k

[

πs(xl
k)p(xj

k+1|x
l
k) + γk+1|k(x

j
k+1|x

l
k)
]

3: wi
k|T = wi

k|k

[

∑Lk+1

j=1

wj
k|T

πs(xi
k) p(xj

k+1
|xi

k)

µ
j
k+1|k

]

4: end for

5: Compute smoothed estimated number of targets N̂k|T =
∑Lk

i=1 wi
k|T

6: Normalize {wi
k|T}1≤i≤Lk

to get {
N̂k|T

Lk
}1≤i≤Lk

.

4.2 Two-Filter PHD smoother

Another approach for PHD smoothing can be achieved by means of the two-

filter formula shown in Section 2.4.3. In this case, the PHD filter has to

be combined with the output of a backward information filter, which propa-

gates the posterior distribution of the random counting measure NK|T from

Equation 4.2 to be represented by the following factorization:

p(Xk|Z1:T ) = p(Xk|Z1:k−1, Zk:T ) (4.15)

=
p(Xk|Z1:k−1) p(Zk:T |Xk)

p(Zk:T |Z1:k−1)
(4.16)

∝ p(Xk|Z1:k−1) p(Zk:T |Xk) (4.17)

where the backward information p(Zk:T |Xk) filter can be written as:

p(Zk:T |Xk) =

∫

p(Zk, Zk+1:T , Xk+1|Xk) δXk+1 (4.18)

=

∫

p(Zkx|Xk)p(Xk+1|Xk)p(Zk+1:T |Xk+1) δXk+1 (4.19)

Similar to the vector-valued smoothing case, the backward information

PHD filter can be expressed as a conditional intensity of future observed point
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processes given the current state. It is worth noticing that this entity is not

defined as a proper density in Xk, so the integral might not (in general)

be finite, leaving SMC methods being not applicable. Nevertheless, if we

consider a sequence of finite Poisson processes {X1, . . . , Xk}, the backward

PHD filter can be also constructed using an information-theoretic best-fit

Poisson approximation for linearly superimposed Poisson processes. In this

case, the requirement for priors p(Xk) and p(Xk+1) is solved by considering

the filtering multi-target densities from the forward pass:

P (Xk) =

∫

. . .

∫

p(X1)
k
∏

i=1

p(Xi|Xi−1)δX1:k (4.20)

∝

∫

p(Xk|Xk−1)p(Xk−1|Z1:k−1)δXk−1 (4.21)

Using the principles for Bayes equations of FISST [115], the backward

information PHD filter can be expressed as:

p(Zk+1:T |Xk) =
p(Xk|Zk+1:T ) p(Zk+1:T )

p(Xk)
(4.22)

∝
p(Xk|Zk+1:T )

p(Xk)
(4.23)

which when replaced in Equation 4.18, gives an expression for the pre-

dicted smoothing density:

p(Xk|Zk+1:T ) =

∫

p(Xk|Xk+1)p(Xk)p(Xk+1|Zk+1:T )

p(Xk+1)
δXk+1 (4.24)

=

∫

p(Xk+1|Xk)p(Xk+1|Zk+1:T ) δXk+1 (4.25)

and the backward updated PHD:

p(Xk|Zk:T ) =
p(Zk|Xk)p(Xk|Zk+1:T )

p(Zk|Zk+1:T )

=
p(Zk|Xk)p(Xk|Zk+1:T )

∫

p(Zk|Xk)p(Xk|Zk+1:T )δXk

(4.26)
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We now need to evaluate the multi-target densities in 4.24 and 4.26, so a

backward recursion is constructed as follows.

Backward PHD prediction

The backward predicted number of targets can be estimated as targets sur-

viving N s
k|k+1 and not surviving N\s

k|k+1 from k + 1 to k:

Nk|k+1 = N\s
k|k+1 + N s

k|k+1 (4.27)

Assume that we already have a first-order moment:

Dk+1|T (x) !

∫

P ({x} ∪ Xk+1|Zk+1:T )δXk+1 (4.28)

Consequently, the PHD Dk|k+1(x) can be written as:

Dk|k+1(x) =

∫

p({x} ∪ Xk|Zk+1:T )δXk (4.29)

=

∫

[

∫

p(Xk+1|{x} ∪ Xk)p(Xk+1|Zk+1:T ) δXk+1

]

δXk (4.30)

=

∫

Ψ(x)Dk+1|T (x)dx (4.31)

Now we can evaluate Ψ(x) as follows:

Ψ(x) =







(1 − πs(x)) if Xk = ∅,

p(Xk+1|{x} ∪ Xk) = if Xk = {x1, . . . , xnk+1
}

The conditional density p(Xk+1|Xk) is taken along all permutations σk+1

of Xk+1, and γk+1|k(xσk+1
|x) represents targets being spawned from times

k + 1 to k.

p(Xk+1|Xk) =
∑

σk+1

nk+1
∏

i=1

(

πs(xi)p(xσk
|xi) + γk+1|k(xσk

|xi)
)

(4.32)
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The backward predicted number of targets Nk|k+1 can now be written

as a superposition of the above two point processes, so the backward PHD

prediction can be written as:

Dk|k+1(x) = 1 − πs(x) +

∫

[

πs(x)p(x′|x) + γk+1|k(x
′)
]

Dk+1|T (x′) dx′ (4.33)

We can use now this result for the backward updated PHD.

Backward PHD update

Similar to the filtering case, we approximate the posterior multi-target den-

sity p(Xk|Zk:T ) by a Poisson process with mean measure Nk|T . The first-order

moment of the backward multi-target density in 4.26 can be written then as:

Dk|T (x) =

∫

p(Zk|{x} ∪ Xk)p({x} ∪ Xk|Zk+1:T )

p(Zk|Zk+1:T )
δXk (4.34)

∝

∫

p(Zk|{x} ∪ Xk)p({x} ∪ Xk|Zk+1:T )δXk (4.35)

=

∫

p(Zk|{x} ∪ Xk)Dk|k+1(x)δXk (4.36)

The pseudo-likelihood p(Zk|Xk) can be evaluated in a similar fashion to

the filter, so replacing Equation 3.47 into 4.36 leaves:

Dk|T (x) =

[

1 − πd(x) +
∑

z∈Zk

πd(x)p(z|x)

λc c(z) +
∫

πd(x)p(z|x)dx

]

Dk|k+1(x) (4.37)

4.2.1 SMC implementation for the Two-Filter PHD smooth-

ing

The backward predicted density can be approximated as:
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∫

B

Dk|k+1(x)dx = E[
∑

xk∈B

1B(xk)] (4.38)

≈
Lk
∑

i=1

1B(xi
k)w

i
k|k+1 (4.39)

And the particle approximation to the multi-target updated density at

time k = T can be written as:

∫

B

Dk|T (x)dx = E[
∑

xk∈B

1B(xk)] (4.40)

≈
Lk
∑

i=1

1B(xi
k)w

i
k|T (4.41)

with the smoothing weights wi
k|T = wi

k|k.

The recursion on the backward predicted PHD in Equation 4.33 can then

be approached as:

Dk|k+1(x) = 1 − πs(x) +

Lk+1
∑

j=1

[

πs(x)p(x|xj
k+1) + γk|k+1(x|x

j
k+1)
]

wj
k+1|k+1

(4.42)

and the backward predicted PHD smoothing PHD in Equation 4.37:

Dk|k+1(x) = 1 − πs(x) +

∫

[

πs(x)p(x′|x) + γk+1|k(x
′)
]

wi
k|k+1 (4.43)

The SMC approximation for the backward predicted smoother is plugged

into 4.37 and the recursion can then be written as Algorithm 7.

4.3 Summary and contributions

In this chapter, a novel derivation for the FB-PHD smoother using the Pois-

son point process approach is presented in Section 4.1. Also, an original
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Algorithm 7 Two-Filter PHD smoother

Require: k < T ∧ {wi
k, x

i
k}

Lk
i=1 ∧ {wi

k+1, x
i
k+1}

Lk+1

i=1

1: for all i ∈ {1, . . . , Lk} do

2: ψl
k =
∑Jk

h=1 πd(xl
k) p(z|xl

k)

3: Lz(xl
k) = 1 − πd(xl

k) +
∑

z∈Zk

πd(xk)p(z|xl
k)

λc Ck(z)+ψl
k

4: αj
k+1|k =

∑Jk

l=1 wl
k|kp(xj

k+1|x
l
k)

5: wi
k|T = Lz(xi

k)

[

∑Lk+1

j=1

w
j
k|Tπs(xi

k)p(xj
k+1

|xi
k)

αj
k+1|k

+ 1 − πs(xi
k)

]

6: end for

7: Compute smoothed estimated number of targets N̂k|T =
∑Lk

i=1 wi
k|T

8: Normalize {wi
k|T}1≤i≤Lk

to get {
N̂k|T

Lk
}1≤i≤Lk

.

PHD smoothing implementation based on the two-filter formula, the TF-

PHD smoother is presented in Section 4.2. Both particle smoothing tech-

niques re-weight samples obtained in the forward pass, so no backward filter-

ing step is required. The computational complexity of the backward step is

quadratic in the number of particles for both smoothers, but the TF-PHD

smoother requires a likelihood evaluation which also depends on the number

of observations.

Particle methods have an inherent “curse of dimensionality” when repre-

senting high dimensional state spaces, therefore an optimal instrumental dis-

tribution is essential when a finite number of samples is used to approximate

a probability density function [19]. In order to avoid a poor representation

of the target pdf by means of a single point mass, re-sampling is also per-

formed in the sequential Monte Carlo setup. In the case of the PHD filter,

particles are used to approximate a non-probability density which is usually

multi-modal. Consequently, the dimensionality problem becomes even more

severe in the PHD filter than it is in traditional particle approximations.

The sequential Monte Carlo approximation of a multi-modal and possibly

high dimensional function imposes a fundamental limit in the achievable

performance of the particle PHD smoothers. The FB-PHD smoother relies
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heavily on the choice of the importance density, which apart from modeling

the individual target translations, also takes into account independent birth

of new targets and spontaneous deaths. Whenever there is a discrepancy

between the importance density and the posterior distribution, the particle

representation would fail to approximate the intensity function. Furthermore,

when support is lacking in areas where a genuine target is located, smoothing

can not alleviate this problem by merely re-weighting the existing particles.

Furthermore, resampling could also have an unpleasant effect in the FB-

PHD smoother. On the other hand, the TF-PHD smoother makes use of

the likelihood function, so it could potentially ameliorate the dependency of

the backward pass on the individual target dynamic model. Moreover, the

TF-PHD could potentially implement a carefully designed artificial backward

importance density, which could sample in areas not being explored in the

forward pass.

Particle PHD smoothers have larger complexity than the PHD filter and

at the same time inherit the same limitations from the forward pass. However,

PHD smoothers can be implemented with a fixed time-lag, so a delayed

estimator can be obtained with only modest extra computational effort. The

smoothed estimators are expected to reduce the variance of the number of

targets in the filtering step. Accordingly, a more stable estimate of cardinality

should also lead to improved estimates of the individual target locations.



5
Performance Evaluation

Distance metrics play a crucial role in any performance assessment for state

estimation in discrete dynamical systems. The most widely used criterion

for performance evaluation in single target tracking is the Euclidean distance

between the estimated state and the ground truth. It is important to note

that the notion of convergence which is widely used for parameter estimation,

has no direct meaning in state estimation for tracking systems. Because of the

dynamic nature of the system, the consistency and accuracy of the estimator

are used instead [5]. A common practice is to study the consistency of the

estimator by means of the first and second moment characterization of the

innovations:

E[xk − ˆxk|k] ! 0 (5.1)

E
[

[xk − ˆxk|k][xk − ˆxk|k]
′
]

! Σk|k (5.2)
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The best estimator in terms of the Minimum Mean Square Error (MMSE)

criteria requires the estimation error in Equation 5.2 to have zero-mean and

to be uncorrelated to the observations. As seen in Chapter 2 for the case of

the Kalman filter, the optimal estimator of a random variable relies in the

orthogonality condition between the estimation error and the observed data

(see Section 2.2), and the first and second order moments being the sufficient

statistics for the optimal estimator of linear Gaussian models [1].

In the case of multi-target estimation, performance evaluation is not as

straightforward as in the single target case, where the consistency is analyzed

by means of the residuals of the estimator (see Equation 5.2). In this case, the

number of targets has to be estimated alongside with the individual states,

and erroneous associations between targets and observations or targets being

closely spaced might lead to different estimation results [24]. Evaluating

the performance under different configurations between estimated states and

ground truth is challenging because of the ambiguity of evaluating all possible

associations. The ambiguity of the estimation performance is shown in Figure

5.1 for a hypothetical multi-target scenario with two different estimators.

Because of the combinatorial nature of the data association problem, the

consistency of the estimator cannot be correctly captured by the MMSE

criteria. For that reason, different distance metrics have to be used in order

to evaluate the performance of multi-target filters and smoothers. Section

5.1 introduces two different options proposed in the literature.

5.1 Distance metrics

In order to measure the performance of multi-target tracking algorithms,

we first have to establish a suitable distance metric. A distance metric is a

mathematical concept for defining dissimilarity between two different objects.

Let d : X × Y 0→ R be a positive valued function of two objects x, y defined

in two Euclidean n-dimensional spaces X ∈ Rn and Y ∈ Rm respectively.

The space (X × Y ) is called a metric space if the following conditions are



84

  

(a) Multi-target estimator 1.
  

(b) Multi-target estimator 2.

Figure 5.1: Multi-target estimation ambiguity. 3 frames with different number

of targets (ground truth plotted in red) and estimated states (plotted in blue). At

frame k the first multi-target estimator in Figure 5.1a has detected 3 of 4 targets,

and for the same frame the second estimation in Figure 5.1b detected a different

multi-target configuration. The same situation occurs at each frame, so it is not

clear which one of the multi-target estimators is closer to the ground truth.

satisfied:

1. Non-negativity, d(x, y) ≥ 0

2. Identity, d(x, y) = 0 =⇒ x = y

3. Symmetry, d(x, y) = d(y, x)

4. Triangle inequality, d(x, y) ≤ d(x, z) + d(z, y)

The most commonly used metric for measuring distance between two

points is the Euclidean distance, denoted as:
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dp(x, y) = 2

√

√

√

√

n
∑

i=1

di(xi, yi)2 (5.3)

A more general formulation is the Lp distance, which accounts for func-

tion spaces and is defined as:

dp(f, g) = p

√

∫

|f(x) − g(x)|p dx (5.4)

d∞(f, g) = sup
x

|f(x) − g(x)| (5.5)

Now we are in position to define different multi-object distance metrics

suitable for performance evaluation.

5.1.1 Hausdorff distance

Instead of considering vectors, we want to consider now differences between

sets. A widely used measure for the difference between two sets is the Haus-

dorff distance. Let X and Y be two finite non-empty subsets of Rn, where

the n-dimensional vectors x and y are defined. If d(x, y) is some underlying

norm on X and Y (e.g. the Euclidean norm d(x, y) = ds(x, y)), the Hausdorff

distance is defined as:

dH(X, Y ) = max

(

max
x∈X

min
y∈Y

d(x, y), max
y∈Y

min
x∈X

d(x, y)

)

(5.6)

The quantity maxx∈X miny∈Y d(x, y) is computed by identifying the far-

thest point x ∈ X to any point in Y , and calculating the distance from x to

its nearest neighbor in Y .

The Hausdorff distance has been widely accepted in the image processing

and stochastic geometry community for comparing binary images. This is
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mainly because it quantifies the extent to which a pixel in a reference im-

age lies besides a pixel in another image [49]. Furthermore, the Hausdorff

distance is a valid metric over all closed and bounded sets, so it is used to

generate the so called Matheron or hit-and-miss topology which is used in

stochastic geometry for defining the Borel σ-algebra for random closed sets

in locally compact spaces [75].

Despite being well suited for multi-object error estimation, it has been

noted that the Hausdorff distance has an adverse behavior when comparing

sets with different cardinalities [46] . Furthermore, due to being defined over

non-empty sets, it cannot correctly handle the case of no targets in the field

of view. Moreover, since the Hausdorff metric compares maximum distances

between the two different sets, it is also highly sensitive to outliers.

5.1.2 Wasserstein distance

In order to override the problems of the Hausdorff metric for the multi-object

evaluation purpose, Hoffman and Mahler [46] proposed a construction based

on the Wasserstein distance. The Wasserstein distance has a long tradition in

theoretical statistics for comparing probability distributions on metric spaces.

Intuitively speaking, the Wasserstein distance estimates the cost of turning

one probability distribution into another distribution with probably different

total mass, by means of the minimal average distance between the two sets.

The associated cost is calculated as an optimal-assignment problem for all

m × n transportation matrices C, that satisfies Ci,j .= 0 ∀i, j and:

n
∑

j=1

Ci,j =
1

m
for 1 ≤ i ≤ m (5.7)

m
∑

i=1

Ci,j =
1

n
for 1 ≤ j ≤ n (5.8)

The Optimal Mass Transfer (OMAT) metric of order p for non-empty sets

X and Y is defined as:



87

dp(X, Y ) = min
C

(

m
∑

i=1

n
∑

j=1

Ci,j d(xi, yj)
p

)
1
p

(5.9)

The OMAT metric mitigates the problem of comparing sets with different

cardinalities, but still suffers from the non-empty sets comparison problem,

as well as some geometry dependent behavior [119].

More recently, a new distance for multi-object error estimation was pro-

posed in [95]. Intituively speaking, the distance chooses the assignment be-

tween the points of two sets, that minimizes the truncated sum of the dis-

tances with a cut-off value c. The minimum sum of distances on the assigned

points is regarded as a total localization error and the remaining points are

interpreted as cardinality errors. The total error corresponds to the sum of

the localization error and the cardinality error. The Optimal Sub-Pattern

Assignment (OSPA) metric is then defined as follows:

d̄p
c
(X, Y ) =

(

1

n

(

min
π∈Πn

m
∑

i=1

dc(xi, yπ(i))
p + cp(n − m)

))
1
n

(5.10)

The magnitude order parameter p makes the OSPA metric become more

sensitive to outliers as p increases, making the metric more focused on loca-

tion errors. On the other hand, the cut-off parameter c penalizes cardinality

errors instead of wrongly placed locations. Because it is a consistent met-

ric for multi-target error estimation, we use the OSPA1 metric defined in

Equation 5.10 for performance evaluation.

1The author would like to acknowledge Dr. Ba-Ngu Vo from the Department of Elec-

trical & Electronic Engineering of the University of Melbourne for the code implementing

the OSPA metric.
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5.2 Performance evaluation of PHD filters and smoothers

In this section we study the performance of the PHD filter and smoothers

under different conditions. Four different scenarios are simulated and the

performance of the particle PHD filter and smoothers is compared using the

root mean square (RMS) error for the cardinality estimates and the OSPA

metric (see Equation 5.10) for the locations.

5.2.1 Low clutter scenario no births and deaths

The following example shows three targets on the real line in a surveillance

region bounded by [−100, 100]. The targets follow linear trajectories with

unknown and nearly constant velocity embedded in Gaussian noise with di-

agonal covariance matrix Σx = diag([1, .1]). The observation model for each

target is also linear with Gaussian noise with unit variance. Birth rate in

a unit volume is λb = 1e−5, and each target has equal probability of detec-

tion πd = 1 and survival πs = 1. Clutter is homogeneous (uniform spatial

distribution) with rate λc = 1e−3 per unit volume, giving an average of 0.2

false alarms per scan. Figure 5.2 shows data generated from this multi-target

model.

The particle PHD filter is implemented with 1000 particles per target.

After each prediction, update and resampling step, state estimation is carried

out with the EM algorithm and the Gibbs sampler, with the number of

Gaussian components estimated by rounding the sum of the particle weights

to the nearest integer.

In the presence of low clutter, cardinality estimates from the PHD filter

are unstable and biased to the number of observations. The reason for this

behavior is the denominator in the PHD filter update equation, which uni-

formly integrates clutter in the surveillance area (see Equation 3.49). This

situation can be illustrated with λc ≈ 0:
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(a) Simulation scenario. (b) PHD filter.
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(c) FB-PHD smoother. (d) TF-PHD smoother.

Figure 5.2: Three Targets following linear trajectories and no births or deaths

of targets occurs. (a) Targets (ground truth plotted in black squares) are observed

with low signal-to-noise ratio and there is a small number of false alarms per scan.

(b) Due to the variability on the PHD filter cardinality estimates, state estimates

also presents several discrepancies with the ground truth. Figures (c) and (d) show

the improved estimates by using the FB-PHD and TF-PHD smoothers.

Dd
k|k(x) =

∫

πd(x) p(z|x)

λc c(z) +
∫

πd(x)p(z|x)Dk|k−1(x)dx
Dk|k−1(x)dx (5.11)

≈
∫

πd(x) p(z|x)
∫

πd(x)p(z|x)Dk|k−1(x)dx
Dk|k−1(x)dx (5.12)

which is exactly the situation when no clutter is present, shown in Equa-
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tion 3.47.

However, as seen in Figures 5.3(a) and 5.3(b), both PHD smoothers can

recover the actual number of targets in a more stable way.
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(a) FB-PHD smoother
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(b) TF-PHD smoother

Figure 5.3: Cardinality estimates for the PHD filter (dashed line) and smoothers

(blue line) are obtained by particle approximations to the multi-target posterior

densities. Both PHD smoothers are able to recover the actual number of targets

(ground truth plotted in red) in the backward pass.

A comparative illustration of the two particle smoothing schemes is shown

in Figure 5.4 for frame 37 of the time series. The PHD filter incorrectly

estimates that there are 5 targets, so state estimates using EM and the

Gibbs sampler shown in Figures 5.4(a) and 5.4(b) are also incorrect.

Using the cardinality estimate from the particle implementations of the

FB-PHD and TF-PHD smoothers, the EM algorithm and the Gibbs sampler

are used to estimate target locations. However, since the TF-PHD uses the

current observations in order to re-weight the particles and re-compute the

number of targets, the smoother estimates can be more sensitive to outliers.

The OSPA metric is used to compare the performance of the PHD filter and

the two smoothing schemes. Parameters for the OSPA metric are chosen to

be sensitive to location errors. A comparison is shown in Figure 5.5.



91

Table 5.1 summarizes the performance metrics for the PHD filter and

smoothers for the low clutter scenario.

Error PHD FB-PHD TF-PHD

RMS 0.21 0.01 0.00

OSPA (EM) 4.78 1.69 2.00

OSPA (Gibbs) 4.41 2.01 2.33

Table 5.1: Cardinality and OSPA (c=30,p=2) error for the PHD filter and

smoothers.
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(a) EM PHD (b) Bayes PHD

(c) EM FB-PHD (d) Bayes FB-PHD

(e) EM TF-PHD (f) Bayes TF-PHD

Figure 5.4: Illustration of particle PHD smoothing in frame 37, Ground truth

of target locations (black stems) is plotted along with the particle approximation

(gray histogram), the estimated state densities (blue and red line plots) and location

estimates (blue and read stems). Figures (a) and (b) show the EM (blue stems) and

Gibbs sampler (red stems) state estimation for the PHD filter with cardinality error,

Figures (c), (d), (e) and (f) show the EM and Gibbs sampler state estimation for

the PHD smoothers.
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Figure 5.5: State estimation errors for the PHD filter, FB-PHD smoother and

TF-PHD smoother. (a) EM state estimation for the FB-PHD smoother, (b) Gibbs

sampler state estimation for the FB-PHD smoother, (c) EM state estimation

for the TF-PHD smoother, (d) Gibbs sampler state estimation for the TF-PHD

smoother
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5.2.2 Low clutter scenario with missed detections

Although the PHD is theoretically capable of handling this situation, it has

been reported in the literature that failed detections have a counterproductive

effect on both the cardinality and state estimates in the PHD filter [25]. In

this example, we will focus on the so-called missed detections problem and

how it can be solved using PHD smoothing strategies.

The same target trajectories from the previous example are used to simu-

late a different observation model. In this case, each target has a probability

of detection πd ≤ 1, which means that they might not generate an observa-

tion at a given time. More precisely, a probability of detection πd = 0.9 is

used to produce the multi-target scenario shown in Figure 5.6.

Ulmke et al. [109] showed that missed detections have a particularly ad-

verse effect on the PHD filter that might result in lost tracks as well as a

reduction in the overall sensor performance. In the example, the particle

PHD filter is implemented with 1000 particles per target, and we can see

that when there are no observations for a given target, the updated parti-

cle approximation PHD becomes negligible in that area. When performing

Monte Carlo smoothing, particles are re-weighted in a backward pass. The

FB-PHD smoother performs re-weighting based on comparing samples from

two consecutive time frames, so it is able to recover the actual number of

targets, even when no detections are present at a given time step. Cardinal-

ity estimates from the PHD filter and FB-PHD smoother are compared in

Figure 5.7, where at time step 5 we can see one such missed detection. The

cardinality estimate of the PHD filter becomes biased to the missed detection,

but both the FB-PHD and the TF-PHD are able to amend that problem.

Figures 5.8(a) and 5.8(b) shows the PHD filter location estimates at time

step 25 of the time series. Cardinality errors like this are very important

since they then affect location estimates. If we have a certain number tar-

gets in a particular frame, and the estimated number of targets differs from

the ground truth, then the estimated locations might also suffer a bias from

the cardinality error. In the case of the SMC implementation of the PHD
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(a) Simulation scenario. (b) PHD filter.
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(c) FB-PHD smoother. (d) TF-PHD smoother.

Figure 5.6: Multi-target tracking model with missed detections. Positions of

3 targets have to be estimated with low observation noise and moderate clutter.

Missed detections are present in several time steps.

filter, particle weights become too small in areas where missed detections

occur so the location estimates are also affected from the cardinality bias.

Nevertheless, since smoothing also use future information, it can easily rem-

edy the problem. Figures 5.8(c) and 5.8(d) shows location estimates of the

FB-PHD smoother, and Figures 5.8(d) and 5.8(e) shows location estimates

of the TF-PHD smoother.

The OSPA metric is then used to compare the performance of the PHD

filter and the two smoothing schemes. A comparison is shown in Figure 5.9.
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(b) TF-PHD smoother

Figure 5.7: Cardinality estimates for the PHD filter and smoother. The PHD

filter has unstable cardinality estimates due to the missed detections, but both PHD

smoothers are able to recover from the error.

Table 5.2 summarizes the performance metrics for the PHD filter and

smoothers with mis-detections.

Error PHD filter FB-PHD smoother TF-PHD smoother

RMS 0.28 0.01 0.00

OSPA (EM) 6.36 2.65 3.12

OSPA (Gibbs) 6.71 3.04 3.20

Table 5.2: Cardinality and OSPA (c=30,p=2) error for the PHD filter and

smoothers with missed detections
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(a) EM PHD (b) Bayes PHD

(c) EM FB-PHD (d) Bayes FB-PHD

(e) EM TF-PHD (f) Bayes TF-PHD

Figure 5.8: Illustration of particle PHD smoothing with missed detections in

frame 25. (a) EM state estimation for the PHD filter, (b) Gibbs sampler state

estimation for the PHD filter, (c) EM state estimation for the FB-PHD smoother,

(d) Gibbs sampler state estimation for the FB-PHD smoother, (e) EM state es-

timation for the TF-PHD smoother, (f) Gibbs sampler state estimation for the

TF-PHD smoother.
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(c) Bayes TF-PHD

Figure 5.9: OSPA Error for the PHD filter, FB-PHD smoother and TF-PHD

smoother with missed detections. Cardinality errors have an adverse effect on the

location estimates, so the OSPA error of the PHD filter present several spikes where

missed detections occurs. The EM and Gibbs sampler estimators of the FB-PHD

and the TF-PHD smoothers provide improved estimates.
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5.2.3 High clutter scenario

The PHD filter was originally conceived as a method for the detection and

tracking of an unknown number of targets in highly cluttered environments

[116]. In this scenario, multi-target tracking algorithms performing data

association would not be able to correctly estimate the number of targets

so the PHD filter becomes a viable alternative to the dynamic estimation

problem. In order to demonstrate the utility of performing smoothing over

the standard filtering, a Poisson process with unitary mean rate 10e−1 is used

to simulate false alarms. A sample from the resulting dynamical system is

shown in Figure 5.10.
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(a) Simulation scenario. (b) PHD filter.
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(c) FB-PHD smoother. (d) TF-PHD smoother.

Figure 5.10: Multi-target tracking model with high clutter volume.
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Since the PHD filter avoids any data association, the algorithm can cope

with a time-varying number of targets, without explicitly modeling target

birth or deaths. Particle filtering is used to simulate samples from the Pois-

son birth density, and a Poisson approximated number of detected targets in

clutter. When performing Monte Carlo smoothing, particles are re-weighted

in a backward pass. PHD smoothers perform sample re-weighting by com-

paring particles clouds from one step ahead using the single target dynamic

model.

0 5 10 15 20 25 30 35 40 45 50
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time

C
ar

di
na

lit
y

 

 
Number of targets
PHD filter
FB−PHD−smoother

(a) FB-PHD smoother
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(b) TF-PHD smoother

Figure 5.11: Cardinality estimates for the PHD filter and smoother.

As before, the OSPA metric is also used to compare the performance of

the PHD filter and the two smoothing schemes. As recently noticed in a

research paper submitted as a personal communication to the author [78],

performance of the particle PHD filter degrades as clutter volume increases,

and so does the performance of the FB-PHD smoother. We see the same

pattern for the TF-PHD smoother in this example. Figure 5.12 shows the

error for the state estimators using the FB-PHD and the TF-PHD smoothers.
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Figure 5.12: OSPA Error for the PHD filter, FB-PHD smoother and TF-PHD

smoother with high clutter.
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Table 5.3 summarizes the performance metrics for the PHD filter and

smoothers in the case of high clutter scenario.

Error PHD FB-PHD TF-PHD

RMS 0.70 0.07 0.01

OSPA (EM) 13.58 5.07 5.04

OSPA (Gibbs) 13.18 5.66 3.71

Table 5.3: Cardinality and OSPA (c=30,p=2) error for the PHD filter and

smoothers in high clutter
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5.2.4 High clutter scenario with target births and deaths

A more challenging example can be considered by taking into account birth

and death of targets. Even for a fixed number of targets, standard multi-

target algorithms would have to maintain a large number of association hy-

potheses in order to take into account all possible paths. Births and deaths

of targets pose a difficulty, with the change detection for multiple models,

so data association can be even less reliable unless clear heuristics can be

performed for model evaluation [7].

The example in Figure 5.10 shows targets appearing at random times.

As in previous examples, all targets follow linear trajectories with constant

velocity. Birth rate of new targets is λb = 5e−4 giving a Poisson rate of 0.1

new targets for each time step. All targets have equal probability of detection

πd = 1, so all targets are detected. Probability of survival is set to πs = 0.99,

and clutter rate is λc = 10e−1 in a unit volume, which gives an average of 20

Poisson false alarms per scan. Figure 5.13 shows the multi-target model and

the particle estimation.

As we noticed in Section 5.2.3, in the case of high clutter volume, the

dynamic model becomes less reliable so cardinality estimates from the PHD

filter are also affected. A similar behavior occurs for the smoothers, and more

severely in the case of the TF-PHD smoother, which uses the observations

for updating the particle weights. As a consequence, as shown in Figure

5.14, cardinality estimates from the TF-PHD and the FB-PHD smoother are

also prone to error. Moreover, even for vector-valued smoothers, two differ-

ent sets of samples with different support leaves almost all particles having

small weights [27]. The same problem is inherited in particle PHD smoothers,

therefore they cannot be appropriately used to evaluate dynamic scenarios

that have some level of discrepancy between the forward and backward den-

sities. Figures 5.14a and 5.14b show the cardinality estimates of the PHD

filter and the two smoothers.

The OSPA metric is used to compare the performance of the PHD filter

and the two smoothing schemes for the birth and death problem. A compar-



104

0 5 10 15 20 25 30 35 40 45 50
−100

−80

−60

−40

−20

0

20

40

60

80

100

Time

Po
si

tio
n

 

 
Targets
Observations

0 5 10 15 20 25 30 35 40 45 50
−100

−80

−60

−40

−20

0

20

40

60

80

100

Po
si

tio
n

Time

 

 
Targets
PHD filter estimates

(a) Simulation scenario. (b) PHD filter.
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(c) FB-PHD smoother. (d) TF-PHD smoother.

Figure 5.13: Multi-target tracking model in high clutter with targets birth and

death. As seen in Figure (b), increasing the clutter volume deteriorates the per-

formance of the PHD filter. Figures (c) and (d) shows the estimates from the

FB-PHD and TF-PHD smoothers. In this example, the FB-PHD smoother can re-

cover a lost trajectory in the forward pass, but that is not the case of the TF-PHD

smoother.

ison is shown in figure 5.15.

Instead of a fixed-interval smoothing, we now consider a fixed-lag imple-

mentation for the FB-PHD and TF-PHD smoothers. Fixed-lag smoothing

only requires a certain amount of data in the backward step, so it can used in

real time. At the same time, we can expect to have lower amount of samples
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(a) FB-PHD smoother
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(b) TF-PHD smoother

Figure 5.14: Cardinality estimates for the PHD filter and smoother.

discrepancy in small time lags. This is clearly a limitation for particle PHD

smoothers, nevertheless improvements on the filter can be achieved when we

encounter support in areas not well represented by the approximated filtering

distribution.
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Figure 5.15: OSPA Error for the PHD filter, FB-PHD smoother and TF-PHD

smoother with targets birth and death.
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Table 5.4 summarizes the performance metrics for the PHD filter and

smoothers with three different smoothing lags.

Table 5.4: Cardinality and OSPA (c=30,p=2) error for the PHD filter and

smoothers with births and deaths

Error PHD FB-PHD TF-PHD

Fixed-lag (1 time step) implementation

RMS 0.68 0.71 0.73

OSPA (EM) 17.61 15.60 15.99

OSPA (Gibbs) 18.05 17.11 16.24

Fixed-lag (2 time steps) implementation

RMS 0.68 0.65 0.69

OSPA (EM) 17.61 15.22 17.11

OSPA (Gibbs) 18.05 16.13 17.09

Fixed-lag (3 time steps) implementation

RMS 0.68 0.59 0.68

OSPA (EM) 17.61 14.02 17.11

OSPA (Gibbs) 18.05 14.54 15.97

Fixed-lag (5 time steps) implementation

RMS 0.68 0.63 0.82

OSPA (EM) 17.61 16.70 17.61

OSPA (Gibbs) 18.05 16.24 20.36
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5.3 Summary and contributions

In this chapter, performance of the particle PHD smoothers has been dis-

cussed. A suitable metric for comparing multi-target estimation is used and

the tracking scenarios considered are relevant to the visual problem. Firstly,

a low clutter volume scenario was considered in Section 5.2.1, where the PHD

filter is not able to discriminate between a new signal or false alarms. Be-

cause of the instantaneous nature of the PHD filter, the estimates are biased

to the clutter rate, which is uniformly spread around the field of view. How-

ever, the particle support from the forward pass was good enough so both

smoothers are able to recover the original signal.

Secondly, in Section 5.2.2 the case of missed detections is considered.

When the probability of detection of each target is less than one, the PHD

filter update step is not able to recover the signal by integrating out the null

probability. Particle weights become negligible in areas where there are no

detections, but smoothing can correct the error when the particles in the

smoothing distributions are not dramatically distant. Since the dynamic

model is informative in the linear Gaussian case with missed detections, the

FB-PHD smoother performs seamlessly and recovers the actual number of

targets even when no observations are available at a given time. Since the TF-

PHD smoother uses the likelihood, it becomes more challenging to recover

from a detection failure.

A third tracking scenario in Section 5.2.3 considers targets birth and

death with moderate clutter. This is clearly a more challenging environment

for particle PHD smoothers, since the number of targets is not constant and

the Poisson process approximation will be determined by the reversibility of

the Markov birth-death process [86]. In order to have a coupling construc-

tion which is integrable with respect to a reference Poisson process, target-

independent survival rate and spontaneous (but possibly non-homogeneous)

Poisson births are used [76]. Using this construction, the backward birth-

death process is also guaranteed to be ergodic leaving PHD smoothers having
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analytical priors. However, since the optimal backward density is evaluated

point wise by a finite number of samples, no indicator of the jump times is ac-

tually estimated and the births and death probabilities are averaged between

the existing samples. For that reason, the PHD smoother implementation

presented in Section 5.2.4 which uses a small lag is better suited for this

scenario.



6
PHD filter and smoother for visual

tracking

This chapter we focusses on the visual tracking problem, where an object is

defined as anything in a sequence of images that is of interest for analysis. As

seen in Chapter 2, tracking can be defined as an estimation problem for the

position and trajectory of one or multiple objects, using image measurements

as observations. Applications of visual tracking are widely spread across

different domains. Some examples are surveillance, multimedia information

retrieval, human-computer interaction and cell biology. All these applications

share the need to represent a complex object, which might be translated,

rotated or occluded, by using noisy information from pixel measurements.

Apart from the object reconstruction problem, objects may also present non-

linear motion or might be represented by several non-rigid moving parts
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[126].

Detection and tracking of a moving object in a video can be achieved

by comparing the current image to a reference frame [47]. This technique

is widely known as background subtraction, where the reference frame is

usually termed the background model [125]. The background model is a

representation of the scene without moving parts, and the complexity level

of the model depends on the specific scenario. The output of the background

subtraction step is a set of regions from the image that are assumed to belong

to the foreground. These regions are widely known in the computer vision

literature as “blobs” [81]. Features from the blob (such as bounding box,

contour, etc) can then be used as measurements of the position of an object

to be tracked. For example, one of the simplest forms of tracking consists of

following the trajectory of the center of mass of a blob.

A basic background subtraction technique can use a single image as the

background model, however this technique easily fails with small changes of

luminance or geometry settings [84]. More advanced techniques can use a

temporal sequence building a more robust background model. These tech-

niques typically use a fixed number of images for calculating the variation

of the pixel values across past scenes. The model gains benefits from the

data acquired so far, but with an increased cost in computation and memory

requirements. Moreover, the background model needs to be made in real-

time with each new image frame, so there is a trade-off between foreground

detection accuracy and the amount of data used for estimating the model

[100].

One possible background model is to use the median value of the last k

frames. The “temporal median” filter provides an accurate model even if data

used is sub-sampled with respect to the original frame rate [64, 33]. However

a limitation is the lack of a deviation measure for comparing the current

image frame from the background model. A Gaussian probability density

function can be also used for representing the background [125]. In this

case, pixel values from past frames are assumed to be independent random
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variables from a Gaussian density, so the sufficient statistics can be computed

independently at each pixel location. At each frame time, an image pixel

can be compared with the mean from its background model. The variance

of the distribution can be used then for choosing a threshold for deciding

whether a pixel belongs to the background or not. Online updating consists

of replacing the model parameters with cumulative averages and using a

learning parameter α for updating [8]. The cumulative average µk(x, y) can

be written as a function of the image pixels values I(x, y) and updated as:

µk(x, y) = αI(x, y) + (1 − α)µk−1(x, y) (6.1)

Further improvement from the Gaussian model can be achieved by con-

sidering a mixture model of the background [101]. Complex scenes may not

be represented by single mean values, so a mixture model can be used to

represent a multi-modal density by mixtures of Gaussian distributions. This

model is especially well suited in environments where background objects

may appear at a faster rate compared to the background model update rate.

In this case, estimation is performed iteratively with the expectation maxi-

mization (EM) algorithm, so dynamic updating requires fixing the algorithm

for the online purpose. Nevertheless, the computation time for the iterative

estimation may be improved by updating only those regions of the back-

ground where changes are occurring by creating a codebook representation

[100].

Depending on each application domain, there might be several features

that can be used to recognize the presence of an object within an image.

Texture, color histograms, edges and optical flow are commonly used regional

descriptors for object recognition [36]. Because of the dynamic nature of

tracking, objects have to be recognized across frames in order to provide

measurements for the tracking algorithm. This have proven to be challenging

in most scenarios, and especially hard in the person tracking problem where it

becomes hard to initiate tracks [29]. The tracking system must be able to find
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all possible people in the scene, and then track them across the forthcoming

scenes, but there is no standard method to find clothed people in arbitrary

configurations.

When performing visual tracking for multiple targets, the observation

model uses a “multi-blob” likelihood function that represent the likelihood

that a particular configuration of targets produces an observed image mask

[53]. At the same time, the multi-blob likelihood is used to describe several

and unknown number of targets observed in clutter. The joint multi-target

state space with unknown dimensionality can be addressed by using trans-

dimensional Bayesian inference with reversible jump MCMC [59], while occlu-

sion reasoning and object interactions can be carried out by Markov random

fields [98]. However, these approaches have proven to be effective only when

the number of targets is relatively small and targets are well separated [130].

Because the estimate is a first-order moment approximation to the joint

multi-target density (i.e. a single target state space), the PHD filter differs

from the previous approach for visual tracking. Vermaak et al. [112] showed

that in the visual tracking case, the posterior distribution is characterized

by a multi-modal density which is hard to to propagate using the Bayesian

filtering equations. However, since the PHD filter avoids explicit data associ-

ation, it maintains the recursive Bayesian formulation in terms of prediction

and update equations. Furthermore, the method also provides a tractable

approximation to the joint posterior distribution, since the computational

complexity is linear with the number of targets (see Section 3.2). Section

6.1 discusses previous applications of the PHD filter in video, while Sections

6.2 and 6.3 provides an extension to the PHD filter and smoother for the

multi-person counting and tracking problem.

6.1 PHD filter for multiple person tracking

In this section, person tracking is described and evaluated. Tracking multiple

humans is a challenging application because of the difficulty of generating the
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likelihood of a person given pixels observations. Quantifying the information

in a group of pixels can be potentially intractable, if we consider all possible

orientations and occlusions. Early works for person counting considered pixel

histograms where the head of the people can be distinguished [20]. More

recent works have considered supervised learning techniques using region

descriptors [17], Bayesian unsupervised learning using MCMC methods [129],

and methods based on camera calibration [60].

The PHD filter has been used for multiple target tracking in video se-

quences in [96],[50], [121], [42] and [66]. Observations are taken from mo-

ments of the blobs generated from the background subtraction step, and

extensions to color tracking and multiple cameras have been also proposed

in [83] and [82]. Further developments in the application of the PHD filter

for visual tracking considered data-driven approaches for designing birth and

death proposals using scene information [123],[65].

Due to the complexity of generating a single observation for each per-

son, the PHD filter has been used for tracking groups of people, where the

likelihood of a group can be calculated directly from each generated blob

[121]. Clutter can best be described as objects that are not of interest and

in this case appears due to the moving parts of the scene which do not corre-

spond to humans. Image processing techniques such as erosion and dilation

are commonly used for post-processing the pixels from the background sub-

traction step and producing a foreground mask [111]. Since a closed area

is expected to contain a single person or a group of persons, areas below a

certain threshold can be discarded as clutter, but this operation depends on

the ability to compare areas from different depth maps. In cases where per-

spective information is not available, the PHD filter is able to remove clutter

from unthresholded measurements in the background subtraction step, while

avoiding expensive data association from multiple hypotheses [56]. Further-

more, multiple persons merging into a single group, and group splitting, can

also be explicitily modeled when using the Gaussian mixture PHD filter [122].

An important remark on the PHD filter in visual tracking is that each
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observation is independent of all others. In order to achieve a tractable ap-

proximation of the posterior distribution, all regions in the observations space

are assumed to factor as independent partitions (i.e. the expectation of the

posterior density being a factorial moment measure as being defined in 7), so

the likelihood becomes available only for non-superpositional measurements

where the region of influence of an object does not overlap with the others

[117]. This is an important limitation for the application of human track-

ing, where each observation in a crowded region might contain information

from several targets, and the likelihood cannot be efficiently separated into

marginal single target evaluations [62]. Nevertheless, if we compare the PHD

filter approach with other approaches like multi-hypothesis tracking whose

computational complexity is exponential on the number of targets, the lin-

ear complexity of the PHD filter has an attractive appealing for real time

applications, while at the same time achieving good performance [80].

6.2 Person tracking model

For the purpose of evaluating the PHD filter and PHD smoothers, multiple

person tracking without person recognition is performed. The reason behind

not having an explicit person recognition step is the complexity of detecting

a single person in a crowded scene, so a simple marked point process can

be formulated as a point process in R2 for the locations with marks on R2

for the velocities. On the other hand, since no explicit model is used, we

expect to find a reasonable number of false positives and missed detections,

which complicates the data association step of a multi-hypothesis tracking

algorithm.

Instead of using an explicit person detection device, a PHD filtering ap-

proach is used to estimate the state of an unknown number of persons. A

constant velocity model is used as a generative model for the movement of

a single person. The forward model calculates the new position of a person

using a velocity vector that remains nearly constant in magnitude and direc-
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tion. Let xk = [xx, xy]
T be the transpose of a 2-dimensional position of a

person in the image plane and ẋk = [ẋx, ẋy] its velocity.

In a state-space representation the state vector of a person is written as

an augmented vector xk = [xk, ẋk]. A linear mapping is used to model the

dynamic behavior of a person, and Gaussian noise wk. The position at the

discrete time k can be written as:

xk = F xk−1 + wk

wk ∼ N (0,Σxk
)

where F is a linear transformation matrix in which dt represents the

sampling time:

F =













1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1













The observations yk = [yx, yy] only contain information about the position

of a person, so velocity has to be estimated from previous measurements [5].

The velocity is related to the object position as ẋk = (xk − xk−1)/dt for each

sampling interval dt. However, since the PHD filter does not perform inter-

frame person association, velocity is sampled from a zero-mean Gaussian

prior distribution N (0,Σẋ) with diagonal covariance.

The observations are related to the state of a person by means of a linear

transportation matrix G plus Gaussian observation noise vk:

G =

[

1 0 0 0

0 1 0 0

]

yk = G xk + vk

vk ∼ N (0,Σyk
)
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Figure 6.1: A single person is represented as an ellipsoid consisting of a 2-

dimensional centroid and the equidensity contour of the Gaussian observation noise

Figure 6.1 shows different examples for an elliptical person model.

6.3 Visual Tracking Examples

In this section, the practical implications of using the PHD filter and smoother

in human tracking in real world surveillance scenarios are studied. For that

purpose, a benchmark pedestrian database is used which is publicly available

for testing new algorithms in crowd analysis [13]. The UCSDPEDS dataset

contains several videos of pedestrians taken from a stationary surveillance

camera. The videos are 8-bit grayscale, with dimensions [238 × 158] at 10

frames per second. We focus on the persons counting and tracking task, and

the worked examples will show the PHD performance for this case. Figure

6.2 shows an example of a particular scene from the dataset.

A temporal Gaussian background model using the parameters specified

in Table 6.1 was used for generating the foreground blobs, representing the

moving parts of the scene. In order to estimate the number of persons within

a blob, we have to consider the effect of perspective in the scene. Persons

closer to the camera appear larger than the ones further away, so any fea-

ture based on area or size would have to normalized. When the camera is

static, the geometry of the scene can be used to create a perspective map,

for weighting each pixel in the image [60]. This feature has been exploited
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Figure 6.2: Crowded scenario with multiple people walking in different directions.

A single camera captures images at 10 frames per second and the goal is to track

and count individual persons.

in crowd counting methods using pattern recognition and image processing

methods [12]. After the perspective normalization step, each blob has to be

segmented according the estimated number of persons inside the containing

region. Since we don’t take into account important factors such as the average

distance between occluded persons (which also has sociological and cultural

implications) [128], this operation is inherently inaccurate and subject to ap-

proximation errors. Figure 6.3 shows an example of the foreground regions

produced by the background subtraction step with parameters specified in

Table 6.1.

Small to medium crowds are present and several occlusions are also oc-

curring. Since person density on each blob is not accurately measured, there

are a large number of false alarms. At the same time, an incorrectly esti-

mated number of clusters also lead to wrongly observed positions, increasing

the complexity of the estimation procedure. From each foreground blob, we

want to have a rough estimate of the number of persons inside, so in order
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Parameter value

Frame buffer (frames) 30

Learning rate 0.75

Normalized person area (square pixels) 250

Table 6.1: Parameter settings for the background subtraction model

Figure 6.3: After the background subtraction step, from the image in Figure 6.2

a binary image of the foreground is used to extract observations for the tracking

algorithm. A single blob might contain either a group or a single person.

to compare areas in different locations on the image we use a weight for each

pixel taken from the perspective map. For that purpose, we estimate the

projection of the area occupied by each blob in the ground plane, to the area

that corresponds to a single person. Figure 6.4 shows the perspective map

used for this dataset.

A schematic diagram of the procedure for generating observations from

image measurements is shown in Figure 6.5.

The SMC implementations of the PHD filter and smoothers are used for
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Figure 6.4: Each pixel is weighted according to a perspective map. In order to

compare areas from different areas of the image, objects closer to the camera have

lower weights than objects being far away.

Figure 6.5: Schematic diagram of the tracking procedure.

the task of estimating the position and velocities of each person. Apart from

the clutter due to the background subtraction step (e.g. when moving ob-

jects appearing at faster rates than update rate of the background subtraction

step), clutter also appears due to an over-segmentation on each area. Param-
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eters for the PHD filter and smoothers are shown in Table 6.2. Whenever

the estimated number of persons within a blob is greater than the ground

truth, there will be observations not coming from any target. Conversely, an

under-estimated number of persons would also produce under-segmentation.

Moreover, since clustering is applied to pixel positions regardless of the cen-

ter of mass of each person, observations are also contaminated by substantial

noise. Figure 6.6 shows an example of the segmented foreground blobs with

the observations.

Figure 6.6: A rough estimate of the number of persons and their locations is given

to the PHD filter as an input. Pixels within a blob are clustered to the expected

number of persons according to a reference area. Gray dots denote observations

for the PHD filter and smoother. Over-segmentation and under-segmentation of

the blobs causes clutter and mis-detections.

The limitations of the PHD filter have been already highlighted tin Sec-

tion 3.7, so the estimates of the filter are expected to be unstable and have

large variance. Even so, and despite the fact that no data association or

person recognition has been performed, as shown in Table 6.31, the filter

1Results of the RMS error in red are taken from [12] for the same dataset used here.
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Parameter value

Number of particles per target 150

Poisson clutter rate (per unit value) 1e − 4

Poisson birth rate (per unit value) 1e − 5

uniform spatial clutter density U([1, 238] × [1, 152])

uniform spatial birth density U([1, 238] × [1, 152])

initial Poisson birth rate 10

target process noise (Σxk
) diag([5, 5, .1, .1])

target observation noise (Σyk
) diag([8, 4])

target survival rate 0.95

target detection rate 0.95

Table 6.2: Parameter settings for the PHD filter and smoother.

manages to achieve relatively good performance. Location errors are illus-

trated with the OSPA error. A large number of outliers are expected, so

parameters of the OSPA metric are chosen to be sensitive to them.

Error PHD filter FB-PHD TF-PHD GP(1) GP(2)

RMS 2.23 1.62 1.53 0.87 1.30

OSPA (EM) 1.61 1.61 1.60 - -

OSPA (Gibbs) 1.61 1.62 1.61 - -

Table 6.3: Cardinality and OSPA error (p=2,c=2) for the PHD filter and fixed-

interval smoothing for visual tracking. GP(1) corresponds to the RMS error for

the Gaussian process regression method using texture and area features, and GP(2)

to the same method using area only features. Crowd counting results for the PHD

filter and fixed-interval implementations of the FB-PHD and TF-PHD smoothers

are comparable to the GP(1) method which uses area only features.

So far, the tractability of the PHD filter approximation has been high-

lighted, whose computational complexity is linear with respect to the number

of targets. However, one of the shortcomings of the particle implementation
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of the PHD filter is its dependency on the observed measurements, and more

specifically in the case of missed detections and false alarms. In that re-

gard, we have also pointed out the benefit of using smoothing by making

the implicit assumption that the computational complexity is the same as

in the forward step. Table 6.4 shows the algorithm performance in terms

of processing time (in seconds) per video frame. It is worth noting that

the implementation used here is not intended for measuring real time per-

formance, but the extension to an operational visual tracking system using

PHD filtering and smoothing could be achieved by using state of the art

image processing libraries such as OpenCV 2.

Algorithm Time [s]

PHD 21.8378

TF-PHD 19.014424

FB-PHD 19.113789

Table 6.4: Speed of the PHD filtering and smoothing algorithms

The results for the crowd counting error are consistent with previous

developments using the same dataset, where a more complex background

subtraction step was used and a supervised Gaussian Process (GP) regression

was performed [12]. The authors reported problems in their approach when

not enough training examples were given for a particular person count. Since

no person detection step was performed, errors were also produced due to fast

moving objects, also requiring more training data to accomplish those cases.

In the PHD filter approach, single persons are tracked seamlessly without

any effort, but larger areas corresponding to bicycles or golf carts are tracked

as multiple persons. This error is also due to the lack of a person detection

step, and any larger area continuously moving would be over-segmented and

tracked as multiple persons.

Multiple observations from a single person caused by over-segmentation

2http://opencv.willowgarage.com/
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would cause problems in multi-target tracking methods. Moreover, incorrect

person detections would worsen the SNR ratio, deteriorating the performance

of the filter. In Figure 6.7, the ellipses are used to enclose detected persons

and due to the under-segmentation problem, a group of pedestrians is rep-

resented by a single target. Furthermore, because no person recognition has

been performed, the estimates are not sensitive to the area occupied by a

single person. Therefore, as a consequence of a poor SNR ratio, cardinality

and state estimates becomes susceptible to under-segmentation and over-

segmentation issues. Also, since the PHD filter does not perform any data

association, the assesment of the error on individual person locations and

velocities is not straightforward, requiring an additional step.

Figure 6.7 shows the SMC PHD and TF-PHD estimates for frame 20 of

the vidf1 33 001.y3 sequence of the dataset. A person with a bicycle has

a bigger area than the expected average, and as a result over-segmentation

causes the PHD filter in Figure 6.7a to incorrectly estimate the number of

targets in that area. Nevertheless, the TF-PHD smoother in figure 6.7b is

able to give an improved estimate in the region containing a single person.
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(b) TF-PHD smoother

Figure 6.7: Particle PHD filter and TF-PHD smoother estimates for frame 20.

Fixed-interval implementations of TF-PHD and the FB-PHD smoothers

achieve improved estimation of the number of persons when the time interval

3Each sequence contains 200 frames and sequences are labeled vidf1 XX ZZZ.y, where

XX is a viewpoint identifier and ZZZ is the sequence identifier.
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is relatively small. Figure 6.8 shows the estimated number of targets for

the PHD filter and both smoothers for the first 50 frames of the sequence.

Consistently with the benchmark results in Chapter 5, the smoothed estimate

is more stable than the filtered one.
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(a) FB-PHD smoother
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(b) TF-PHD smoother

Figure 6.8: Cardinality estimates for the PHD filter and smoother. The TF-PHD

and the FB-PHD smoothers give an improved estimate of the number of targets.

Person locations that are incorrectly addressed due to cardinality errors

in the forward pass can be re-estimated using the improved estimate. How-

ever, since resampling was performed in both steps, it is more challenging for

the PHD smoothers to provide improved location estimates. Furthermore,

since the PHD filter proposes individual samples for each person, location

estimates are not sensitive to inter person distances. This issue is also inher-

ited by particle PHD smoothers, so location estimates suffer from the same

problem. Figure 6.9 shows estimates from the PHD filter, the FB-PHD and

the TF-PHD smoothers using the EM algorithm and the Gibbs sampler for

state estimation (see Section 3.6).
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(a) EM PHD (b) Bayes PHD
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(c) EM FB-PHD (d) Bayes FB-PHD
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(e) EM TF-PHD (f) Bayes TF-PHD

Figure 6.9: Particle approximations for frame 14 of the pedestrian tracking se-

quence. Location estimates from the PHD filter suffers from an incorrectly esti-

mated number of persons. Since the Gibbs sampler is less sensitive to the initial

conditions, it manages to allocate person locations more accurately and with less

variance than the EM algorithm. Monte Carlo approximations by means of the

FB-PHD and the TF-PHD smoothers provide improved estimates over the PHD

filter alone.
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As seen in Table 6.3, the estimated number of targets in the backward step

is less sensitive to fluctuations in the number of observations. Since estimates

and ground truth might have different cardinalities, the OSPA error is used

for comparison purposes. Figure 6.10 shows the filter and smoother OSPA

errors:
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(b) Bayes TF-PHD
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(c) EM FB-PHD smoother
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Figure 6.10: OSPA Error for the PHD filter and fixed-interval implementations

for the FB-PHD smoother and TF-PHD smoother for visual tracking. A fixed-

interval of 50 frames is used to evaluate the benefit of smoothing over filtering.
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We will concentrate now on the performance on the sequence vidf1 33 001.y

using fixed-lag implementations. As opposed to fixed-interval, fixed-lag im-

plementations can be implemented in real time using a small time lag. Pa-

rameters for the PHD filter and smoothers are shown in table 6.2. Four

different time lags are considered and Table 6.5 shows the performance of

the TF-PHD and the FB-PHD smoothers when the EM algorithm and the

Gibbs sampler are used for state estimation. In this case we expected to have

a large number of outliers in the estimated locations. Therefore, in order to

measure the performance of smoothing over filtering, we choose the OSPA

metric to be less sensitive to outliers.

Error PHD FB-PHD TF-PHD

Fixed-lag (1 time step) implementation

RMS 2.26 2.11 2.11

OSPA (EM) 1.60 1.61 1.60

OSPA (Bayes) 1.62 1.60 1.60

Fixed-lag (2 time steps) implementation

RMS 2.26 2.04 2.02

OSPA (EM) 1.60 1.59 1.60

OSPA (Bayes) 1.62 1.59 1.60

Fixed-lag (3 time steps) implementation

RMS 2.26 1.88 1.86

OSPA (EM) 1.60 1.57 1.57

OSPA (Bayes) 1.62 1.58 1.59

Fixed-lag (5 time steps) implementation

RMS 2.26 1.83 1.81

OSPA (EM) 1.60 1.57 1.57

OSPA (Bayes) 1.62 1.57 1.57

Table 6.5: Cardinality and OSPA (c=2,p=2) error for the PHD filter and

smoothers for visual tracking
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Increasing the time-lag improves performance, but it can be seen that the

OSPA error for both EM and Gibbs sampler estimation converges at time

lag 5. The numbers in Table 6.5 are also consistent with other reported

results for the FB-PHD smoother for a 2-dimensional bearings-only tracking

scenario [78], where a fixed-lag of 3 is reported as being sufficiently high that

longer time lags will not improve estimates.
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6.4 Summary and contributions

This chapter presents an original application of the PHD filter and smoother

for tracking multiple persons in crowded scenarios. The model-based ap-

proach uses the point process formalism to represent a person as a marked

point process for locations and velocities of an unknown and time-varying

number of persons. Given the difficulty of obtaining measurements of the

position of a single person in a crowded environment, it becomes crucial to

adopt a filtering scheme that avoids data association. For that reason, the

resulting approach is well suited for on-line surveillance applications. Fur-

thermore, a suitable metric has also been proposed for evaluating the perfor-

mance of pedestrian tracking algorithms. The OSPA metric is appropiate for

comparing estimates of possibly different cardinalities, so it is better suited

for evaluating performance of visual tracking algorithms than previously pro-

posed benchmark suites [106].

It is worth noting that the proposed method can be extended to other

visual surveillance scenarios and to more detailed pre-processing schemes

for person counting. For the dataset considered here, we found that the

normalized area occupied by a single person provided a starting indicator for

the number of persons within a blob. Interestingly, the RMS error obtained

for the number of persons is completely concordant with the results for crowd

counting using supervised regression when only the area is used a feature

[12]. Moreover, the results for the supervised approach indicate that the

method tended to fail when there are few people in the scene, so we can

expect the PHD filter tracker to improve if more features are considered for

segmentation.

State estimation is performed by means of the EM algorithm and the

Gibbs sampler. Instead of human groups, we are interested in tracking per-

sons. Therefore, each blob has to be segmented in accordance with a rough

estimate of the number of persons. This process is conducted disregarding

the persons center of mass, so the observation noise also increases. We ob-
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served (see Figure 6.9) that state estimation with the Gibbs sampler is less

sensitive to the observation noise and provides estimates with less variance

than the EM algorithm.



7
Conclusion

This thesis established a marked point process formalism for visual tracking

applications. The PHD filter with the underlying Poisson process approxima-

tion is used as base methodology for deriving recursive formulas for predicting

and updating the positions of an unknown number of objects. Marks can be

attached to the point process without making any extra theoretical effort,

leaving intact the original PHD filter recursion. By taking the Poisson pro-

cess approach, tractable Bayesian filtering equations are used to track and

count objects with marks.

The PHD filter propagates the first-order moment or intensity function of

a Poisson process, so state estimation techniques have to be used in order to

calculate the individual target locations. Since a different observation noise

condition is found in visual tracking than the one considered in the origi-

nal formulation of the PHD filter, Chapter 3 introduces Bayesian estimation
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using MCMC as a method for improving state estimation by exploiting the

inherent uncertainty found in image analysis. Furthermore, the marked point

process formalism offers a principled approach for object level models, with-

out compromising either the foundations or the performance of the filter.

MCMC methods are well known for escaping from local maxima, so state

estimation can be more robust in cases where ambiguity makes maximum-

likelihood methods unreliable. However, since Bayesian approaches using

MCMC have to run several thousands iterations in order to reach an equilib-

rium distribution, a constrained Gibbs sampler with an informative prior was

proposed. The method has the advantage of combining maximum likelihood

for fast inference, but at the same time being able to perform model averag-

ing. Because of the well known label switching problem in MCMC methods,

special care must be taken when taking averages of the model components.

The reparametrized version of the Gibbs sampler utilizes conjugate priors

with posterior feedback, which is particularly helpful for the identifiability

problem.

The prior and posterior distributions of the PHD filter are approximated

as a Poisson process with independent increments. The predicted and up-

dated number of targets are Poisson distributed having a conditional in-

tensity function where the history is not taken into account. Even in low

cluttered environments, estimates are unstable and biased to the number of

observations. A principled approach for remedying that condition can be

achieved by considering PHD smoothing. PHD smoothers can easily recover

the number of targets when the clutter rate is not high enough that the num-

ber of observations consisting of clutter and target originated measurements

gives information about the actual number of targets. In this case, low false

alarms rates cause the filter to bias the estimates to the number of obser-

vations, but the FB-PHD and TF-PHD smoothers are able to provide more

stable estimates. Another case was studied, in which not all targets were

observed due to missed detections. In this case, the PHD filter estimates

are also biased to the number of observations. However, when performing
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smoothing, cardinality estimates can be recovered from the loss of informa-

tion. The FB-PHD smoother compares particle clouds from different time

frames and the TF-PHD smoother considers both backward dynamics and

observations, both providing a robust estimation framework. The case of

birth and death dynamics was also considered and proved to be a challeng-

ing case for both PHD smoothers. Not surprisingly, the performance of PHD

smoothers is strongly tied to the PHD filter behavior in the forward pass. If

the filter completely misses a target and there is no support in a particular

region of the state space, particle smoothers cannot alleviate the errors from

the forward pass. Moreover, additional backward sampling steps cannot be

optimally treated in most cases, so artificial or auxiliary distributions have

to be carefully designed in order to achieve consistent results. We analyzed

the case of linear Gaussian dynamics where the optimal backward distribu-

tion can be evaluated using the existing particle support and no backward

sampling is required, and this proved to be useful when the filter already

performed a reasonably good job.

Motivated by the challenging problem of person tracking in crowded en-

vironments, Chapter 6 developed a framework for pedestrian tracking in

densely populated scenes from a single camera. Traditional approaches using

data association face a combinatorial explosion in the number of association

hypotheses that grows with the number of persons, so the PHD filter is an ap-

pealing alternative to multi-hypothesis tracking schemes. Furthermore, the

PHD filter also offers a top-down approach that can also cope with clutter

from the background subtraction step. Being a deterministic approach, the

EM algorithm converges to the maximum-likelihood estimate (MLE) of the

observed data. However, if no person detection is performed and only area

based observations of the persons locations is given, the MLE is not a good

indicator of the actual locations when there is uncertainty on the number of

persons inside of a blob. Bayesian state estimation using MCMC proved to be

a good alternative to the EM algorithm. Instead of point estimates MCMC

achieves a more robust estimation procedure by means of model averaging.
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As we noted before, the performance of particle PHD smoothers is depen-

dent on the filter behavior in the forward pass. In the case of person tracking,

targets can merge or split at several times making it difficult for the filter

to establish trajectories, so the filtered estimates are biased to the observed

data. Nevertheless, in fixed-interval implementations where no substantial

birth or death of targets occur, smoothing showed itself to be beneficial for

obtaining more stable estimates.

7.1 Future Work

Bayesian non-parametric state estimation and track identity. State esti-

mation for the particle PHD filter has traditionally been implemented using

clustering techniques like K-means or the EM algorithm. K-means seems to

work well enough when the SNR is high enough that particles are highly con-

centrated around the modes, but fails when there is more uncertainty in the

estimation procedure. In those cases, the EM algorithm and the proposed

Gibbs sampler provide more accurate estimates. Furthermore, Bayesian esti-

mation using the Gibbs sampler avoid problems due to local maxima.

Another advance for state estimation could also be to consider non-para-

metric mixture models like the Dirichlet process (DP). Apart from a few cases

like [31] and [11], the use of DP mixtures has been mostly restricted to non-

dynamical systems. Applications to integrated filtering and state estimation

for the particle PHD filter have not yet been reported. The application of

DP techniques would potentially lead to more stable filtered estimates, since

both the number of targets and state estimation are integrated into a single

step. Furthermore, the same technique can also be used with no problem

for obtaining smoothed estimates from the particle implementations of the

FB-PHD and TF-PHD smoothers.

Marginalized particle PHD smoothing. An alternative implementation for

the particle PHD filter considers marginalization via Rao-Blackwellization
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[113, 94]. In this case, explicit association is performed and the resulting

model is a conditionally linear-Gaussian model, so Monte Carlo sampling is

only performed on the number of targets and their association variables, while

estimation is performed using the standard Kalman filter equations. In the

case where the linear-Gaussian assumption holds, particle PHD smoothing

can be used for re-computing the number of targets and their association

variables, and the RTS Kalman smoother can then be used for estimating

target locations. Again, this alternative implementation holds for both the

FB-PHD and the TF-PHD smoothers.

Unknown noise and parameter estimation. Since the PHD filter perfor-

mance seems to be highly sensitive to the specific choice of model parameters,

it would be sensible to think that PHD smoothing could be used for param-

eter estimation. In the case of linear dynamical models, it has been shown

that Kalman filtering and smoothing are amenable to the expectation step of

the EM algorithm when used for system identification [93]. Although some

early papers noted the importance of the parameter estimation problem for

random sets models [118], it is not clear that consistent strategies can be

readily implemented by practitioners.

However, by mimicking the strategy used for linear dynamical models, we

could also use smoothing techniques for estimating parameters of the particle

PHD filter. In this case, the expectation of fixed parameters could also be

treated as missing data alongside with the unobserved target states.

Fixed-lag estimation using divergence metrics. The choice of the optimal

lag for a fixed-lag implementation of PHD smoothers has been done in an

empirical way, by running the algorithm several times using different lags and

monitoring convergence of the RMS and the OSPA errors. In a more general

setup, the optimal lag might depend on the choice of specific parameters

of filter. In the case of nonlinear state space models, the Kullback-Leiber

divergence has been proposed as a method for estimating the goodness of fit
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for each time lag [61]. In the case of the PHD filter and smoother, no clear

metric has been devised for the purpose of model comparison, but as in the

parameter estimation problem, information-theoretic criteria for random sets

could be used for this purpose.



A
Appendix

In this appendix the source code of the main routines used throughout the

thesis are given. Programs are implemented using the MATLAB c©7.7.0.471

(R2008b) language.

A.1 Bayesian state estimation

function [estimates,sigmas]=bayes_estimate(n_particles,onoise,rnum_t,numit)

[idx,mu]=kmeans(n_particles,rnum_t,’emptyaction’,’drop’,’replicates’,3);

[N,dim]=size(n_particles);

w=ones(1,rnum_t)/rnum_t;

sigmas=zeros(2,2,rnum_t);

for j=1:rnum_t

sigmas(:,:,j)=onoise*eye(dim);

end
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samp_mean=mean(n_particles);

samp_cov=cov(n_particles);

%eta=mnrnd(1,ones(N,rnum_t)/rnum_t);

b0 = mvnrnd(samp_mean, samp_cov);

B0 = drawWishart(inv(samp_cov)/dim,dim);

c0 = 1/gamrnd(1,1/dim) + dim-1;

C0 = drawWishart(samp_cov/dim,dim);

alpha0=gamrnd(1,1);

prob=zeros(N,rnum_t);

eta=zeros(N,rnum_t);

model_average=zeros(rnum_t,dim,numit);

for i=1:numit

% E-step

for j=1:rnum_t

prob(:,j)=

w(j)*normalLike(n_particles,mu(j,:),sigmas(:,:,j));

end

prob=prob./repmat(sum(prob,2),1,rnum_t);

eta=mnrnd(1,prob);

% M-Step

nu=sum(eta,1);

w=1./gamrnd(alpha0+nu,1);

w=w./sum(w);

bar=(eta’*n_particles)./(repmat(nu’,1,dim));

for j=1:rnum_t

A = inv(nu(j)*inv(sigmas(:,:,j)) + B0);

[L p]=chol(A);

if (p==0 & ~any(isnan(A)))

Bk=A;

else

Bk=onoise*eye(2);

end

bk = (nu(j)*bar(j,:)*inv(sigmas(:,:,j)) + b0*B0)*Bk;
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mu(j,:)=mvnrnd(bk,Bk);

end

model_average(:,:,i)=mu;

end

estimates=mean(model_average,3);

sigmas=sigmas;

end

A.2 Forward-Backward smoothing source code

function [estimates,num_t,weights_s,particles]=

FBSmoother(weights,s_weights,particles,p_particles,F,

pnoise,onoise,survival_rate,birth_rate)

% Fixed-interval PHD smoother

state_dim=2;

Lk=size(particles,1);

Lk1=size(p_particles,1);

weights_s=repmat(NaN,1,Lk);

const=repmat(NaN,1,Lk1);

survival=repmat(survival_rate,1,Lk);

birth=repmat(birth_rate,1,Lk1);

weights_s=phd_forwardlikelihood(p_particles,particles,

weights,s_weights,pnoise,survival,birth);

num_t=sum(weights_s)

rnum_t=round(num_t);

weights_s=weights_s./num_t;

index=randsample(1:Lk,Lk,true,weights_s);

particles=particles(index,:);

weights_s=ones(1,Lk)*rnum_t./Lk;

if num_t>1

estimates=state_estimate(particles,onoise,rnum_t,’bayes’);

else

if rnum_t==1
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estimates(1).k=1;

estimates(1).means=sum(particles(:,1))/Lk;

estimates(1).sigmas=onoise*diag(state_dim);

else

estimates=[];

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function weights_s=

phd_forwardlikelihood(p_particles,particles,weights,

s_weights,pnoise,survival,birth)

Lk=size(particles,1);

Lk1=size(p_particles,1);

Y=repmat(p_particles(:,1)’,Lk,1);

X=repmat(particles(:,1),1,Lk1);

lik_mat=normpdf(X,Y,pnoise(1));

survival_mat=repmat(survival’,1,Lk1);

weights_mat=repmat(weights’,1,Lk1);

sweights_mat=repmat(s_weights,Lk,1);

wlik_mat=sweights_mat.*(survival_mat.*lik_mat);

wlik2_mat=weights_mat.*(survival_mat.*lik_mat);

norm=sum(wlik2_mat,1);

const_mat=repmat((birth+norm),Lk,1);

marg_mat=wlik_mat./const_mat;

weights_s=weights.*(sum(marg_mat,2)’);

end

A.3 Two-Filter smoothing source code

function [estimates,num_t,weights_s,particles]=

TFSmoother(observations,weights,s_weights,particles,p_particles,F,H,pnoise,onoise,
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survival_rate,detection_rate,birth_rate,rate_c,mcmc_steps)

Lk=size(particles,1);

Lk1=size(p_particles,1);

numobs=size(observations,1);

weights_s=repmat(0,1,Lk);

%clutter=repmat(rate_c,1,numobs);

clutter=repmat(rate_c,1,numobs);

survival=repmat(survival_rate,1,Lk);

birth=repmat(birth_rate,1,Lk1);

detection=repmat(detection_rate,1,Lk);

% compute likelihood

psi=phd_likelihood(observations,H,particles,onoise,clutter,detection);

% backward MCMC step

mcmc_particles=repmat(NaN,Lk,2);

for s=1:mcmc_steps

mcmc_particles=particles+repmat([1,.1],Lk,1).*rand(Lk,2);

mcmc_psi=phd_likelihood(observations,H,

mcmc_particles,onoise,clutter,detection);

alpha=min(1,mcmc_psi./psi);

index1=binornd(1,alpha);

%size(index1)

index2=mcmc_psi>psi;

particles(index2,:)=mcmc_particles(index2,:);

psi(index2)=mcmc_psi(index2);

end

weights_s=phd_forwardlikelihood(p_particles,particles,psi,

birth,pnoise,weights,s_weights,survival);

num_t=sum(weights_s)

rnum_t=round(num_t)

weights_s=weights_s./num_t;

if isnan(num_t)

num_t=0;
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end

index=randsample(1:Lk,Lk,true,weights_s);

particles=particles(index,:);

weights_s=ones(1,Lk)*rnum_t./Lk;

if rnum_t>1

estimates=state_estimate(particles,onoise,rnum_t,’bayes’);

else

if num_t==1

estimates(1).k=1;

estimates(1).means=sum(particles(:,1))/Lk;

estimates(1).sigmas=samp_cov;

else

estimates=[];

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55

function psi=

phd_likelihood(observations,H,particles,onoise,clutter,detection)

Lk=size(particles,1);

numobs=size(observations,1);

Y=repmat(observations,1,Lk);

X=repmat(particles(:,1)’,numobs,1);

lik_mat=normpdf(Y,X,onoise);

det_mat=repmat(detection,numobs,1);

norm=sum(lik_mat,2)’;

const_mat=repmat((clutter+norm)’,1,Lk);

psi=lik_mat./const_mat;

%psi=sum(marg_mat,1);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55

function weights_s=
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phd_forwardlikelihood(p_particles,particles,psi_mat,

birth,pnoise,weights,s_weights,survival,detection)

Lk=size(particles,1);

Lk1=size(p_particles,1);

Y=repmat(p_particles(:,1)’,Lk,1);

X=repmat(particles(:,1),1,Lk1);

lik_mat=normpdf(Y,X,pnoise(1));

weights_mat=repmat(s_weights,Lk,1);

weights_mat2=repmat(weights’,1,Lk1);

wlik_mat=psi_mat*lik_mat;

norm=sum(wlik_mat,1);

const_mat=repmat(norm,Lk,1);

marg_mat=weights_mat.*lik_mat./const_mat;

weights_s=(sum(psi_mat’,2).*sum(marg_mat,2))’;

end
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