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Abstract 

 

A suite of brittle-ductile faults in the central Southern Alps, New Zealand is used as 

a natural laboratory into the rheology of quartz rocks. The fault array is ~2 km wide and 

formed in the hanging-wall of the SE-dipping Alpine Fault during the late Cenozoic at  

25 km depth.  It was exhumed in the past few Myr and is now exposed 5-7 km east of 

the Alpine Fault. The faults are near-vertical, extend laterally and vertically over tens of 

metres, and strike sub-parallel to the Alpine Fault. They displace quartzofeldspathic 

Alpine Schist (metagreywacke) in a predominantly brittle way. The faults impinge upon 

and displace abundant centimetre-thick quartz veins that are discordant to the dominant 

schist foliation. These quartz veins exhibit a full range of slip from fully brittle to fully 

ductile. In most quartz veins, a ductile component of slip and a 1-3 cm (n=72) wide 

ductile shear zone are present. The mean total slip measured in the veins is 7.2 ± 5.8 cm 

(n=72). 

This study first develops a method to determine the true shape and displacement of 

a geological marker from any outcrop orientation. It then uses a set of geometrical 

scaling relationships exhibited by the ductilely-to-brittlely sheared quartz veins, and the 

observed interaction between brittle faults and ductilely deforming quartz veins to 

develop a series of finite-element models that reproduce the field observations. A flow 

law of the form 




−

⋅⋅⋅=
RT

QfA n

d

m

OH exp
2

σε  is used to model the behaviour of the 

quartz veins. Flow law parameters for the quartz veins and viscous and frictional 

strength ratios between quartz and schist are determined from these models. For Q = 

135 kJ mol-1, OHf
2

= 200 MPa and m = 1.0, the results show that the scaling 

relationships in the quartz veins are successfully reproduced for A = 10-10±2 MPa-n s-1, 

and n  4. 

The ratio between ductile-to-total slip (D) were measured for 72 veins throughout 

the brittle-ductile shear array and are highly variable. In order to understand what has 

led to this variability, we investigate the following parameters: original vein thickness, 

deformation temperature, water content, microfracturing, calcite fraction, and total slip.  

D-ratios appear to scale with original vein thickness, however, significant scattering of 

the D-values indicates that other factors also control D. The temperature resolution 

(from Titanium-in-Quartz geothermometry and oxygen isotopy) is not high enough to 
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determine whether temperature influenced the D-values. Fourier Transform Infrared 

Spectroscopy (FTIR), and optical microscopy reveal that water content, microfracturing, 

and calcite fraction were very similar from one vein to another and therefore did not 

control the D-ratios either. Detailed outcrop maps of the brittle-ductile shears and 

displacement-length profiles along five individual faults indicate that the total slip 

varied rapidly and on short distances (cm- to m-scale) along the faults. We infer that 

these varying slip rates led to different flow strain rates in the deforming quartz veins 

and therefore can explain the variations in D-values. 

Optical microscopy reveals abundant fluid inclusions in both the deformed and 

undeformed parts of the veins.  These inclusions indicate that the quartz was ‘wet’ and 

the veins were weakened with respect to the surrounding schist. We therefore infer that 

the location of the shear zones was predetermined by the position of the brittle faults 

propagating through the stronger schist and impinging on the weaker quartz veins.  
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Chapter 1 

 

Introduction and thesis outline 

 

1.1 Motivation and scope of the thesis 

Crustal deformation and the strength of the Earth’s crust vary with the tectonic 

environment, lithology and mineralogy, availability and type of fluids, temperature, and 

time (e.g., Bürgmann and Dresen, 2008). Since quartz is one of the major constituents 

of the Earth’s crust, its rheology exerts a major control on crustal strength and the depth 

of the brittle-to-ductile transition, and on the maximum depth for the nucleation of large 

earthquakes. The brittle-ductile transition is the region in the crust where normal stress-

dependent, pressure-sensitive, frictional deformation of rocks is replaced by strain rate-

dependent, temperature-sensitive viscous flow of rocks (e.g., Evans and Kohlstedt, 

1995). Whilst the strength of the upper crust is well described by brittle-elastic friction 

laws (e.g., Byerlee, 1978), most of our knowledge about the viscous flow behaviour of 

quartz in the mid- to lower crust is based on deformation experiments conducted in 

laboratories at strain rates (and temperatures) that are several orders of magnitudes 

higher than those reasonable for nature. It is important to know whether one can 

extrapolate laboratory-derived flow laws to natural conditions, because many studies 

that model crustal scale deformation (including GPS-based velocities), stress transfer in 

the crust, and earthquake nucleation use the experimentally derived flow laws in their 

rheological setup (e.g., Ellis et al., 2006a, b). Geological studies testing those flow laws 

against the observations of naturally deformed rocks are rare. This study tries to gain 

rheological information by an evaluation of naturally sheared quartz veins, both brittle 

and ductile, and the quartzofeldspathic rocks that host these veins. The study tries to 

contribute to the understanding of quartz rheology, the localisation of shear zones, and 

to improve our knowledge of deformation mechanisms operating at the brittle-ductile 

transition in the crust. 

The rocks that are investigated in this study were exhumed in the hanging wall of 

the Alpine Fault, near Fox and Franz Josef glaciers in the central Southern Alps of New 

Zealand. The dextral-reverse Alpine Fault is the major plate boundary between the 

Australian and the Pacific plates on South Island, New Zealand. Here, Pacific Plate 

rocks are upramped obliquely onto the underlying Australian Plate. In the central 
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Southern Alps, high uplift rates along the Alpine Fault have accompanied mountain 

building that began after the onset of Pacific-Australian plate convergence at 5-8 Ma, 

and that accomplished the exhumation of crustal rocks from depths greater than 20 km 

(Tippet and Kamp, 1993; Sutherland, 1996; Batt, 2001; Batt et al., 2004; Little et al., 

2005). The brittle-ductile shear array studied here is approximately 2 km wide and lies 

5-7 km to the southeast of the Alpine Fault. The rock type that occurs in the study area 

is predominantly biotite-zone, greenschist-facies quartzofeldspathic metagreywacke 

(Alpine Schist). These rocks include intercalated metapsammites and metapelites. The 

Alpine Schist hosts quartz veins of variable thicknesses and orientations, most of them 

discordant to the foliation. Both the schist and the quartz veins that are embedded in the 

schist have been transected by and neotectonically sheared across a sub-parallel array of 

small, near-vertical faults. Whilst the displacement of the schist is generally fully brittle, 

the displacement of the veins embedded in that host is variably brittle to ductile. 

This study attempts to extract information about the rheology of quartzose rocks 

from field observations such as the deformed macroscopic shape of the veins, 

systematic scaling relationships between various geometric properties of the veins, as 

well as from the microstructure of the sheared quartz veins. Detailed surveying and 

geological mapping on the outcrop scale of the brittle-to-ductile shears as well as finite 

element modelling of the sheared quartz veins was used to test laboratory derived flow 

laws against the naturally deformed quartz veins. These data were also used to 

investigate whether the deformed shape and geometrical scaling relationships in the 

sheared quartz veins contain information on strength ratios between pure quartz and 

quartzofeldspathic schist or on flow law parameters that may have been operative 

during shearing of the pure quartz veins. Laboratory analyses (e.g. Fourier-transform 

infrared spectroscopy, Titanium-in-Quartz geothermometry, quartz-calcite oxygen 

isotope thermometry) of the variably brittlely and ductilely sheared quartz veins were 

conducted in order to determine factors that may have controlled the degree of ductile 

versus brittle deformation in a quartz vein and the localisation of ductile shear zones in 

these veins. 

The Southern Alps of New Zealand have been subject to numerous geoscientific 

studies. A comprehensive collection of papers on the geological and tectonic 

development and setting of the Southern Alps has recently been published in a 

monograph by the American Geophysical Union (eds. D. Okaya, T. Stern, F. Davey, 

2007). Decades of research in the Southern Alps have led to a good understanding of 



Chapter 1  Introduction 

 3

the kinematics and deformation conditions prevailing in the crust of that young orogen. 

The Southern Alps of New Zealand therefore provide an exceptionally valuable natural 

laboratory into the rheology of quartz and quartzose rocks under brittle-ductile 

deformation conditions. 

 

1.2 Theoretical background – Quartz rheometry by means of experiments compared to 

naturally deformed rocks 

Experimentally derived flow laws for steady-state creep of quartz usually relate 

strain rate and differential stress in the form of an Arrhenius equation: 









−⋅⋅⋅⋅=
−

RT

Q
dfA rm

OH
n
d exp

2
σε       (1.1) 

(e.g. Twiss and Moores, 2007, pp. 477) where ε  is uniaxial strain rate (s-1), A is a pre-

exponential factor (MPa-n s-1), OHf
2

 is water fugacity (MPa), m is the fugacity exponent, 

d is grain size (µm), r is the grain size exponent, dσ  is the differential stress (MPa), n is 

the stress exponent, Q is activation enthalpy (J mol-1), R is the universal gas constant 

(8.314 J mol-1 K-1), and T is temperature (K). For m = 0, and n > 1, eq. 1.1 follows a 

power-law and describes grain-size insensitive (GSI) dislocation creep. For m = 2-3 and 

n = 1, eq. 1.1 becomes a grain-size sensitive (GSS) diffusion creep law, linearly relating 

strain rate and flow stress (Newtonian viscosity).  

A range of experimentally derived flow laws exists describing the steady-state 

creep behaviour of quartz or quartzite (e.g., Kronenberg and Tullis, 1984; Paterson and 

Luan, 1990; Luan and Paterson, 1992; Hirth and Tullis, 1992, Gleason and Tullis, 1995; 

Brodie and Rutter, 2000; Rutter and Brodie, 2004a, b). To derive these flow laws, 

uniaxial or triaxial experiments were conducted under high temperatures (> 700° C), 

and at strain rates of 10-7 s-1 or higher. Such experimental deformation temperatures are 

higher than typical mid-crustal temperatures (300-500°C). Laboratory strain rates 

exceed common geological strain rates (10-11 to 10-16 s-1) by at least four orders of 

magnitude (Twiss and Moores, 2007, p. 488). It is questionable whether laboratory-

derived flow laws for quartz can be extrapolated to low natural strain rates. 

Experimental uncertainties may arise from poor stress resolution during the 

experiments, imprecise determination of the water content and water fugacity during the 

experiment, or uncertainty in whether steady state creep was achieved during the 

experiment (e.g., Stipp and Tullis, 2003). The type of deformation apparatus (e.g., gas 
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or solid medium) may also play a role when comparing the established flow laws. These 

uncertainties may result in erroneous conclusions about crustal strength and the brittle-

ductile transition at depth. This is especially critical when working with crustal scale 

models that impose a rheological layering in the model crust. Most studies that involve 

crustal scale deformation, assume a ‘wet quartz’ rheology for the mid-crust (e.g., 

Montési, 2004; Ellis et al., 2006a, b). Flow law parameters of several published flow 

laws for dry and wet quartz are summarised in Table 1.1 and the range of flow strengths 

that are predicted by those flow laws for a natural strain rate of ε  = 10-14 s-1 is plotted in 

Fig. 1.1. As can be seen from the experimental results (Table 1.1), the stress exponent is 

predicted to be greater than 1.0 in all experiments except those of Brodie and Rutter 

(2000) and Rutter and Brodie (2004). This experimental result indicates that the 

relationship between applied differential stress and resulting creep strain rate is non-

linear, and that quartz flows with a power-law viscosity rather than a Newtonian one. 

An implication is that dislocation creep might be the dominant deformation mechanism 

in quartz rather than diffusional processes or dissolution-precipitation creep.  

Despite the range of predicted strengths, the laboratory-derived flow laws provide 

valuable information on the microstructural evolution of quartz and quartzose rocks 

during their ductile and/or brittle deformation. Hirth and Tullis (1992) have performed 

experiments on quartz aggregates in the molten-salt cell and have derived three regimes 

of dislocation creep in quartz. In regime 1 (low temperature, high strain rate) quartz 

flows through bulging recrystallisation (BLG); in regime 2 (medium temperature, 

medium strain rate) the main deformation mechanism is subgrain rotation 

recrystallisation (SGR); in regime 3 (high temperature; low strain rate) grain boundary 

migration (GBM) is a dominant mechanism of recrystallisation and recovery. In nature, 

these dislocation creep regimes have been inferred in several studies (e.g., Dunlap et al., 

1997; Hirth et al., 2001; Stipp et al., 2002), which indicates that the flow laws that were 

produced in laboratories may represent deformation processes that occur naturally in the 

Earth (e.g. Stöckhert et al., 1999; Hirth et al., 2001). Recently, a numerical modelling 

software called ELLE has been developed that can be used to model rock 

microstructures on the grain-scale (e.g. Bons et al., 2000; Jessell et al., 2001; Piazolo et 

al., 2001; Piazolo et al., 2002). The ELLE modelling results also reproduce 

microstructures that are similar to those found in many naturally deformed rocks. 
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Table 1.1: Parameters for experimentally derived flow laws for quartz. SQT: Simpson quartzite, HQT: 

Heavitree quartzite, NOV: novaculite, BHQ: Black Hills quartzite, BZQ: hot-pressed Brazilian 

quartzite, RGD: Ruby Gap Duplex quartzite; GSI: grain-size insensitive creep, GSS: grain size 

sensitive creep. 

source 
log10A 
(MPa-n s-1) 

n 
Q 
(kJ mol-1) 

m rock  remarks 

Heard and Carter 1968 -10.1 5.7 243 0 SQT dry  
Hansen and Carter 1982 -4.5 1.9 123 0 HQT dry 

Jaoul et al. 1984 (A) -5 2.4 163 0 HQT 
dry, -qtz, NaCl-
medium 

Jaoul et al. 1984 (B) -3.51 2.3 171 0 HQT dry, CaCO3-medium 

Jaoul et al. 1984 (C) -5.46 2.8 184 0 HQT 
vacuum-dried, 
CaCO3 

Kronenberg and Tullis 
1984 (A) 

-5.3 2.9 170 0 NOV as-is 

Kronenberg and Tullis 
1984 (B) 

-5.398 4.0 300 0 HQT vacuum-dried 

Koch et al. 1989 (A) -6.936 2.72 134 0 SQT dry 
Kronenberg and Tullis 
1984 (C) 

-5.66 2.7 120 0 HQT 
0.4 wt % water 
added 

Jaoul et al. 1984 (D) -2.28 1.4 146 0 HQT 
0.28 wt % water 
added 

Jaoul et al. 1984 (E) -2.54 1.8 151 0 HQT 
0.39 wt % water 
added 

Koch et al. 1989 (B) -5.3 2.61 145 0 SQT wet 
Paterson and Luan 1990 
(A) 

-7.18 3.1 135 0 Gel prec. best estimate 

Paterson and Luan 1990 
(B) 

-9.4 4.0 135 0 
Silicic 
acid 

best estimate 

Gleason and Tullis 1995 -3.96 4.0 223 0 BHQ no melt, molten salt 
Brodie and Rutter 2000 -3.3 3.0 220 0 BZQ GSI 

Hirth et al. 2001 -11.2 4.0 135 0 RGD 
geological study, 

OHf
2

= 37 MPa 

Rutter and Brodie 2004 
(GSI) 

-4.93 2.97 242 0 BZQ GSI, fine-grained 

Brodie and Rutter 2000 -0.2 1.0 220 2.0 BZQ GSS 

Rutter and Brodie 2004 -0.4 1.0 220 2.0 BZQ 
GSS, ultrafine-
grained 

 

There are not many outcrop-scale geological examples of naturally deformed 

quartzose rocks, against which these flow laws have been quantitatively tested. Lan and 

Hudleston (1995) compared the shape of experimentally, numerically, and naturally 

folded rocks and predicted that it may, under certain assumptions, be possible to use 

folds to make inferences about the rheological properties of rocks using lab-derived 

flow laws. Kenis et al. (2004) and Kenis et al. (2005) have used structural observations 

in combination with numerical modelling of deformed mullions in order to test the 

effect of varying flow law parameters and of varying pre-deformational geometries on 

the deformed shape of the mullions. Their mullion models incorporated three 

lithologies: psammite, pelite, and quartz. They inferred a power law viscosity for quartz 
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and a linear viscous rheology for psammites and pelites. They also inferred a greater 

strength for quartz than for the surrounding psammites and pelites. In a similar way, the 

present study will combine outcrop observations with numerical modelling to test 

existing experimental flow laws against naturally deformed quartz rocks, especially 

with respect to the pre-exponential factor and the stress exponent (n, in Eq. 1.1). 

 

 

 

 

1.3 Theoretical background – depth of brittle-ductile coupling in the crust 

The Earth’s crust has often been approximated as a simplified two layer model with 

a brittle-elastic upper part and a ductile1 or viscoelastic lower part (e.g., Brace and 

Kohlstedt, 1980; Kirby, 1980). The change from brittle-elastic fracturing of rocks to the 

ductile-viscous flow of rocks is usually called “the brittle-ductile transition” (Paterson, 

2005). Other studies refer to it as the “brittle-plastic transition” (Rutter, 1986; Scholz, 

1988), or “frictional-viscous transition” (Schmid and Handy, 1991). In a typical two-

layer model, the brittle strength of the upper part of the crust is calculated via a 

frictional law (e.g., Byerlee, 1978) and the viscous strength of the lower part is 

                                                 
1 In this thesis, the term “ductile” is used as an equivalent to “viscous”, being fully aware that ductility is 
not a mechanism-specific concept but simply a description of macroscopically coherent-looking 
deformation, which may at a smaller or larger scale be brittle (e.g. Rutter, 1986; Schmid and Handy, 
1991; Schrank et al., 2008). 

Fig. 1.1: Temperature-strength graphs illustrating range of differential stresses predicted by published 
flow laws for quartz at a fixed strain rate of 10-14 s-1. GSI: grain-size insensitive creep; GSS: grain-size 
sensitive creep. The grey shaded area covers the existing range of laboratory-derived dislocation creep 
(GSI) flow laws for quartz. 
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described by a steady-state flow law for wet quartz (Eq. 1.1). The transition from 

frictional sliding to crystal-plastic creep in quartz occurs at approximately 300° C (Voll, 

1976; Kerrich et al., 1977). In feldspar, this transition occurs at ~450°C (Voll, 1976; 

White, 1976), so that the temperature range embracing the brittle-ductile transition in 

quartzofeldspathic rocks is commonly thought to span ~300-450° C (Scholz, 1988).  

Fig. 1.2a schematically depicts the development of the lithospheric strength with 

depth. This is a synoptic view of the varying character of a single shear zone as a 

function of depth (Fig. 1.2b). Fig. 1.2a shows that the maximum strength of the crust is 

reached at the brittle-ductile transition zone, which is conceptualised as a sharp 

intersection of a linear frictional law with an exponential ductile creep law. The depth of 

the nominal brittle-ductile transition zone is also thought to approximate the maximum 

depth for the nucleation of shallow earthquakes. This depth lies at about ~15 km, 

depending mainly on the geothermal gradient (Sibson, 1982; Tse and Rice, 1986; 

Scholz, 1988).  

Since the lower part of the two-layer model is described by Eq. 1.1, the depth of the 

brittle-ductile transition must also strongly depend on changes in strain rate and 

temperature, and on the ratio  of pore-fluid pressure Pf to lithostatic pressure Plithos 

(Fig. 1.3). The depth of the brittle ductile transition increases with both pore fluid 

pressure and increasing strain rate (Fig. 1.3). During an earthquake; i.e., at high strain 

rates, this depth might be deflected downward, so that transient brittle deformation is 

possible well below the steady-state brittle-ductile transition at temperatures that are 

higher than ~300° C (the temperature at which quartz ceases to deform by crystal-

plasticity). In the post- and inter-seismic periods of the seismic cycle, differential 

stresses and strain rates are waning. Ductile creep of the previously coseismically 

fractured rocks is then possible during the post-seismic period of relaxed stresses (e.g., 

Trepmann and Stöckhert, 2003; Ellis and Stöckhert, 2004a, b; Montési, 2004; Nüchter 

and Stöckhert, 2007).  

The depth of the brittle-ductile transition can also depend on the complex 

compositions of polymineralic rocks that may be deformed by a combination of 

deformation mechanisms leading to a composite flow law for e.g., quartzofeldspathic 

rocks as they occur in the Alpine Schist (e.g. Handy, 1990, 1994; Ji and Zhao, 1993; 

Saha, 1997; Ji and Xia, 2002). For these reasons, the expression “the brittle-ductile 

transition” should be avoided or only be used when referring to crustal steady-state or to 

a monomineralic rock. 
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Fig. 1.2 a) “Christmas-tree” diagram of strength development of the lithosphere with depth. The brittle-
ductile transition zone marks the transition of pressure-dependent to temperature-dependent deformation. 
b) Schematic cross-section through a transcurrent shear zone after Passchier and Trouw (2005, p. 114). 
Dominant types of fault rocks are listed on the right. The rock types in the shear zone change with 
increasing depth and metamorphic grade. 

Fig. 1.3: Plot of stress versus temperature 
and depth at variable strain rates and pore 
fluid pressure. At high strain rates, the 
depth of the brittle-ductile transition will be 
deflected downward.  
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1.4 Tectonic setting of the South Island of New Zealand 

New Zealand sits on the active Australian-Pacific plate boundary (Fig. 1.4a). 

Geomorphological expressions of that plate boundary are the Hikurangi Trough to the 

east of the North Island, the Puysegur Trench to the southwest of the South Island, and 

the dextral-reverse, NE-SW-striking, SE-dipping Alpine Fault and adjacent Southern 

Alps of New Zealand. The Hikurangi Trough and the Puysegur Trench mark the 

westward subduction of the Pacific plate under the continental Australian plate, and the 

eastward subduction of oceanic Australian plate under the continental Pacific plate, 

respectively. The Alpine Fault connects the two opposite-dipping subduction zones and 

accommodates that transition with a dextral-reverse, top-to-the-NW movement (Figs. 

1.4a, b).  
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Since the onset of strike-slip movement on the Alpine Fault in the late Oligocene 

(29-24 Ma; Cox and Sutherland, 2007), the fault has dextrally offset basement rocks by 

at least ~470 km (Wellman, 1955; Norris and Cooper, 2001, 2007; Sutherland et al., 

2006; Cox and Sutherland, 2007, and references therein; Fig. 1.4b). This apparent offset 

is expressed by the dextral separation of a distinctive suite of Permian volcaniclastics, 

volcanics, and ophiolites (Dun Mountain Ophiolite Belt and overlying Maitai terrane, 

Fig. 1.4b; Wellman, 1955). Australian-Pacific plate convergence averaged over the past 

~3 m.y. has been oblique at 37 ± 2 mm/yr at an azimuth of 071 ± 2° (NUVEL-1A global 

plate motion model of DeMets et al., 1990, 1994). This is approximately 16° clockwise 

from the average Alpine Fault strike (055°). The NUVEL-1A plate motion vector 

consists of a margin-parallel dextral component of 35.7 ± 1.9 mm/yr and a margin-

normal component of 9.5 ± 2.0 mm/yr. Beavan et al. (2002) have averaged 12 years of 

continuous and campaign GPS data of surface velocities of the Pacific, Australian, and 

North American plates. Their present-day GPS velocity estimations are 38.9 ± 1.0 

mm/yr and 9.1 ± 1.5 mm/yr for the dextral and the convergent movement on the central 

part of the Alpine Fault respectively. Cande and Stock (2004) have included motion 

since ~6 Ma of the previously-unrecognised Macquarie plate in their velocity model 

(see also Beavan et al., 2007). Cande and Stock’s (2004) Euler pole lies ~250 km 

northeast of the NUVEL-1A pole. Their model results in slower plate motion rates than 

the models by DeMets et al. (1994) and Beavan et al. (2002). Cande and Stock (2004) 

derive a dextral velocity of 35.5 ± 1.6 mm/yr and a plate-normal velocity of 6.5 ± 1.8 

mm/yr averaged over the past 2.58 Myrs. Geologically determined late Quaternary 

strike-slip rates on the central Alpine Fault are 27 ± 5 mm/yr (Berryman et al., 1992; 

Norris and Cooper, 2001). This is approximately three quarters of the total Pacific-

Australian plate motion. Late Quaternary dip-slip rates on the central section of the 

Alpine Fault are 8-12 mm/yr and decrease to almost zero to the NE and SW along the 

fault (Norris and Cooper, 2001; Sutherland et al., 2006). Since the transition from 

Fig. 1.4 (previous page): a) The New Zealand continent (green) straddling the plate boundary between 
the Australian and Pacific plate. The 2000 m isobath is indicated by the grey-shaded area. The plate 
convergence vector is from the NUVEL-1A global plate convergence model (DeMets et al., 1990, 1994). 
b) Geologic map of South Island, showing the dextral-reverse Alpine Fault and the Marlborough Fault 
System (MFS) as well as major units of basement rocks (Dun Mountain/Maitai terrane, Haast Schist). 
The Haast Schist is divided into the Alpine Schist and the Otago Schist (Sutherland, 1999). Isograds in 
the Haast Schist are shown by metamorphic index minerals. The study area is indicated by the red 
rectangle. 



Chapter 1  Introduction 

 11

mainly strike-slip motion on the fault to transpressive tectonics at 6-8 Ma (e.g., Batt et 

al., 2004), the Alpine Fault has accumulated 90 ± 20 km plate-normal shortening (e.g., 

Walcott, 1998). When using the GPS velocities from Cande and Stock (2004), this 

shortening may only have been 40 ± 15 km. The shortening is accommodated by crustal 

thickening and erosion in the central South Island.  

Exhumation rates along the central part of the Alpine Fault are as high as ~10 

mm/yr (Wellman, 1979; Bull and Cooper, 1986; Tippet and Kamp, 1993; Beavan et al., 

2007). Here, rocks from depths of >20 km have been exhumed (Little et al., 2005). The 

exhumation rates are approximately counter-balanced by high erosion rates west of the 

Main Divide, a situation that may have led to a near-steady state of the topography in 

the central part of the Southern Alps (Adams, 1980, 1981; Little et al., 2005; Herman et 

al., 2007). The high exhumation rates are predicted to have resulted in an upward 

deflection of isotherms and increase in the geothermal gradient in the central Southern 

Alps, of up to 60-90° C/km close to the surface (e.g. Shi et al., 1996). 

The lower limit of historically observed seismicity is reported to be at 10-14 km 

under most of the South Island, but to be shallower at 8-10 km closer to the Alpine 

Fault (Leitner et al., 2001). The base of seismicity in an active orogen is usually equated 

to the depth of the brittle-ductile transition in quartz at the 300-350°C isotherm in an 

active orogen (e.g., Scholz, 2002). Closer to the Alpine Fault, due to the local high 

uplift rates, rocks are uplifted faster than they can cool, thereby advecting the 300°C 

isotherm upwards (Koons, 1987; Holm et al., 1988; Craw, 1997; Leitner et al., 2001; 

Craw and Campbell, 2004). The shallower 300°C isotherm may be the reason for the 

shallower base of seismicity adjacent to the Alpine Fault (Leitner et al., 2001). 

Seismic imaging across the central Southern Alps indicates a listric shape at depth 

for the Alpine Fault, dipping ~60° to the SE in the upper 15 km of the crust and   45° 

to the SE to  30 km depth, where it transitions into a subhorizontal décollement 

(Kleffmann et al., 1998; Stern et al., 2001, 2007). The existence of a décollement at  

30 km depth is supported by the absence of exposed rocks that are higher-grade than 

amphibolite facies to the east of the Alpine Fault (e.g. Grapes and Watanabe, 1992; Vry 

et al., 2004; Cox and Barrell, 2007). The geophysical data is in good agreement with 

geological studies suggesting an Alpine Fault dip of 40-60° SE. This fault dip estimate 

was inferred from the mean foliation attitude of Alpine Fault mylonites in the region 

around Fox and Franz Josef glaciers (Sibson et al., 1981; Cooper and Norris, 1994; 

Little et al. 2002b). 
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Stern et al. (2001, 2007) imaged a ~30 km thick low-velocity zone above the 

Alpine Fault that extends from 5-8 km depth to 35 km depth. They interpreted this low 

velocity zone as representing a volume of interconnected metamorphic fluids that have 

been released during shearing and during neometamorphism of the rocks above the 

décollement. This interpretation is supported by a magnetotelluric study in that area 

(Wannamaker et al., 2002), which showed a high conductivity region coinciding 

approximately with the seismically imaged low-velocity zone. The top of the low-

velocity zone is roughly coincident with the maximum depth (~8 km) of earthquakes 

beneath the central Southern Alps (Leitner et al., 2001; Stern et al., 2001). 

A 1-2 km wide mylonite zone directly to the east of the Alpine Fault indicates 

ductile strain localisation and shearing at depth, along the fault. The mylonite is 

overprinted by a ~10 m thick cataclasite zone immediately east of the active trace of the 

Alpine Fault, indicating an upward narrowing of shear across a mid-crustal brittle 

regime as the Pacific Plate rocks were exhumed (Toy et al., 2008 and references 

therein). Near Fox and Franz Josef glaciers, the mean attitude of the mylonitic foliation 

indicates that the Alpine Fault dips 40-60° SE in the central section of the Southern 

Alps (Sibson et al., 1981; Norris and Cooper, 1995; Little et al., 2002b). Toy (2007) 

reports that deformation temperatures and pressures in the Alpine Fault mylonites did 

not exceed ~650°C and  700-850 ± 150 MPa respectively; i.e., the mylonitisation took 

place at 26-33 km depth. These P-T values are based on feldspar thermobarometry, Ti-

in-Biotite thermometry, and the absence of prism<c>-slip quartz CPO fabrics in the 

Alpine Fault mylonites. In and to the east of the mylonite zone, rocks of up to 

amphibolite facies (garnet-oligoclase zone) grade are exposed (but no higher) despite 

~90 km of late Cenozoic shortening. The metamorphic grade decreases to the East of 

the Alpine Fault to prehnite-pumpellyite facies at the Main Divide of the Southern Alps. 

The Mesozoic predominantly quartzofeldspathic rocks that were exhumed along the 

central part of the Alpine Fault are termed Alpine Schist and are a sub-division of the 

so-called Haast Schist group that also includes the Otago Schist (Grapes and Watanabe, 

1992; Grapes, 1995; Sutherland, 1999; Fig. 1.4b). The protolith of the Alpine Schist is 

chiefly Torlesse terrane greywacke and argillite. 

 

1.5 Study area: a brittle-ductile shear array 

The study area is located in the central Southern Alps, New Zealand, near the Fox 

and Franz Josef glaciers (Fig. 1.5). Within that area, 5-7 km to the southeast of the 
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Alpine Fault (and structurally above that SE-dipping fault), a 1-2 km wide array of 

closely spaced (30-60 cm), near-vertical faults is exposed in the uplifted and exhumed 

hanging wall of the Alpine Fault (green-shaded area in Fig. 1.5). The fault array is ~20 

km long and the average strike of these faults is NE-SW, subparallel to the trace of the 

Alpine Fault. The enveloping trace of this zone deflects across the topography, 

indicating a SE-ward dip of the entire tabular zone that encloses the array of faults. The 

occurrence of these faults is restricted to the described area in the central Southern Alps. 

None of these faults have been detected north of the Callary River or south of Balfour 

Glacier (Fig. 1.5). The field data for this thesis was collected during three New Zealand 

summers (2006, 2007, 2008) at two locations in the shear array: Chancellor Ridge and 

Crawford Knob (Fig. 1.5). At these sites, the faults are exposed in superb glaciated 

outcrops where they could be studied in detail and in 3D (Fig. 1.6).  

The faults cut and offset the dominant foliation in the Alpine Schist in an acute 

angle and truncate all other pre-existing structures such as older quartz veins (Fig. 1.7a, 

b). They extend both laterally and vertically over up to tens of metres (Fig. 1.7a). 

Throughout the array, the faults consistently show both dextral and NW-up senses of 

slip. Where the faults intersect older quartz veins embedded within the brittlely 

deformed Alpine Schist host, the quartz veins are typically ductilely sheared rather than 

brittlely displaced (Fig. 1.7b). Other quartz marker veins show both brittle and ductile 

slip components. The majority of quartz veins embedded in that schist form an acute 

angle with the dominant foliation and have been folded about a foliation-parallel axial 

plane prior to being sheared by the brittle faults. In this study, the expression “brittle-

ductile shear” describes our main field observation: a fault that brittlely offsets the 

quartzofeldspathic Alpine Schist, and usually blunts into discordant quartz veins, that 

are smoothly displaced across cm-wide ductile shear zones in those quartz veins (Fig. 

1.7b). The field work consisted mainly of detailed surveying and outcrop mapping of 

the brittle-ductile shears, as well as sampling of some of the deformed quartz veins. 

The shears are interpreted to have been activated sequentially, similar to the steps 

of an escalator, during passing of Pacific Plate rocks across the Alpine Fault foot ramp 

(Little et al., 2002b; Little, 2004). The deep embrittlement is seen as a transient process 

that took place under elevated fluid pressure and enhanced strain rates at the foot of the 

Alpine Fault (Little et al., 2002 a, b; Little, 2005; Wightman et al., 2006). As a result of 

rapid uplift in the hanging wall of the Alpine Fault and high erosion rates, the brittle-
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ductile shears have been exhumed from >20 km depth during the past ~3 Myrs (Little et 

al., 2002a). 

 

 

 

 

The brittle-ductile shear array has been the subject of several studies on different 

aspects of rock deformation under transient brittle-ductile deformation conditions (e.g., 

Little et al., 2002a, b; PhD thesis by Wightman, 2005; MSc thesis by Hill, 2005; 

Wightman et al., 2006; Wightman and Little, 2007). These studies gave insight into the 

formation, and the deformation conditions of the brittle-ductile shear array, and on the 

microstructural evolution of the ductilely to brittlely sheared quartz veins. The present 

study builds on this foundational research by advancing in the following new directions: 

quantitative rheology modelling, investigation of the interaction between brittle and 

ductile deformation, and investigation of controls on ductile shear zone localisation in 

the quartz veins. 

Fig. 1.5: Digital elevation model of the central Southern Alps of New Zealand. The green shaded area 
marks the approximate extent of the brittle-ductile shear array. Note the parallelism between Alpine Fault 
(red), brittle-ductile shear array (green), and Main Divide of the Southern Alps (purple). Chancellor Ridge 
and Crawford Knob are the two major surveying and sampling sites for this study. 
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Fig. 1.6: Glacier-polished outcrops of brittle-ductile shears at Craford Knob. Facing SW towards the 
Franz Josef Glacier valley (Waiho river). The dominant foliation is traced with black stippled lines. The 
white arrows indicate the approximate trend of the shear/outcrop intersections.  
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1.6 Thesis outline and organisation 

This thesis is written in five chapters of which Chapter 2 has been published in 

Journal of Structural Geology (Grigull and Little, 2008; JSG, v. 30, p. 868-875) and 

chapters 3 and 4 are intended for publication as stand-alone papers. There is some 

unavoidable repetition of exposition material between the chapters such as the 

geological and tectonic setting of the study area, the outcrop description of the brittle-

ductile shear array, and some references. Contributions to the thesis by co-authors of the 

individual papers are clearly indicated in the text. 

 

In Chapter 2, we address a common problem in structural geology: How can we 

extract the true displacement and the true shape of a displaced geological marker from 

an arbitrarily oriented outcrop surface; “true” meaning the plan view of the movement 

plane. Some measurements of the displacements and the shapes of the brittlely-to-

ductilely sheared quartz veins were taken on outcrop surfaces that were not oriented 

parallel to the movement plane of the shears. The difference in orientation between the 

measurement plane (outcrop surface) and the movement plane might have induced 

unsystematic scattering of geometrical scaling relationships measured in the deformed 

quartz veins. In this paper, we describe what sequence of graphical and mathematical 

steps are necessary to project the outline of a deformed quartz vein and of the brittle 

fault directly from the outcrop surface into the movement plane of that fault. These 

algebraic operations can be used on any actual faulted or sheared geological marker 

provided it has a cylindrical symmetry about the marker’s cut-off line. For the 

implementation of those mathematical operations, we have developed a Matlab® code. 

The numerical input for this code consists of the attitudes of the outcrop surface, the 

fault plane, the marker vein, and the trend and plunge of the slip vector. The program 

enables one to rotate and project the trace of the veins that was directly taken from the 

outcrop onto the movement plane. The MATLAB® code can be found in Appendix A.  

 

 

Fig. 1.7 (previous page): a) Glaciated outcrops of brittle-ductile shears at Chancellor Ridge. The near-
vertical shears extend over tens of meters and are sub-parallel to each other. b) Close-up of a “brittle-
ductile shear” as defined in the main text: a narrow, brittle fault offsets the Alpine schist in a dextral, 
NW-up sense; where the fault encounters a discordant quartz vein, the style of deformation changes from 
brittle to mostly ductile in that quartz vein. 
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In Chapter 3, we use a set of geometrical scaling relationships relating to the 

sheared quartz veins to establish flow law parameters that could have been operative 

during deformation of the quartz veins. We also address the question whether or not 

laboratory-derived flow laws are applicable to the deformed quartz veins in the 

Southern Alps. In this chapter, after projecting the trace of the sheared quartz veins into 

the movement plane, we perform numerical modelling of schist and quartz vein 

deformation to test whether we can reproduce the observed scaling relationships as well 

as the observed interaction between brittle faults and ductilely deforming quartz veins  

by using published flow laws for quartz within the well constrained deformation 

conditions of the shear array. The scaling relationships include e.g. ductile shear zone 

width vs. original vein thickness or total displacement. By changing flow law 

parameters in the numerical models, and comparing the modelling results with our field 

observations, we try to bracket values for the pre-exponential factor and the stress 

exponent for the quartz veins in the Southern Alps within certain boundary conditions 

(e.g., frictional yield stress). Numerical modelling for Chapter 3 was first conducted 

with the commercial finite element code ABAQUS (Simulia). We encountered 

considerable difficulty in modelling localised shear zones to high finite strain with the 

ABAQUS software, so after two years, we decided to switch to a Lagrangian-Eulerian 

finite-element code, SULEC, developed by S. Ellis and S. Buiter. SULEC was 

benchmarked against the early stages of deformation predicted by ABAQUS. SULEC 

uses a tracer-in-cell approach, which enabled us to simulate extremely narrow faults and 

shear zones without the subsequent distortion of the initial finite element grid and its 

necessary remeshing. 

 

 In Chapter 4, we focus on the variability of ductile to brittle deformation observed 

in the naturally sheared quartz veins. We try to identify rheological factors that could 

have led to fully brittle deformation of some veins and fully ductile deformation of 

other veins, despite those veins having similar original thicknesses and final 

displacements. We also investigate if changes in quartz vein rheology or deformation 

conditions could have been mandatory for shear zone localisation in those quartz veins. 

In order to find out in what way the “ductility” of the quartz veins varied spatially (i.e., 

along- or across-strike of the shears), we mapped several square meters of outcrop in the 

shear array at Crawford Knob. To evaluate the chief controlling factor(s) on the 

“ductility” of the deformed quartz veins, we sampled a representative suite for 
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laboratory testing. Using an optical microscope, we quantitatively determined the 

amount of the minor phase calcite in the quartz veins by eye. Depending on the size of 

the calcite grains in the quartz veins, the calcite content could have contributed to a 

decrease or increase in viscosity in the veins and therefore to a higher ductility (e.g. 

Brodie and Rutter, 2000, Mancktelow and Pennacchioni, 2010). We investigated 

differences in water content in the veins via FTIR spectroscopy since different water 

contents could have been a sign of differential hydrolytic weakening (e.g. Griggs, 

1967). The FTIR measurements were done by Klaus Röller and Rita Seifert at Ruhr-

University Bochum (Germany). A summary of the FTIR measurements was written by 

Bernhard Stöckhert (also Ruhr-University) and adapted and extended by me to 

incorporate it into the manuscript. We measured titanium isotopes in some of the 

sampled quartz veins via LA ICP-MS. We applied Titanium-in-Quartz geothermometry 

to determine if local differences in recrystallisation temperature could have led to the 

observed variable ductilities. To further constrain the deformational temperatures, 

quartz-calcite oxygen isotope thermometry was undertaken on mm-thick fibrous quartz-

calcite veins that have syn-deformationally infilled the brittle faults in the schist. The 

measurements for the quartz-calcite oxygen isotopes were done by Ruth Wightman in 

the course of her PhD studies and are again cited in a relevant context here (Appendix 

4.A). 

 

Chapter 5 summarises the findings and conclusions of all three preceding chapters 

and proposes further research ideas for the brittle-ductile shear array. 
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Chapter 2 

 

A Graphical-Algebraic Method for Analysing Shear Zone Displacements from 

Observations on Arbitrarily Oriented Outcrop Surfaces 

 

Susanne Grigull 

Timothy A. Little 

 

School of Geography, Environment and Earth Sciences 
Victoria University of Wellington 

PO Box 600 
Wellington 6140 

New Zealand 
 

Abstract 

We present a practical graphical-algebraic method that enables one to achieve the 

true displacement and shape of deformed geological markers in fault or shear zones as 

observed on arbitrarily oriented outcrop surfaces. We use as our natural example 

deformed quartz veins that have been sheared across brittle-ductile faults in the 

Southern Alps of New Zealand. The technique is based on the assumption that simple 

shear has dominated the shear zone formation. For input data we require the strikes and 

dips of the outcrop surfaces, the offset markers, and the shear zones as well as the pitch 

of the simple shear vector in the plane of the shear zone. The paper develops a set of 

algebraic and graphical operations that allows one to convert photographs of faulted or 

sheared planar markers observed on an arbitrary outcrop surface into an equivalent view 

that is coincident with the movement (m) plane of the fault or shear zone. This view 

displays the true displacement of the offset marker and delineates its deformed shape as 

seen in a section that is parallel to the slip vector. 



Chapter 2  Determination of true displacements 

 21

2.1 Introduction 

When investigating planar geological structures in the field that show an offset of 

older marker planes (e.g. fault zones, shear zones) we have to deal with the fact that in 

many cases the outcrop plane does not coincide with the movement plane (i.e. the plane 

perpendicular to the fault or shear zones, that coincides with the true slip direction). 

This is crucial, for example, if maps or photographs are used to constrain the rheology 

of rocks (e.g. Talbot, 1999; Pennacchioni, 2005; Fusseis et al., 2006). Ignoring the 

“distorted” nature of fault or shear zone offset geometries on arbitrary outcrop planes 

can yield to inaccurate measurements of slip or shear strain, and the deformed shape of 

offset markers. 

This paper offers a “recipe” on how to translate geological offset data from an 

arbitrary outcrop plane onto the movement plane.1 The paper is based on geological 

investigations of rocks in a fault array that has been exhumed from mid-lower crustal 

depths (~ 20 km) and is now exposed in glaciated outcrops in the central Southern 

Alps, New Zealand. Here, faults brittlely offset biotite-zone Alpine Schist, and where 

the tips of these faults encounter older quartz veins that are hosted by these schists, they 

terminate into local ductile shear zones in the quartz veins (Fig.2.1). 

As a first step towards retrieving rheological information from the deformed shape 

of the marker veins, the exposures were photographed and measurements were made of 

the fault attitudes (strike, dip), the quartz marker vein attitudes (strike, dip), the pitch of 

the slip lineations in the fault planes, and the strikes and dips of the outcrop surfaces. 

Unfortunately, rarely do the glaciated outcrop surfaces coincide exactly with the actual 

movement plane. Digitising the photographs of the faults and the quartz veins offset 

across them enabled us to extract x-y coordinates for the fault and vein margins in the 

outcrop plane. We then projected these x-y data onto the movement plane to derive a 

depiction of the true offsets and shapes of the displaced planar markers. 

 

 

 

 

                                                 
1 Interested researchers can contact the corresponding author for an electronic copy of a MATLAB7 script 

(including a short manual on using the script) that can read and process their data as described in the 

paper and outputs the data in a plot similar to Fig. 2.5 (c). The MATLAB script is included in Appendix 

A at the back of this thesis. 
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2.2 Assumptions 

Before projecting the data onto the movement plane, several assumptions must be 

made:  

1) that it is possible to measure the fault plane orientation, the marker vein 

orientation, the trend and plunge of the slip lineation on the fault surface, and 

the outcrop orientation, 

2) that the observed slip lineation is a faithful indicator of the finite slip direction, 

and that it is viewable nearby on another plane than the outcrop plane, or that it 

is otherwise known, 

3) that the fault plane can be approximated as a flat, non-bending surface, 

4) that the orientation and thickness of the original marker vein did not, prior to 

offset, change in the third dimension, i. e. that it was tabular in shape, 

5) that the subsequent deformational curvature of this marker was dominantly a 

result of simple shear, leading to a cylindrical “drag fold” geometry (Ramsay 

and Huber 1987, p. 509), 

6) that the photographs were taken normal to the outcrop surface, or that it is 

possible to undistort photographs that were taken at an oblique angle using e.g. 

the method of Cooper and Bamford (1987). 

 

Figure 2.1: Outcrop photograph showing brittle 
faults (dashed lines) terminating into quartz veins 
and offsetting them ductilely to brittlely. Location: 
Crawford Knob, central Southern Alps, New 
Zealand. 
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2.3 Preparing x-y-z data from photographs (Step 1) 

For the denotation of vectors, variables and coefficients refer to the glossary in 

Appendix (2.A). 

 

2.3.1 Coordinate systems 

In this paper, the right-hand-rule applies for all geological orientation 

measurements, where the thumb represents the strike of a plane and the index finger 

points into the dip direction. All planar measurements are given in ‘strike/dip’ and all 

linear measurements in ‘trend/plunge’. 

All Cartesian coordinate systems used in this paper are right-handed. A 

geographical and an outcrop coordinate system have been defined that have a common 

spatial origin located on the fault trace in the outcrop plane at the midpoint of the two 

halves of an offset marker vein (star in Fig. 2.2). The geographical coordinate system 

has got the axes xg = North, yg = East, and zg = “down”, where 
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 are the unit vectors that point along the respective axes. The outcrop 

coordinate system is spanned by the axes xoc, yoc, and zoc, where the positive xoc-axis is 

equivalent to the fault trace on the outcrop and pointing in the down-plunge direction of 

that trace. yoc lies in the outcrop face pointing 90° clockwise from the fault trace with 

respect to the positive zoc-axis. zoc is represented by the pole to the outcrop surface 

pointing “inwards” (Fig. 2.2). 
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 are the unit 

vectors and their vector components in geographical coordinates that are parallel to the 

outcrop coordinate system axes. 

In order to determine ocx̂


 , we first need to find the orientation of the pole to the 

outcrop plane and the pole to the fault plane by calculating the direction cosines (App. 

2.B.1) of those poles from the strike and dip angles of the respective planes. The pole to 

the outcrop plane yields ocẑ


. The pole to the fault plane yields the unit vector f
̂

 (Fig. 
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2.3a). The normalised right-handed cross-product of fzoc

ˆˆ


×  results in ocx̂


, the unit 

vector parallel to the fault trace on the outcrop surface. To derive consistency for the 

following transformations, we define ocx̂


 to always point downwards, i.e. if fzoc

ˆˆ


×  

results in a negative value for xoc

gz , we have to multiply the coordinates for ocx̂


by (-1). 

The normalised right-handed cross-product ococ xz ˆˆ 
×  will then result in the Cartesian 

vector coordinates for ocŷ


 (Fig. 2.2). 

 

2.3.2 Digitising 

For the projection of the marker veins onto the movement plane, they need to be 

digitised. In a graphics programme (e.g. Adobe Illustrator) the photograph is rotated in 

such a way that the positive xoc-axis (i.e. down-plunge “end” of the fault trace) points 

towards the top. The positive yoc-axis should now point to the right. The rotated 

photograph is then resized to a desired scale, imported into a digitising programme (e.g. 

Replica by Graphic Edge Ltd.) and digitised. For this, the origin is chosen such that it 

lies on the midpoint between the two offset parts of the markers. This origin 

corresponds to the spatial origin (star) in Fig. 2.2 and will remain the same throughout 

the following coordinate transformations. The digitising output are coordinates of 

points in the xoc-yoc-plane of the outcrop coordinate system, with zoc = 0. Note that most 

digitising software applications use left-handed coordinate systems, and close attention 

has to be paid not to confuse the x- and y-coordinates. 

 

2.3.3 Geographical coordinates of points 

Now the position of the digitised points has to be recast in terms of the 

geographical coordinate system. As the outcrop and geographical coordinate systems 

both have the same origin, a change of orthonormal basis can be performed using Eqs. 

(2.1a) and (2.1b), below, in order to transform the outcrop coordinates of a point P 

( P

ocx , P

ocy , P

ocz  = 0) into its geographical coordinates P ( P

gx , P

gy , P

gz ). 
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where pP


=:  means that the coordinates of point P are defined by its position vector 

p


 that is anchored at the common spatial origin (0,0,0). 

 

 

 

 

 

Figure 2.2: Block diagram illustrating the spatial relationship between the outcrop plane and the fault 
plane as well as the two coordinate systems defined in 3.1. (xOC: x-axis of the outcrop coordinate system, 
parallel and down-plunge to the fault trace and lying within the outcrop plane; yOC: at a right angle to xOC 
and lying within the outcrop surface; zOC: pole to the outcrop plane; xg, yg, zg: geographical coordinate 
axes). The spatial origin common to both coordinate systems is indicated by the white star. Due to 
clarity, the axes of the outcrop and geographical coordinate systems have been shifted away from the 
origin. In an ideally taken photograph, the photo axis (dashed line between camera and outcrop) is 
perpendicular to the outcrop surface (cf. assumption 6) in 2.). The corresponding planes, the slip vector 
and the three axes of the outcrop coordinate system are plotted in a lower hemisphere stereonet. Note 
that yOC is pointing upwards in the block diagram and would therefore plot on the upper hemisphere. The 
stereonet displays the negative end of the yOC-axis. 
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Knowing that
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:       (2.1b) 

This operation results in the vector components of vector p


 determining the position of 

a digitised point P in the geographical reference system. 

 

2.4 Projection into the movement plane (Step 2) 

 

2.4.1 The movement plane (m-plane) in point-normal form 

The movement plane or “m-plane” (Fig. 2.3a) is perpendicular to the fault plane 

and parallel to the unit vector of the direction of movement (i. e. parallel to the slip 

lineation). The pole to the m-plane m̂


 in geographical coordinates can therefore be 

calculated from the right-handed cross-product of the unit vector ŝ


 parallel to the slip 

direction and the unit vector f
̂

 parallel to the pole of the fault plane: 
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m̂


 originates at the spatial origin of all coordinate systems. 

 

In algebraic terms a plane in 3-space is uniquely defined by a point that lies within 

the plane and a vector normal to the plane, so that the point-normal form of the 

equation of the movement plane becomes 

0ˆ =⋅ mr


           (2.3)  

where r


 is a vector in the m-plane.  

 

2.4.2 The projection vector and projection line 

Similar to the axes of drag folds (Ramsay & Huber, 1987, their Fig. 23.9) the 

projection vector v̂


 corresponds to the intersection lineation of the fault surface and the 

marker vein (Fig. 2.3b). v̂


 is independent of the direction of movement and only 
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depends on the marker vein orientation and the orientation of the fault plane. In fact, v̂


 

is parallel to both the fault and the marker vein. Thus, the projection vector v̂


 is given 

by the cross product of the pole to the fault surface f
̂

 and the pole to the marker vein 

q̂


: 
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         (2.4) 

 

 

 

Figure 2.3: (a) Block diagram showing the downthrown half of a shear zone and the relationships 

between fault plane and movement plane as well as fault plane, marker vein and projection vector. ŝ


 

(slip vector) and f
̂

(pole to fault plane) span the movement plane. The cross product of q̂


 (pole to 

marker vein) and f
̂

 results in the projection vector v̂


. Point P’ is the projection of point P onto the 

movement plane along a projection line parallel to v̂


. The stippled bold black line represents the 
projected shape of the marker vein on the m-plane. (b) Block diagram showing the concept for deriving 

the projection vector v̂


. Assuming that the deformation of the geological marker (dark grey) was due to 

simple shear, v̂


 is equivalent to the fold axis of the geological marker, and corresponds to the 
intersection of the geological marker and the shear plane. The area shaded in light grey indicates the 
extent of the shear zone and the dashed grey lines mark the shear zone boundaries. 
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In Eq. (2.4) the direction of the cross product does not matter as the projection vector is 

only used as a direction vector for the ‘projection line’. 

The projection line (Fig. 2.3a) runs through the point P ( P

gx , P

gy , P

gz ) sitting on the 

outcrop surface and is parallel to the projection vector. The point P’ ( 'P

gx , 'P

gy , 'P

gz ) at 

which the projection line cuts through the m-plane is the projection of point P onto the 

movement plane. 

 

A line in 3-space is determined uniquely by specifying a point on the line and a 

nonzero vector parallel to the line so that the vector equation of the projection line 

becomes 

vpr
̂

λ+=   (2.5) 
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 is the position vector of point P in the geographical coordinate system 

derived from Eq. (2.1b), v̂


 is the projection vector derived from Eq. (2.4), and  is a 

scalar parameter with +∞<<∞−   which reflects the fact that the line extends 

indefinitely. 

 

2.4.3 The projection process 

In order to find the point P‘, where the projection line cuts the m-plane, Eqs. (2.2) 

and (2.5) need to be inserted into Eq. (2.3) and the resulting equation be solved for λ: 
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Placing λ back into Eq. (2.5) and solving for all vector coordinates leads to the 

coordinates of P’: 
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2.5 Plan view of the m-plane (Step 3) 

 

In order to achieve a plan view of the projected marker points on the m-plane, the 

strike and dip of the m-plane (strikem-plane, dipm-plane, App. 2.B.2) needs to be found and 

a rotation in 3-space undertaken, to bring that plane and its points into horizontality and 

to a position where all fault traces on the m-plane are parallel to one another. This 

rotation is subdivided into two steps. The first step consists of two rotations (Eqs. (2.8a) 

and (2.8b)) that will be comprised into one rotation under Eq. (2.8c). The strike line of 

the m-plane is the rotation axis for these first two rotations. First, the points on the m-

plane are rotated about the vertical axis (zg) until the strike line of the m-plane is E-W, 

i.e. parallel to yg. After this first rotation, the m-plane dips towards the negative xg-

direction. This rotation is called “rot1”, and the new position vectors of the projected 

points are called 1'rotp


: 
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The rotation angle for this first step is planemstrike −−°= 90 . For those strike 

angles between 0° and 90°,  will be positive and the rotation will be anticlockwise 

with respect to the positive zg-axis. For all other orientations,  will be negative and the 

rotation clockwise. Eq. (2.8a) rotates point P’ (Eq. 7) about the zg-axis and results in 

point '
1rotP . 

In the second step the coordinates of point '
1rotP  derived from Eq. (2.8a) are rotated 

about the now strike-parallel, E-W yg-axis (Eq. 8b). This rotation is called “rot2”. As 

point '
1rotP  is part of the dipping m-plane, the rotation angle for the rotation about the 

yg-axis becomes planemdip −−=ϕ  and the rotation is clockwise with respect to the 

positive yg-axis. 
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Eqs. (2.8a) and (2.8b) can be merged into Eq. (2.8c), where 12'rotP  is the projection 

of point P onto the movement plane and in plan view of the movement plane. The 

'
12

P

rotz -coordinate of point 12'rotP  must be 0 after the rotation. 
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  (2.8c) 

After having rotated the m-plane and its points into horizontality, the trace line of 

the fault on the m-plane need not necessarily be exactly N-S. The second step of this 

rotation in 3-space aims to make the plots of the shapes and offsets of multiple cases of 

displaced markers easily comparable, i.e. we need to rotate all projected points lying in 

the m-plane to a position where the fault traces of all cases are parallel to one another. 

The easiest solution to this problem is to conduct one further rotation (“rot3”) of each 

point about the vertical zg-axis, which will bring all the fault traces (on the m-plane) 

into N-S parallelism, with all of them containing the spatial origin. The trace t̂


 of a 

fault on the m-plane is the intersection between the fault plane and the m-plane. t̂


 is 

therefore the right-handed normalised cross-product of the pole to the m-plane m̂


 and 

the pole to the fault f
̂

: 
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  (2.9) 

We define t̂


 to always point downwards, i.e. if zt is negative, we additionally need to 

multiply Eq. (2.9) by the factor (-1). 

Applying the rotation in Eq. (2.8c) to t̂


 yields horizontality of the fault trace in the 

m-plane. We call the resulting vector 
















=
'

12

'
12

'
12
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t
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t
rot

t
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z

y

x

t


. 

 

The rotation angle for this third rotation (“rot3”) is the angle δ (Fig. 2.4) between 

the positive xg-axis (North) and the trace of the fault on the horizontal m-plane 12'ˆ
rott


, 

that was derived by executing first Eq. (2.9) and then Eq. (2.8c) . The angle δ is the 

result of the dot product between gx̂


 and 12'ˆ
rott


: 
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)'ˆˆarccos( 12rotg tx


⋅=δ          (2.10) 

However, we must take into account that Eq. (2.10) will only result in values for δ 

ranging from 0° to 180°. Thus, if '
12

t

roty  is positive, δ must be negative and the rotation 

would be clockwise with respect to the positive zg-axis. If '
12

t

roty  is negative, we must 

choose δ to be positive for an anticlockwise rotation about the zg-axis. The final rotation 

“rot3”, to be applied to all points is then given by the matrix: 
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     (2.11) 

 

 

 

 

2.6 Examples 

 

In order to demonstrate the usefulness and significance of the projection of 

geological field data into the movement plane, we chose two examples (Fig. 2.5) from 

an exhumed brittle-ductile fault array in the central Southern Alps, New Zealand (e. g. 

Wightman et al., 2006). The first example is a case, where the orientation of the outcrop 

plane is not very different from the orientation of the m-plane (left diagrams in Fig. 

Figure 2.4: Schematic diagram of plan 
view of the movement plane (grey 
shaded) after the first two rotations 
“rot1” (Eq. (2.8a)) and “rot2” (Eq. 

(2.8b)). The rotation angle δ  for the 
third rotation “rot3” (Eq. (2.11)) is the 
angle between the positive xg-axis 
(North) and the trace of the fault plane 
in the horizontal movement plane. 
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2.5), whereas in the second example the outcrop orientation differs strongly from the 

m-plane orientation (right diagrams in Fig. 2.5). 
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2.6.1 Example A 

The fault in example A strikes at an angle of 246° and dips with 80° towards the 

NW, the orientation of the marker vein is 355/65 NE and the slip lineation trends 251° 

and plunges 25°. The outcrop orientation (172/55 SW) differs by 36° in strike angle and 

by 28° in dip angle from that of the movement plane (136/27 SW). Plotting the 

transformed coordinates of example A (Fig. 2.5c) and comparing them to the original 

coordinates derived from digitising the marker vein on the photograph (Fig. 2.5b) 

shows that there is hardly any difference in offset and shape between the original vein 

and its projection. The curvature of the projected vein is only slightly less, and with 

12.3 cm the total offset of the projected vein is only 0.4 cm higher than the one 

measured in the outcrop plane (11.9 cm). 

 

2.6.2 Example B 

In Example B, the orientation of the fault is 252/88 NW, the marker vein strikes 

with an angle of 320° and dips 70° to the NE, and the trend and plunge of the slip 

lineation are the same as in example A (251/25). The difference in strike between the 

outcrop plane (270/35 N) and the m-plane (158/25 SW) is 112° and the difference in 

dip angles is 10°. The plots in Fig. 2.5c show that the curvature of the projected vein is 

significantly higher than the one of the original vein. The total offset of the marker vein 

measured on the outcrop surface is 8.5 cm, whereas the true offset measured in the 

movement plane is only 5.1 cm, meaning that the true offset is 3.4 cm (40 %) less than 

the apparent offset measured directly on the outcrop surface. 

 

2.7 Discussion and conclusions 

In this paper we presented a simple method for the translation of geological field 

data from an outcrop surface into the movement plane of a fault or shear zone. This 

Figure 2.5 (previous page): Flow diagram of the two examples described in the main text. (a) original 
photographs with required orientation measurements of planes and slip lineation. (b) Photograph has 
been rotated such that the xOC-axis points towards the top of the page. The spatial origin of all coordinate 
systems is marked with a white star. The white circle marks an exemplary digitised point on the 
boundary between marker vein and wall rock. The point is given in both the coordinates of the outcrop 
coordinate system and the geographical coordinate system. The white double arrows mark the offsets that 
were measured on the outcrop surface. (c) xy-data of the marker veins after the projection plotted within 
the m-plane and rotated after Eq. (2.11). The true offsets within the m-plane are marked by black double 
arrows. The points P’rot3 are the projections of the points POC chosen in (b). 
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enables us to calculate true displacements from separation data on outcrop faces and the 

“true” shape of curved and deformed geological markers. This method is also an 

algebraic-graphical way to solve for slip from arbitrary outcrop offsets. If using the 

method described in this paper, it is no longer necessary to search for optimally 

oriented outcrops as, by following the steps above, any outcrop data can be projected 

into the desired plane, if all variables that are necessary for the projection are known. 

As indicated by the two given examples, the projection into the movement plane is 

especially important for outcrop orientations that deviate strongly from the orientation 

of the movement plane. However, this is a statement without mathematical proof, and 

one should consider using the described method for any case of outcrop orientation in 

order to achieve a high accuracy when investigating offsets and shapes of displaced 

geological markers. The results of these coordinate transformations clearly depend on 

the accuracy of the orientation measurements of planes and lineations and also on the 

verticality of the photo axis with respect to the outcrop surface. Also, if one of the 

assumptions in section 2.2 is incorrect (e.g. if the deformation was not only due to 

simple shear) this technique will fail. However, an error propagation analysis would go 

beyond the scope of this paper and will be left to keen mathematicians. 
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Appendix 2.A – Glossary  

 

2.A.1 Denotation 

a


 vector a 

â


 unit vector in direction of a 

















a

a

a

z

y

x

 vector components or coordinates of a 

ba


×  right-handed cross product 

ba


⋅  dot product 

a


 length / norm of a 

 

2.A.2 Subscripts and Superscripts 

g geographical 

oc outcrop 

m movement plane 

v projection vector 

rot rotation 

 

2.A.3 Key 

xg, yg, zg axes spanning geographical coordinate system 

xoc, yoc, zoc axes spanning outcrop coordinate system 

f


 vector in direction of pole to fault plane 

s


 slip vector 

m


 vector in direction of pole to m-plane 

r


 position vector of point P 

q


 vector in direction of pole to marker vein 

v


 projection vector 

 scalar parameter 

 rotation angle for first rotation about zg-axis 

 rotation angle for rotation about yg-axis 

δ rotation angle for second rotation about zg-axis 
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Appendix 2.B – Conversions 

 

2.B.1 – Conversion from geological attitudes to Cartesian coordinates 

Converting the geological attitudes of a plane or a line into Cartesian coordinates 

means determining direction cosines from strike and dip or trend and plunge 

measurements. Direction cosines are the cosines of the angles , , and  that a vector 

makes with the positive x, y, and z-axes respectively. For planes, the direction cosines 

are calculated after Eq. (2.B.1-1) and result in a unit normal vector pointing in the 

direction of the pole to the plane: 
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−=
















=
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
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
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


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=
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cos

sincos

sinsin

cos

cos

cos

ˆ
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py

px

p

n

n

n

n


,     (2.B.1-1) 

where pn̂


 denotes the unit normal vector of the plane,  is the strike angle of the plane 

and  is the dip angle. 

The direction cosines of lines are calculated as in Eq. (2.B.1-2). 
















=
















=
















=

ε

εη

εη

γ

β

α

sin

cossin

coscos

cos

cos

cos

ˆ

lz

ly

lx

l

n

n

n

n


,      (2.B.1-2) 

where ln̂


 denotes the unit vector in trend direction of the line,  is the trend of the line, 

and  is the plunge. 

 

2.B.2 – Conversion from Cartesian coordinates to geological attitudes 

In order to convert the Cartesian vector components 
















z

y

x

n

n

n

 of a unit vector n̂


 (e.g. 

pn̂


 or ln̂


) into geological attitudes, several rules must be observed. The conversion to 

polar coordinates results in the trend and plunge of the line that contains n̂


. 

From trigonometrical and geometrical relationships, the preliminary trend  of the 

line can generally be calculated as 









=

x

y

n

n
 arctan .        (2.B.2-1) 

If 0=xn , then the trend is calculated as 
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°⋅= 90
y

y

n

n
 ,         (2.B.2-2) 

which means that the line would trend East-West. The first factor on the right hand side 

of Eq. (2.B.2-2) is normalised to +/- One. 

If 0<xn , then the calculation of the trend is 

°+







= 180arctan

x

y

n

n
 ,        (2.B.2-3) 

meaning that °<<° 27090  . As in this case arctan results in negative (anti-clockwise) 

angles between the y-axis and the trend-line, 180° have to be added to achieve a trend 

measured clockwise from North (x-axis). 

If 0arctan <








x

y

n

n
, then the equation to determine the trend becomes 

°+







= 360arctan

x

y

n

n
 .        (2.B.2-4) 

In this case, the trend would be negative (anti-clockwise) from North (x-axis), thus 

360° need to be added in order to achieve the correct trend measured clockwise from 

North. 

 

The plunge  of the line is determined by 















+
=

22
arctan

yx

z

nn

n .        (2.B.2-5) 

The only rule that applies for finding the plunge is that if 022 =+ yx nn , then the plunge 

is to be calculated as 

°⋅= 90
z

z

n

n .         (2.B.2-6) 

This means that the line would be vertical. 

 

Finally, in case the plunge is negative ( 0< ), more rules apply for finding the 

correct trend 0 and plunge 0 . 

If 0<  and if ( ) °>°+ 360180 , then 

°−= 1800  .         (2.B.2-7) 
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If 0<  and if ( ) °<°+ 360180 , then 

°+= 1800  .         (2.B.2-8) 

In all other cases the true trend and plunge of the line are 

 =0  and  =0 .        (2.B.2-9) 

 

Assuming pn̂


 was the unit normal vector to a plane, and having derived the trend 

and plunge of the line that contains pn̂


, the strike angle  and dip angle  of the plane 

can be calculated observing the following rules: 

If °>+° 36090 0µ , then the strike of the plane is given by 

°−= 2700 .         (2.B.2-10) 

In all other cases, the strike is 

°+= 900          (2.B.2-11) 

and the dip of the plane is 

090  −°= .        (2.B.2-12) 
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3.1 Introduction 

 

Quartz is one of the most abundant minerals in the Earth’s crust, and the rheology 

of quartz-dominated rocks is thought to be the main control on the depth of the brittle-

ductile1 transition and the nucleation depth of major earthquakes (e.g., Scholz, 1988). 

However, we know very little about the rheological behaviour and the brittle-ductile 

transisiton of quartz under geological conditions. Most of our knowledge of the ductile 

behaviour of quartz is based on laboratory experiments conducted under unnaturally hot 

and fast deformation conditions, i.e., temperatures of > 700º C and strain rates in the 

order of 10-7 to 10-4 sec-1 (e.g., Hirth and Tullis, 1992; Rutter and Brodie, 2004; 

Paterson and Luan, 1990; Luan and Paterson, 1992; Gleason and Tullis, 1995). Flow 

laws for quartz that are derived in the laboratory are of the form 

!
"
#$

%
&'(((() '

RT
QdfA rm

OH
n
dE exp

2
*+!        (3.1) 

where +!  is the uniaxial strain rate in [s-1], AE is the experimentally derived pre-

exponential factor with units [MPa-n s-1], d* is the differential stress in [MPa], n is the 

stress exponent, OHf
2

 is water fugacity in [MPa], m is the water fugacity exponent, d is 

grain size in [µm], r is the grain size exponent, Q is activation enthalpy with units of [J 

mol-1], R = 8.314 J mol-1 K-1 is the universal gas constant, and T is temperature in [K]. 

For a grain size exponent 0)r  and a stress exponent 2,n , equation (1) describes 

typical grain size insensitive dislocation creep behaviour. For a grain-size exponent 

1,r  and a stress exponent 2-n , the flow law becomes grain size dependent and 

deformation will be accommodated by diffusional processes. The question is whether or 

not we can extrapolate those experimentally derived flow laws for quartz to natural 

geological conditions. 

Several authors have used field observations to test the experimentally derived flow 

laws for quartz and quartz-dominated rocks against natural examples. For example, 

Kenis et al. (2004) and Kenis et al. (2005) have investigated the relationship between 

the shape of mullions and the power law stress exponent as well as the competence 

contrast between quartz and psammite, Treagus (1999) discussed the relationship 

                                                 
1 In this paper we use the term ‘ductile’ in a similar way to Fusseis et al. (2006), i.e., as a synonym to 
‘solid-state viscous’. However, we kept in mind that ‘ductility’ is merely a description of distributed 
coherent deformation and does not describe a ‘mechanistic concept’. 
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between effective viscosity ratios and cleavage refraction in different rock layers, and 

Hudleston and Lan (1993, 1994, 1995) and Lan and Hudleston (1995a, 1995b, 1996) 

used fold shapes and scaling relationships between the amplitude, wavelength, and layer 

thickness in folds to deduce information about rock rheology in the form of viscosity 

ratios. Treagus and Treagus (2002) modelled viscosity ratios from strain variations in 

conglomerates with varying rock phase fractions. Treagus et al. (1996) and Treagus and 

Lan (2000, 2003, 2004) derived information about rock rheology and competence 

contrasts from geological and numerical observations of the shape of boudins (i.e., the 

deformation of initially square objects to ‘fish-mouth’ vs. barrel-shaped boudins). 

Attempts at retrieving rheological information from ductile shear zones (especially 

about the stress exponent n) have been made by Talbot (1999); see also discussions of 

Talbot’s method and corrections in Fletcher (2001), Sonder (2001), and Talbot (2001). 

Hirth et al. (2001) were able to obtain a quartzite flow law for rocks deformed in the 

Ruby Gap duplex, Australia (e.g., Dunlap et al., 1997), by comparing laboratory derived 

microstructures to the microstructures that were found in their naturally deformed rocks 

and by adjusting experimentally derived flow laws to their deformation conditions.  

All the examples mentioned above use the contrast between quartz-dominated 

layers and the surrounding less quartzose matrix to derive rheological parameter values. 

They also assume that both quartz and matrix are deforming viscously. However, many 

field examples of deformed rocks display a mixture of brittle, semi-brittle, and viscous 

behaviour. The natural system is more complex to interpret, yet critical to our 

understanding of crustal rheology in the mid-crust. Several authors have investigated 

this type of behaviour; for example Mancktelow and Pennacchioni (2005) describe the 

role of precursory brittle faults on the development of ductile shear zones. Fusseis et al. 

(2006) described the interactions and networking of brittle to ductile shear zones in Cap 

de Creus, Spain. A numerical modelling study on brittle-viscous coupling of linear 

viscous layers surrounding a strain softening brittle material has been published by 

Schueller et al. (2005). Huismans et al. (2005) set up crustal-scale extension models in 

order to investigate the control of a layer with different linear viscosities on the choice 

of failure mode (“pure shear”, “symmetric plug”, and “asymmetric plug”) in an 

overlying uniform purely plastic (i.e., brittle) layer. Their results show that the resulting 

failure mode depends on the viscous and frictional energy dissipation rates. Nagel and 

Buck (2006) derived similar results to those by Huismans et al. (2005) from numerical 

extension models that simulate the normal faulting behaviour of a brittle layer on top of 
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a thin viscous layer. Nagel and Buck (2006) observed that the localisation of a fault in 

the brittle layer is not only dependent on the viscosity of the underlying thin layer but 

also on the thickness of that layer. They predict that the thinner that ductile layer the 

less localised that deformation will be in the adjacent brittle layer. 

 In this paper we attempt to extract information about quartz rheology from field 

observations and computer modelling of variably brittlely to ductilely sheared quartz 

veins in a neotectonic fault array in the central Southern Alps, New Zealand. We also 

try to extract comparative rheological information about the schistose psammitic and 

pelitic rocks that host those quartz veins (Alpine Schist). Previous geological studies 

(mainly Wightman, 2005; Wightman et al., 2006; Wightman and Little, 2007) in this 

brittle-ductile fault array have established constraints on the physical conditions of 

deformation of these veins (i.e., time, strain rate, stress, depth, lithostatic pressure, fluid 

pressure, and temperature). Because of this context and the well understood 

contemporary deformational setting of the fault array and the veins, this site can be 

considered to function as a rare natural laboratory into quartz rheology and the interplay 

between brittle and ductile deformation in mid-crustal rocks. Within the boundaries 

imposed by the set of geologically measured physical constraints, we use finite element 

modelling in order to replicate the observed geological structures in the sheared veins 

and to estimate flow law parameters that are applicable to the deformed veins and 

quartzofeldspathic schist host in the Southern Alps. Our field studies show that the 

variably faulted and ductilely sheared quartz veins follow a set of scaling relationships 

between various geometrical parameters associated with the brittle-ductile shear zones 

(e.g., shear zone width vs. total amount of slip). These scaling relationships provide us 

with important further constraints on the behaviour of the natural veins and their wall 

rocks, allowing us to explore and limit the relevant properties in our modelling space. 

The main questions we address in this paper are: What rheological information can 

be gained from the interaction between brittle and ductile deformation in those quartz-

rich rocks? Can we use the deformed shape and geometrical scaling relationships of the 

quartz veins to constrain operative flow law parameters for those quartz veins? Are 

laboratory-derived flow laws applicable to those naturally deformed quartz veins?  
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3.2 Tectonic setting and outcrop scale studies 

 

3.2.1 The Southern Alps of New Zealand and the Alpine Fault 

The Alpine Fault is the main and most obvious expression of the Pacific-Australian 

plate boundary on the South Island of New Zealand (Fig. 3.1a). At the surface, it strikes 

~055º and dips ~30-50º SE in the central part of the Southern Alps (e.g., Norris and 

Cooper, 1995; Kleffmann et al., 1998; Stern et al., 2007; Little et al., 2007; and 

references therein). During the past several m.y. the direction of relative plate motion 

between the Australian and the Pacific plate has been obliquely convergent at 37 ± 2 

mm/yr at N71.E (averaged over 3 Ma; NUVEL-1A global plate motion model of 

DeMets et al., 1990, 1994). This is approximately 16. clockwise from the strike of the 

Alpine Fault. The Alpine Fault accommodates about 70-75% of both the margin-

parallel and margin-transversal components of the plate motion between the Pacific and 

the Australian plates (Norris and Cooper, 2001). In the central Southern Alps, the 

dextral-reverse Alpine Fault has moved with an average late Quaternary strike-slip rate 

of 22-32 mm/yr, and dip slip rates of 8-12 mm/yr (Sutherland et al., 2006; Norris and 

Cooper, 2001, 2007). 

Uplift rates along the central part of the Alpine Fault are a maximum between the 

Fox and Franz Josef glaciers (~10 mm/yr, Wellman, 1979, Bull and Cooper, 1986; 

Tippett and Kamp, 1993; Beavan at al., 2007) (Fig. 3.1b). It has been conjectured that 

erosion rates are approximately equal to these uplift rates (Adams, 1980, 1981), leading 

to what is inferred to be a relatively steady-state topography in the Southern Alps. In the 

central Southern Alps, Mesozoic quartzofeldspathic rocks (termed “Alpine Schist”) 

have been exhumed to the east of the Alpine Fault. The metamorphic grade of the rocks 

to the east of the fault decreases from amphibolite facies adjacent to the mylonites of the 

Alpine Fault to prehnite-pumpellyite facies at the Main Divide 15-20 km east of the 

Alpine Fault (Grapes & Watanabe, 1992). Approximate mineral isograds are plotted in 

Fig. 3.1b (after Cox and Barrell, 2007). 

 

Through seismic experiments, Stern et al. (2001, 2007; and references therein) 

were able to trace the Alpine Fault down to 35 km depth. At that depth, Stern et al. 

(2007) imaged sub-horizontal reflectors, interpreted as a detachment along which 
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crustal rocks from greater than 25 km depth are delaminated and transported onto the 

Alpine Fault (Fig. 3.1c) 

Stern at al. (2001, 2007) also describe an approximately 30 km thick low-velocity 

zone above the fault surface extending to 35 km depth. They interpreted this low 

velocity zone as being interconnected metamorphic fluids that were derived during 

shearing and dewatering of the rocks above the detachment. These interpretations are 

further supported by a magnetotelluric study in that area (Wannamaker et al., 2002), 

which showed a high conductivity region coinciding approximately with the low-

velocity zone (resistivity contours in Fig. 3.1c).  

 

3.2.2 Study area: An array of brittle-ductile faults 

The study area is located in the central Southern Alps, New Zealand (Fig. 3.1a and 

1b). Within this area, a 1-2 km wide array of closely spaced, near-vertical, brittle-ductile 

faults is found in the uplifted and exhumed hanging wall of the Alpine Fault, 5-7 km 

structurally above it (Fig. 3.1b and 3.1c). The field data for this paper was derived from 

two locations in this fault array: Chancellor Ridge and Crawford Knob (Fig. 3.1b). 

Here, the brittle-ductile faults are exposed in 3D in recently glaciated outcrops. 

 

The Alpine Schist in our study area consists mainly of biotite-grade 

quartzofeldspathic meta-greywacke (psammites with intercalated pelite layers). The 

dominant foliation in the schist strikes 030º - 060º and typically dips steeply to the SE 

(Fig. 3.2e). 

Planar, closely spaced, near-vertical faults cut and offset the dominant schist 

foliation at an acute angle and truncate other pre-existing structures such as older quartz 

veins (Fig. 3.2a-d). These faults strike sub-parallel to the Alpine Fault. At Crawford 

Knob, they strike ~23° clockwise of the dominant foliation, and at Chancellor Ridge 

~12° anticlockwise of that fabric. The faults are nearly planar and extend laterally and 

vertically for up to 10s of metres. Throughout the fault array, the faults consistently 

show both dextral and NW-up senses of slip. Where the faults intersect older quartz 

veins embedded within the brittlely deformed schist host, the quartz veins are typically 

ductilely sheared rather than brittlely displaced. Some of these deformed quartz veins 

have been smoothly and coherently smeared out to ductile shear strains of up to 15 

across shear zones (in the quartz veins) that are ~3 cm wide (Fig. 3.2c, 3.2d). Other 

quartz marker veins show both brittle and ductile slip components. 
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Some of the faults are infilled with fibrous veins of quartz + calcite / chlorite. In 

these, a distinct alignment of mineral fibres records the slip direction on the faults (Fig. 

3.2f). The fault-infilling veins are ~2 mm wide on average. The width of the infilling 

veins equates to the dilative fault width. On the basis of these delicate structures of 

fibrous, incrementally grown fault-infilling veins (Fig. 3.2f), shearing is interpreted to 

have been accommodated by an aseismic stable sliding process that included some 

dissolution-precipitation creep along the sliding surface (e.g., Gratier and Gamond, 

1990; Ohlmacher and Aydin, 1997; Wightman, 2005).  

The aqueous metamorphic fluids from which the fault-infilling veins were 

precipitated are inferred to have been released from ductilely deforming rocks that lay 

beneath the brittle-ductile fault array (Wightman, 2005; Wightman and Little, 2007). 

Progressive growth of such mineral fibres would only have been possible if the shearing 

was slow and not abrupt as during an earthquake (e.g., Gratier and Gamond, 1990). 

Also, the remarkable lack of brittle deformation of many of the strongly and smoothly 

sheared older quartz veins implies that strain rates were low enough to prevent their 

brittle fracture. Further, the complete absence of fault gouge, pseudotachylites, or other 

cataclastic or seismically-induced fault rocks along the sharply expressed fault planes 

strongly supports the assumption that the deformation of the schist and the quartz veins 

was due to an aseismic stable sliding process (Little et al. 2002a). 

 

As a result of rapid uplift in the hanging wall of the Alpine Fault and high erosion 

rates, the biotite zone rocks hosting the shears have been exhumed from >20 km depth 

Figure 3.2 (previous page): Rocks and structures in the brittle-ductile fault array. Note the consistent 
dextral, NW-up sense of movement of the backshears in all photographs. a) c. 300 m high cliff at 
Crawford Knob, facing NE, showing the nearly vertical brittle-ductile faults with respect to the dominant 
foliation. b) Glaciated outcrops near Chancellor Ridge. Photograph taken facing SW. The superposed 
planes indicate the systematically dihedral angle of ~12. between the main foliation and the planar 
brittle-ductile faults which are spaced at ~40 ± 53 cm intervals. c) Outcrop photograph, Crawford Knob. 
Here, backshears brittlely offset the host quartzofeldspathic Alpine Schist as well as some of the thinnest 
(< 1 cm) quartz veins embedded in that schist. Where the tips of the faults truncate thicker quartz veins, 
they deform them brittlely-to-ductilely or entirely ductilely. The dashed line marks a fault infilling vein. 
d) Single quartz vein from Chancellor Ridge being displaced fully ductilely where a brittle fault in the 
host schist intersects the vein. Note how the fault bends slightly around the outside margin of the 
deformed quartz vein and the extreme vein attenuation in the shear zone centre, which is typical for the 
ductilely shearing veins. e) Mean attitudes of brittle faults, mean foliation, poles to deformed quartz 
veins, fault surface lineations, and average slip direction plotted on stereonet, lower hemisphere. CK = 
Crawford Knob, CH = Chancellor Ridge. f) Photograph of qtz + cal + chl vein infilling brittle faults. 
Incrementally grown fibre lineations indicate the direction of slip. The grey arrow points in the direction 
in which the (now eroded) hanging wall moved. 
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during the past ~3 Myrs (Little et al. 2002a). Little et al. (2002a), Wightman et al. 

(2006), and Wightman and Little (2007) have suggested a model for the formation and 

evolution of the brittle-ductile fault array (Fig. 3.3). They propose that rocks in the 

hanging wall of the Alpine Fault were first displaced along a sub-horizontal detachment 

before being tilted eastward and sheared in an oblique, escalator-like fashion upon 

reaching the base of the Alpine Fault ramp (Fig. 3.3). When the rocks negotiated the 

step at the foot of this fault ramp, they were transiently subject to high shear stresses 

and strain rates leading to a temporary embrittlement into the lower crust. This caused 

the array of faults to form in lower crustal rocks that had previously been experiencing 

only ductile deformation. Alternatively, this transient embrittlement might be related to 

movement of overlying brittle faults in the upper crust, associated with straining of the 

upper crust as it negotiated the Alpine Fault ramp. 

 

Crystallographic preferred orientation (CPO) measurements on ductilely sheared 

quartz marker veins by Wightman (2005), Wightman et al. (2006), and Hill (2005) has 

revealed that despite finite ductile shear strains of 5-10, the CPO in these deformed 

veins are everywhere very weak to random. Wightman et al. (2006) suggest that a 

combination of sufficiently reduced grain-sizes through dynamic recrystallisation and 

rapidly waning stresses towards the end of the shearing process could have allowed for 

a late increment of diffusion creep-accommodated grain boundary sliding which may 

have weakened or randomised a pre-existing CPO in the veins (cf. Appendix 3.A). 

Today, the grain-boundaries in the deformed quartz veins are consistently polygonal 

(mostly straight grain boundaries and 120° triple junctions; Fig. 3.4), and the mean 

grain diameter is 126 / 16 µm in the sheared part of the vein and 171 / 14 m in the 

unsheared part (2D-grain sizes from Hill, 2005). This microstructure reflects a period of 

static recrystallisation of the veins subsequent to their ductile shearing. After the rocks 

passed the foot of the Alpine Fault, that was subject to elevated stresses and strain rates, 

the rocks were transported upwards along the fault ramp and away from this “corner 

region” without undergoing any further shearing (Fig. 3.3, “inactive faults”). Static 

recrystallisation during their transport to the surface may then have led to grain growth 

and the observed foam-like microstructures (Wightman, 2005; Wightman et al., 2006). 
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Figure 3.3: Escalator model after Little et al. (2002a), Little (2004). Pacific Plate rocks are delaminated 
along a detachment and undergo transiently high shear stresses and embrittlement when they pass the 
foot of the Alpine Fault ramp. After passing this critical point, hanging wall deformation stops and the 
rocks get transported to the surface (inactive faults). 
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3.3 Summary of geological and physical constraints on vein deformation 

 

3.3.1 Time available for ductile deformation and subsequent static recrystallisation of 

the quartz veins 

Wightman (2005) calculated a maximum time interval of 1.5 Myrs between 

deformation of the quartz veins at the ramp step and their subsequent cooling through 

300° C (Fig. 3.1c). This calculation is based on an Alpine Fault dip of 45º (e.g., Norris 

and Cooper, 1995), a late Quaternary dip-slip rate in the central part of the Alps of 10 

mm/yr (Norris and Cooper, 2001), and a 300º C isotherm that is placed at ~10 km depth 

(Shi et al., 1996; Batt and Braun, 1999). We assume that at temperatures less than 300º 

C quartz will cease to deform by crystal plastic creep (e.g., Hirth and Tullis, 1994; 

Stöckhert et al., 1999). This time estimate also includes the time for static 

recrystallisation, to allow for vein recovery and grain growth. Wightman (2005) used 

experimental grain growth rates in quartz and calculated the time-interval that was 

necessary for grain growth from 1 µm (original estimated dynamically recrystallised 

grain size after shearing) to 100 µm (approximate grain size after static recrystallisation) 

to be ~1 Myrs. Subtracting this time-interval from the total available time of 1.5 Myrs, 

the maximum time for vein deformation is only 0.5 Myrs. 

  

3.3.2 Temperature 

Several constraints can be placed on the temperature during shear activity and 

deformation of the quartz veins. An upper limit for deformation temperature of 600 / 

50° C is given by late Cenozoic metamorphism temperatures in the amphibolite facies 

rocks closer to the Alpine Fault that structurally underlie the faulted rocks in our study 

area (Vry et al., 2004). The rocks that host the brittle-ductile faults are greenschist facies 

rocks in the biotite-zone, that do not show any signs of retrogressive metamorphism that 

may have been associated with late Cenozoic shearing or fluid infiltration. These 

Figure 3.4 (previous page): Microphotographs of a ductilely sheared quartz vein from Crawford Knob 
under crossed polarisers. a) Stitched microphotograph of deformed vein. Note the smooth, fracture-free 
bend in the quartz vein where the shear zone transects it. The dominant foliation is clearly expressed by 
biotite alignment in the wall rock schist. b) statically recrystallised, foam-like microstructure in 
unsheared part of the vein, external to the ductile shear zone. c) statically recrystallised, foam-like 
microstructure in sheared part of the vein, internal to the ductile shear zone. Note how similar the 
polygonised grain shapes and the microstructure are in both the sheared and the unsheared part of the 
quartz vein. Orange arrows point to 120° triple junctions, showing the polygonised grain shapes 
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observations are consistent with deformation temperatures of 350 – 500° C. Also, some 

of the fault-infilling quartz-calcite veins contain coexisting biotite and muscovite, which 

implies precipitation temperatures of these veins between 300-400° C (e.g., Spear, 

1993, p. 345). Grigull et al. (this study, section 4.6.7.1.2) measured Ti-concentrations in 

the deformed and undeformed parts of the shearing veins. Using Titanium-in-quartz 

geothermometry (TitaniQ, Wark and Watson, 2006), they were able to measure 

minimum static recrystallisation temperatures of 425 ± 38° C for deformed veins from 

Chancellor Ridge and 400 ± 21° C for veins from Crawford Knob. For the undeformed 

parts of the same veins they measured minimum recrystallisation temperatures of c. 

530° C, presumably a relict of the original vein emplacement process prior to shearing. 

After demonstrating isotopic equilibrium conditions, Wightman (2005) performed 

quartz-calcite oxygen isotope studies on four of the fault-infilling veins to estimate a 

temperature of 480 ± 50° C for the time of vein deformation. From the TitaniQ and 

oxygen-isotope geothermometry, we predict a temperature range of 400-530° C at the 

time of vein deformation. For the geodynamic models presented in this paper we will 

use a mean temperature of 450° C for the deformation of the quartz veins. 

 

3.3.3 Deformation depth and stress state 

We calculated a minimum depth of vein deformation of ~21 km as follows. Late 

Cenozoic 40Ar/39Ar muscovite cooling (plateau) ages in the host rocks at Crawford 

Knob of 3.4-4.5 Ma (Wightman, 2005) record the time of cooling of the rocks through 

~400 / 50° C. These ages correspond to temperatures of cooling that are within the 

lower range of the deformation temperature of the quartz veins. The late Quaternary 

dip-slip rate on the Alpine Fault (10 / 2 mm/yr, Norris and Cooper, 2001) and the dip of 

the Alpine Fault (45º) can then be used to calculate the minimum depth of exhumation 

of those rocks of ~28 / 7 km. This analysis suggests a minimum depth for vein 

deformation of ~21 km.  

Petrologically based estimates for the exhumation depth of rocks currently exposed 

in the mylonite zone at the Alpine Fault are 25-35 km (e.g., Norris and Cooper, 2003; 

Vry et al, 2004; Toy, 2007). Seismic reflection data suggests a detachment depth of 35 

km for the Alpine Fault (Stern et al., 2007). Since the faulted rocks that are exhumed at 

Crawford Knob lie 5-7 km structurally above the mylonites of the Alpine Fault, these 

data imply an original depth of 20-25 km for the faulted array. The minimum depth 
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estimate of ~21 km leads us to infer an overburden pressure of Plith ! 560 MPa 

(assuming a rock density ! = 2700 kg/m3 and gzPlith 0) ).  

Entrapment fluid pressure of primary aqueous fluid inclusions in the fault-infilling 

veins was estimated by Wightman (2005) to have been Pf ! 310 ± 90 MPa, which is 

based on fluid inclusion isochors combined with the temperature range of 400-530. C 

that was derived from quartz and calcite 18O/16O thermometry in the syndeformational 

shear-infilling veins and TitaniQ geothermometry in the deformed and undeformed 

parts of the sheared veins. This Pf is inferred to have been the fluid pressure during 

growth of the fluid-entrapping infilling veins after development of the fractures and 

during their passive infilling as a result of fluid flow along these fractures. This suggests 

a ratio of fluid pressure to lithostatic pressure at the time of vein growth and fluid 

inclusion entrapment of 16.055.0 /1) lithf PP2 , which is above the theoretical 

hydrostatic ratio of 4.037.0 '12 .  

Simple Mohr-Coulomb fault mechanical analyses (Wightman and Little, 2007; 

Grigull et al., this study, section 4.6.7.2) indicate that during brittle failure of the Alpine 

Schist in the lower crust, fluid pressures were probably near-lithostatic, resulting in a 

fluid pressure ratio 98.01) lithf PP2 , an observation that is consistent with several 

types of geophysical data that have been interpreted to represent enhanced (near-

lithostatic) fluid pressures in the hanging wall of the Alpine Fault (Stern et al. 2001, 

2007). 

Wightman (2005) interpreted microstructures (relict quartz grains with elongate 

shape and crystallographic preferred orientations at high angles to the faults) in the 

dilative shear-infilling veins as indicators of original vein emplacement through crack-

seal processes into hybrid extensional-shear fractures in the quartzofeldspathic rocks, 

although the relative timing of dilation and shear on the fractures is unclear. Assuming a 

depth of 21 km, and using a combined Mohr-Coulomb-Griffith analysis of brittle 

fracture for intact rock, Wightman (2005) derived a minimum estimate for the 

differential stress at the time of brittle failure of the host schist of 3 4 )') 31 *** d  100 

MPa. To cause brittle failure at this depth, such a differential stress would have required 

pore fluid pressures that were at least near lithostatic (Pf = 500-530 MPa) at the time of 

brittle failure (Wightman, 2005; Wightman and Little, 2007). Considering that fluid 

pressures were ~310 / 90 MPa (i.e., 2 = 0.39 – 0.71) at the time of the fluid inclusion 

entrapment in the infilling veins, one infers that the fluid pressure in the vein must have 
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fallen post-failure. At this Pf, the expected differential stress for conditions of brittle 

failure would have been ~340 ± 90 MPa. 

Considering the near-vertical attitude of the brittle faults, which strike subparallel 

to the plate margin in this transpressive plate boundary setting, Wightman (2005) 

inferred that the intermediate principal stress was nearly vertical and hence equal to the 

overburden lithostatic pressure, i.e., 2* = Plith = 560 MPa. For an ideally oriented fault, 

forming in intact rock, the maximum principal compressive stress "1 will lie in the 

movement plane of the fault, i.e., the plane that is spanned by the slip vector and the 

pole to the fault plane. If the coefficient of friction in that intact rock was 0.6, the 

maximum principal stress would act at an angle of 30° to the fault plane. 

Consequentially, since the faults are near-vertical and oblique-slip (the slip striae plunge 

30-40° SW) occurs along them, both the maximum and minimum principal stresses 

cannot have been horizontal relative to the Earth’s surface (Wightman and Little, 2007, 

their Fig. 3.5d). In accord with this observation, two-dimensional sandbox modelling by 

Koons (1990) and three-dimensional numerical modelling by Koons et al. (1998) 

predicted this rotation of the principal stress directions from the outboard region of the 

Southern Alps orogen to the inboard region. The principal stress directions depend on 

the friction angle of the deforming material, on the topographic slope, on the dip of the 

detachment, and importantly on the obliquity of the convergent motion (Dahlen, 1984; 

Koons, 1990, Koons et al., 1998). 

 

3.3.4 Fault slip rates 

Grigull and Little (2008) developed a graphical-algebraic method that applies 

several mathematical operations (rotations, translations) to enable one to project outcrop 

traces of cylindrically curved veins into the fault movement plane, which is the plane 

that contains the slip vector and the pole to the fault planes. Once the vein contours have 

been projected into the movement plane, one can measure the ‘true’ vein shape and 

amount of slip in those veins. We traced 29 vein-fault sets from Chancellor Ridge and 

43 sets from Crawford Knob directly from the outcrop surface onto transparencies and 

applied the projection method of Grigull and Little (2008) to those sets. The method 

requires knowledge of the direction of slip on the fault planes. Based on a set of n = 101 

slip lineations measured on exhumed fault planes at Crawford Knob and n = 9 at 

Chancellor Ridge, we infer that the average slip vectors are pitching 36 / 11. SW and 
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30 / 11. SW respectively. Those numbers are in good agreement with the results of 

Wightman (2005) who calculated a mean slip vector pitch of 36º ± 5º SW for the entire 

fault array based on an analysis of both fault surface lineations and a detailed analysis of 

the cutoff-orientations and outcrop separations of the quartz marker veins. 

In order to constrain maximum and minimum possible slip rates for the shears to 

have caused the observed vein deformation, we followed the method of Wightman and 

Little (2007). As one end-member, one can apply the kinematic “escalator” model that 

assumes sequential activation of individual shears through repeated and systematic slip 

on the faults (Fig. 3.5). We used an average of the remarkably constant spacing (S = 37 

± 54 cm) between the shears at both field locations (Table 1), as well as the known plate 

boundary-normal convergence rate vnormal = 11 mm/yr, (NUVEL-1A model of DeMets 

et al., 1990, 1994) to calculate the average duration on an individual shear during its (in 

this model) temporary period of activity: 

normalv
Sdt )           (3.2) 

where dt is the time that is necessary for one active shear to move across the distance S 

(spacing) at the velocity vnormal and subsequently become inactive. Based on this 

extreme assumption that only one shear was active at a time (sequential activation), we 

calculated an average ‘lifespan’ for the shears of dt " 34 ± 49 years. Dividing the 

average total slip ytot = 72 ± 58 mm (Table 1) by dt results in a maximum estimate for 

the slip rate of 1) dtyy totmax!  2 ± 3.3 mm/yr.  

At the other extreme, a minimum estimate for the slip rate can be made by 

assuming that not only one shear was active at a time but that all shears were active 

simultaneously across the 2 km width of the entire shear array Warray (Fig. 3.5). This 

model assumes that S is equal to the width of the entire shear array (S = Warray). Using 

Eq. (2) with S = 2 km and the same plate boundary-normal velocity of 11 mm/yr results 

in dt " 182 kyrs and thus in a minimum slip rate of 1) dtyy totmin!  4 x 10-4 mm/yr. 

An alternative way to estimate fault slip rate simply divides the mean slip per fault 

(~72 mm) by the above mentioned maximum limit on the duration of ductile vein 

deformation (0.5 m.y., section 3.1). This analysis yields a minimum slip rate of 1.4 x 10-

4 mm/yr. This is a minimum slip rate because it assumes constant and continued activity 

on the fault throughout its residence in the brittle regime. 
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Table 3.1 Field based maximum slip rate estimates, based on escalator model of sequential shear 
activation (one shear active at a time) and using the method by Wightman and Little (2007) 

location 
number 
of shears 
measured 

mean fault 
spacing 

S 

mean slip 
per fault 

ytot 

predicted time 
of shear activity 

dt 

max. slip rate 
dtyy tot)max!  

Chancellor 
Ridge 29 230 ± 260 mm 83 ± 42 mm 21 ± 24 yrs 4.0 ± 5.0 mm/yr 

Crawford 
Knob 43 510 ± 480 mm 62 ± 39 mm 46 ± 44 yrs 1.3 ± 1.5mm/yr 

 Average 370 ± 544 mm 72 ± 58 mm 34 ± 49 yrs 2.0 ± 3.3 mm/yr 

 

In most of the numerical models detailed later in this paper, we used a slip rate of 

ytot/dt = 0.5 mm/yr. This modelling slip rate falls between the maximum and minimum 

bounds outlined above. It is 4 times less than the average calculated value of the 

maximum slip rate (escalator model) and ~2500 times more than the range of minimum 

slip rates derived from the model that assumes S = Warray and from the model based on 

Figure 3.5: Sketch, illustrating 
the variables needed to 
calculate minimum and 
maximum slip rates miny! and 

maxy!  for the brittle-ductile 
faults (see main text). vnormal is 
plate-normal convergence rate 
based on NUVEL-1A model by 
DeMets et al. (1990, 1994), S is 
the spacing between two 
adjacent shears, Warray is the 
width of the entire fault array 
(corresponds to S = 2 km). 
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the estimate of maximum time available for deformation (1.4 – 4 x 10-4 mm/yr). We 

will show that the actual chosen slip rate does not matter for most of our numerical 

models since we are mostly dealing with viscosity and stress ratios rather than absolute 

values (section 3.5). 

 

3.4 Field data – Fault-shear zone scaling relationships 

 

In the field, we examined several geometric scaling relationships relating to the 

sheared quartz veins. These were compiled by a detailed analysis of outcrop exposures 

of nineteen wholly ductilely sheared and ten part-brittlely, part-ductilely sheared quartz 

veins at Chancellor Ridge; as well as from thirty fully ductilely sheared and thirteen 

part-brittlely, part-ductilely sheared quartz veins from Crawford Knob. Fig. 3.6a 

illustrates the various measurements that were recorded on detailed maps of the outcrop 

traces of the sheared veins and faults after projection of the vein and fault traces into the 

movement plane using the method of Grigull and Little (2008). For each exposure, we 

measured the following geometrical parameters: total slip (ytot), brittle component of 

slip (b), ductile component of slip (d = d1 + d2), original vein thickness (thorig), 

minimum (strongly deformed) vein thickness (thmin), and the fault-normal width of the 

ductilely sheared part of the vein (dsw). We then used these diagnostic scaling 

relationships as a filter to distinguish between successful and unsuccessful modelling 

runs (section 3.5). 

 

1) Ductilely sheared width (dsw) vs. original vein thickness (thorig) 

Fig. 3.6b shows that there is a positive correlation between the undeformed vein 

thickness thorig and the width of ductile shearing in the deflected or deformed part of a 

quartz vein (dsw). In other words, the thicker the original vein, the wider the ductile 

shear zone that later developed in that quartz vein. Although these two parameters at 

first glance may seem to scale linearly, a linear relationship is not statistically well 

demonstrated by the data. The values for the ductilely sheared width range between 1 

cm and 4 cm with an average of c. 2 cm. 

 

2) Ratio of  ductile / total slip (D = d/ytot) vs. original vein thickness (thorig) 

One way to describe the “ductility” (D) of a quartz vein is to specify the ratio between 

ductile component of slip to total slip (D = d/ytot). For example, if D = 1.0 the vein has 
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been deformed in a fully ductile manner, and if D = 0.0 the vein was displaced in a fully 

brittle way. The plot ductile / total slip (D) versus original vein thickness thorig shows 

that most veins with an original thickness greater than ~2 cm are usually 100% ductilely 

deformed (D = 1.0), whereas veins with thicknesses of less than ~2 cm may show a 

component of brittle offset as well (Fig. 3.6c); that is, D < 1.0. By contrast, no clearly 

recognisable relationship between D and thorig occurs for thorig < 2 cm. An apparently 

robust observation is that for all but one of the (<2 cm thick) deformed quartz veins 

which have experienced some amount of brittle slip, the ratio of ductile / total slip is D 

5 0.5. 

 

3) Ratio of “ductility”  (D = d/ytot)  vs. total slip ytot 

The plot of D versus total slip ytot shows that only veins that have been displaced at least 

~3 cm have any brittle slip component (D 5 1), whereas those displaced by < 3 cm are 

typically only ductilely deformed (D = 1). For slips greater than 3 cm, there is no 

obvious scaling relationship between the ductility of a deformed quartz vein (D) and the 

finite slip (Fig. 3.6d). 

 

4) Ductilely sheared width (dsw) vs. ductile component of  slip (d) 

Fig. 3.6e shows that there is also a positive correlation between the ductile component 

of slip (d) in a vein and the ductile width of its shear zone (dsw): the larger the ductile 

offset of a vein (d), the greater the width of ductile shearing in that vein (dsw). We note 

that for d < 3 cm (especially) this relationship is non-linear. Non-linear retrogression of 

the data indicates that the scaling relationship between dsw and d seems to follow a 

power law with 3 4 3 412.026.004.016.010 // () ddsw . 

 

5) Vein attenuation factor (thatt = thmin/thorig) vs. ductile component of slip (d) 

We define the vein attenuation factor thatt = thmin/thorig to be the ratio of the minimum 

thickness of the most deformed part of a sheared vein (thmin) to the inferred original 

thickness of that vein (thorig) as preserved in the external part of a vein away from the 

fault-shear zone. There is an inverse correlation between the vein attenuation factor thatt 

and the ductile component of slip (d): the higher the value of d, the lower (more 

attenuated) the value of thatt. We note that at a ductile displacement of just 2 cm, most 

of the wholly ductilely deformed quartz veins have already been thinned to at least 40% 
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of their original thickness. At offsets greater than 2 cm thatt decreases with a relatively 

shallow gradient. This leads us to infer that these two scaling parameters are related by a 

power law with a negative power law exponent. Non-linear regression suggests a power 

law of the form 3 4 3 412.053.008.034.010 /'/' () dthatt  (Fig. 3.6f). 
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3.5 Numerical experiments 

 

The analysis of the geological field data in section 3.4 indicates that there are some 

interesting and systematic scaling relationships between several geometrical parameters 

related to the quartz veins and their brittle to ductile offset across the shears. These are 

inferred to reflect some aspects of the rheology during deformation. In order to refine 

our understanding of the rheological properties of these natural quartz veins during their 

shearing, we have modelled several vein deformation scenarios in an attempt to 

replicate the observed patterns. 

 

3.5.1 Experimental framework - Rheological end-members 

The field observations indicate that narrow brittle faults offset the quartzofeldspathic 

host schist, but that these faults commonly did not transect quartz veins embedded 

within the schist along strike. Instead, the quartz veins were mostly subject to ductile 

shearing. However, as detailed in section 3.4, the quartz veins did not necessarily 

undergo only ductile deformation but may also have experienced a component of brittle 

slip. Moreover, we observed some ductile deformation of the quartzofelpspathic wall 

rock schist in the deeper structural levels of the fault array. This might be attributed to 

higher deformation temperatures existing in the deeper parts of the otherwise brittle 

fault array leading to an overall lower flow strength of the rocks (Wightman, 2005). In 

the rest of the array, macroscopic ductile deformation of the host schist is localised to 

step-over zones between two non-coplanar faults, where strain is distributed across a 

larger volume of rocks (Fig. 3.7). We infer that the strain rates across those step-over 

zones must have been low enough to enable ductile flow in the schist host instead of the 

much more prevalent brittle faulting. The ductile deformation of the schist in those step-

overs is usually expressed as a rotation of the dominant foliation that is consistent with 

Figure 3.6 (previous page): Field data-derived plots of scaling relationships measured in the quartz 
veins. All data have been separated by location and ‘ductility’. Measurement uncertainty is ± 0.2 cm. 
Where plausible, we put trendlines through the field data. a) Schematic overview of measurements that 
were taken from the vein-fault sets after having been projected into the movement plane of the brittle 
faults; thorig: original vein thickness, thmin: thinned vein thickness, d1 & d2: ductile components of slip, d = 
d1 + d2: total ductile slip, b: brittle component of slip, ytot: total slip, dsw: ductilely sheared width. b) 
Ductilely sheared width (dsw) vs. original vein thickness (thorig). c) Ratio ductile/total slip (D) vs. original 
vein thickness (thorig). d) Ratio ductile/total slip (D) vs. total slip (ytot). e) Ductilely sheared width (dsw) 
vs. ductile component of slip (d). f) Vein attenuation factor (thatt) vs. ductile component of slip (d). The 
dashed lines in e) and f) correspond to the errors calculated for the trendlines. 
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dextral shearing along the two adjacent faults (Fig. 3.7). We hence need to account for 

at least two rheological end-members (and combinations thereof) in our numerical 

models. We include “frictional” (i.e., brittle) and “viscous” (i.e., ductile) material 

behaviour for both the quartz vein material and the quartzofeldspathic host rocks. Fig. 

3.8 gives an overview of possible combinations of frictional and viscous material 

behaviours in the schist and the quartz. Cases A-F (black outlines in Fig. 3.8) are all 

required by our field observations of the naturally deformed quartz veins, with cases A-

E being the most common. 

 

 

 
 

The most likely combinations embrace fully frictional or frictional-viscous behaviour of 

the host schist; and fully viscous, frictional-viscous, or fully frictional behaviour of the 

quartz veins embedded in that schist. Even at locations in the field where the 

quartzofeldspathic schist exhibits ductile deformation, we always observe a precursory 

brittle fracture in that host schist; the schist always has a frictional component of 

deformation, and only deforms ductilely after precursory embrittlement so that we can 

exclude the rheological end-member combinations depicted in cases G-I (grey outlines 

in Fig. 3.8) as these would produce only viscous structures in the schist. For this reason, 

we did not attempt to model cases G-I. 

Figure 3.7: Example of the ductile deformation of quartzofelpspathic schist localised to the step-over 
zones between two non-coplanar faults. The two fault terminations (white stippled lines) are overlapping 
and the rotation of the foliation (black lines) is consistent with dextral shearing along those faults. The 
overlapping zone is c. 2 cm wide and c. 14 cm long. 
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3.5.2 Description of numerical technique 

We have constructed a two-dimensional visco-plastic Lagrangian-Eulerian finite 

element code (referred to as “our code” or “the code” in the following) that has been 

specifically adapted for this study to investigate the effect of rheology, geometry, and 

deformation history on vein shape and flow mechanism. We have benchmarked our 

code against the commercial Lagrangian finite element code “Abaqus” 

Figure 3.8: Overview of possible combinations of the two end-members frictional (dark grey) and 
viscous (white) deformation in the quartz and the schist. Frictional-viscous deformation is marked in 
light grey. Cases A-E are the most common cases in our area. Cases G-I (no brittle component in schist) 
were not observed in the field. 
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(Abaqus/Standard version 6.7; Simulia, Providence, RI) and attain similar results, for 

small deformation (Appendix B). Our code uses a tracer-in-cell approach, in order to 

advect quantities such as strain, temperature, and material properties through a 

stationary grid which is used for the finite element computation. This approach allows 

large finite strains to accumulate without affecting the quality of the computational 

mesh (cf. Abaqus/Standard). Non-linear viscous rheology is represented assuming the 

Stokes equation for creeping flow (e.g., Fullsack, 1995; Moresi et al., 2003). Pressure is 

solved via a penalty approach, and plasticity is implemented according to a Von Mises 

flow rule by iterating on effective plastic viscosity until yield stress is attained (e.g., 

Fullsack, 1995). 

 

3.5.3 Model setup 

We set up four model series in order to examine different aspects of the rheology in 

the brittle-ductile shear array, especially the interplay between ductile and brittle 

deformation ahead of the fault tip in the deformed quartz veins. All models include a 

quartz vein and a fault propagating from the upper and lower boundaries towards the 

quartz vein. In model series 1, we investigate the influence of the contrast between 

viscous strength of the quartz and frictional strength of the schist on the propagation 

behaviour and final geometry of the brittle fault. Model series 2 addresses the question 

of whether there are some predictable conditions (initial vein thickness and frictional-

viscous strength contrast in the quartz) under which the quartz vein would cease to 

deform ductilely and instead begin to deform brittlely. In the third model series we 

analyse the influence of the stress exponent n for quartz (e.g., Eq. (3.1)) on the shape of 

the deformed veins and their shear zones in an attempt to fit the modelling data to the 

observed field observations and afore mentioned scaling relationships. These first three 

model series employ fully frictional deformation behaviour in the schist, corresponding 

to cases A-C in Fig. 3.8. In model series 4, we examine if and how the scaling 

relationships, shear localisation, and the frictional-viscous transition in the quartz are 

influenced by a schist that can deform (to some degree) viscously as well as frictionally 

(cases D-F in Fig. 3.8).  

 

3.5.3.1 Initial geometry and boundary conditions 

The initial model dimensions are 0.1 m x 0.1 m (Fig. 3.9). The structured mesh 

resolution is 100 x 100 elements so that element side dimensions are 1 mm. Each 
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element originally contains four tracers amounting to a total of 40,000 tracers in the 

entire model. An initially horizontal quartz vein is embedded in the middle of the 

model. The quartz vein can be included into the model with different original 

thicknesses (thorig). 

We apply constant velocity boundary conditions (dy/dt, Fig. 3.9) around the model 

domain in order to simulate slip on a mode II crack in the schist external to the 

embedded quartz vein and the propagation path of that fault towards the vein. The 

velocity boundary conditions (incl. slip rate) have already been described and justified 

in section 3.4. The width of the external fault zone at the top and bottom of the model 

are set to 2 mm (fzw, Fig. 3.9). This equates to the observed average fault width 

measured in the field (~1.9 mm; this width is the average dilative thickness of the 

infilling veins). 

 

 

 
 

We chose to model a fault propagating into the modelled domain rather than setting 

the fault as an initial condition and imposing its geometry because field observations 

show that the brittle faults interact with the quartz veins and are usually deflected 

around them (Fig. 3.10). Since the veins accumulate a large finite ductile shear strain at 

sub-dynamic strain-rates (as already discussed in section 3.3), and since there is no 

evidence for seismically induced fault rocks, we assume that the faults did not form first 

as dynamic cracks, but underwent a slow propagation. The incrementally grown fibrous 

Figure 3.9: Initial model setup for 
numerical modelling. (dy/dt)/2 is half of 
the externally imposed total slip rate 
(dy/dt) on the fault. fzw is the prescribed 
fault zone width (2 mm, which equals the 
mean dilative width of the fault infilling 
quartz-calcite veins). Note that there is no 
pre-exististing fault but that we model the 
propagation of a brittle fault through the 
schist into the quartz vein. 
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quartz-calcite-chlorite veins that infill some of the brittle faults (section 3.2) are also 

consistent with such slow fault propagation. 

 

 

 
  

3.5.3.2 Choice of material parameters used in model series 1 to 4 

a) Plasticity, frictional yield strength 

In order to simulate frictional material behaviour, we included a Tresca yield 

criterion in both materials. Plastic strain softening is active in the schist in order to 

achieve strain localisation in the fault zone (Fig. 3.9). As justified in section 3.3, we 

chose an initial frictional yield stress for the intact schist of s
f6 = 50 MPa (corresponding 

to a differential stress of s
d* = 100 MPa). The schist is softened to s

f6 = 15 MPa after 

accumulation of ~10 % plastic strain resulting in a narrow fault zone (App. 3.B). This is 

in agreement with long, discrete, well formed cracks that are seen in the field, some of 

which have offsets of only a few millimetres. 

 

In model series 2 and 3 we also incorporated frictional yield stresses in the quartz. 

The quartz frictional yield strength was also set at q
f6 = 50 MPa, but we assumed that 

the quartz did not undergo frictional strain-softening. That is because usually the cracks 

Figure 3.10: Photograph of fully ductilely displaced quartz vein embedded in brittlely deforming schist. 
This photograph shows the brittle fault deflecting and bending around the ductilely shearing quartz vein. 
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blunt into the quartz veins, and deformation is spread out by viscous flow and not 

frictional yielding (e.g., Fig. 3.2d). 

 

b) Viscosity, flow law 

Assuming that the main active deformation mechanism was grain size-independent 

dislocation creep in the quartz vein (App. 3.A; see also Wightman et al., 2006), we can 

exclude the grain-size term in Eq. (3.1) and simplify it to: 
n
vMs A 6+ ()!           (3.3) 

where s+!  is the shear strain rate as defined in App. 3.B, and v6  is the (flow) stress 

in shear. Factor AM is a material constant that includes the experimentally derived pre-

exponential factor AE, water fugacity OHf
2

, the exponential term !
"
#$

%
&'

RT
Qexp , and a 

geometry factor G necessary for the conversion from triaxial experiments to plane strain 

(see App. 3.A): 
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                                                               (3.4) 

The geologically constrained quartzite flow law of Hirth et al. (2001) was used as 

an initial input for the viscous creep behaviour of the quartz vein, with Hirth et al.’s 

original parameters: AE = 10-11.2 MPa-n sec-1, Q = 135 kJ/mol, and a stress exponent of n 

= 4.0. In all the experiments we chose a temperature of 450° C in accordance with the 

temperature estimates of vein deformation that were described in section 3.2. Since 

there is good evidence for fluids and high fluid pressures near the Alpine Fault in the 

Southern Alps (e.g., Wannamaker, 2002; Stern et al., 2001, 2007), eqs. (1) and (4) 

contain a water fugacity term. For a lithostatic pressure of 560 MPa at ~21 km depth 

and a temperature of 450º C, we estimated a water fugacity of OHf
2

 = 200 MPa under 

fully water-saturated conditions (using published fugacity coefficients, cf. App. 3.F). 

With the above specified flow law parameters applied to Hirth et al.’s flow law we 

calculated an initial material constant of AM = 10-17.76 MPa-n  sec-1 in eq. (4). Using AM = 

10-17.76 MPa-n sec-1 in eq. (3.3) and, for example a shear strain rate of 3.95 x 10-9 sec-1 

(corresponding to a total differential velocity of dy/dt = 0.5 mm/yr) over a fault zone 

width of 2 mm, we calculate a flow stress in the quartz vein of q
v6  = 219 MPa using the 

Hirth et al. (2001) flow law parameters with a water fugacity of 200 MPa. This 

calculated flow stress is only a theoretical value, since it is based on the assumption that 
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the 2 mm wide shear zone is maintained throughout the quartz vein once the “brittle” 

fault encounters the model vein. In reality, deformation spreads out in the quartz, and 

strain rates and flow stresses decrease there. In order to derive varying strength ratios in 

the numerical models, we changed AM-values in the quartz vein in model series 1 and 2 

as well as in the schist in model series 4. 

 

c) Contrast between viscous strength of quartz and frictional strength of schist 

We define the quartz-to-schist viscous-to-frictional or “ductile-to-brittle” strength 

contrast between the two materials, quartz (mostly ductile) and schist (mostly brittle), to 

be equivalent to the ratio  
s
f

q
v

qsR 66)            (3.5)  

where q
v6  is the viscous (ductile) flow strength of the quartz, and s

f6  is the frictional 

(brittle) yield strength of the unsoftened schist. For example, using q
v6  = 219 MPa (as 

calculated in section 3.5.3.2.2) and s
f6  = 50 MPa (sections 3.5.3 and 3.5.3.2.1) with eq. 

(3.5) would give a strength contrast of qsR  = 4.38. In order to derive varying theoretical 

strength ratios in the numerical models, we changed AM-values in the quartz vein in 

model series 1 and 2 as well as in the schist in model series 4. 

 

3.5.4 Results – model series 1: Influence of the viscous-to-frictional (quartz-to-schist) 

strength contrast qsR  and of the flow law stress exponent (n) on the propagation 

behaviour of the brittle fault 

In this section, we investigate the influence of the viscous-to-fritional (quartz-to-

schist) strength ratio s
f

q
v

qsR 66)  (Eq. 3.5) between a fully viscous (wholly ductile), 

non-frictional quartz vein and purely frictional (wholly brittle) schist (Fig. 3.8, case A) 

on the propagation behaviour of the fault through the schist and into the quartz vein. All 

of the following models include a 2 cm thick horizontal quartz vein at right angles to the 

fault and are deformed by a constant differential velocity along the boundaries of 0.5 

mm/yr. 

 

In order to qualitatively test in which way the propagation and/or bifurcation of the 

brittle fault might be affected by the brittle-ductile strength contrast ( qsR ) and also by 

the stress exponent for flow of the quartz vein (nq), we set up models with different 
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qsR -values (0.01, 1.2, 5.0, 13.2). For these (theoretical) ratios q
v6  was calculated via Eq. 

(3.3) for different AM-values, a nominal initial strain rate of 3.95 x 10-9 s-1 at the fault-

quartz vein intersection, and two different stress exponents (nq = 1 and nq = 4). For 

simplicity, we prescribed that the quartz must be fully viscous at all times, and that the 

frictional yield stress in the quartz is never reached, by setting the frictional yield stress 

for the quartz to 10 GPa (i.e., q
f

q
v 66 -- ) . The frictional yield strength in the unsoftened 

schist was set to 50 MPa and was reduced to 15 MPa in the strain-softened areas, as 

described in section 3.5.3.2.1. In order to ensure purely frictional behaviour in the 

schist, the schist rheology was chosen such that the flow strength in the schist was 

always significantly higher than its frictional strength (i.e., s
f

s
v 66 77 ). Table 3.2 

summarises the material parameters that were used in the models.  

 

Table 3.2 Material parameters used in section 3.5.4. qsR  is ductile-to-brittle strength contrast between 
viscous quartz and frictional schist, eq. (3.5). Numbers in table are corresponding values of log10(AM). L-
models assume a linear viscous rheology with a flow law stress exponent nq = 1.0 and P-models power 
law creep in the quartz vein with nq = 4.0. 

viscous-frictional (quartz-schist) strength ratio qsR  0.01 1.2 5.0 13.2 

log10 (AM) [MPa-n s-1] for L-models (nq = 1.0) -8.1 -10.2 -10.8 -11.0 

log10 (AM) [MPa-n s-1] for P-models (nq = 4.0) -7.2 -15.5 -18.0 -19.7 

 

Results 

Fig. 3.11 shows contour plots of strain rates after 5, 25, and 100 years of 

deformation. Models with a linear viscosity in the quartz vein (nq = 1) are denoted with 

“L” whereas models with a power law quartz rheology (nq = 4) are denoted with “P”. 

The viscous-to-brittle (quartz-to-schist) strength contrast qsR  is labelled above the 

model-plots. 

 

Early stages of deformation (5 years of deformation, 2.5 mm total displacement) 

The most evident observation from these models is that there are large differences 

in fault localisation between the linear and the power law model types especially at the 

early stages of deformation (Fig. 3.11, 0.25 cm displacement after 5 yrs). 

In all the models with a linear quartz vein rheology (L-models), the shear does not 

localise but bifurcates at a distance of roughly ~thorig (where thorig is vein thickness) 

from the quartz veins for all calculated strength contrasts. The two branches of the split-
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up faults are connected through subhorizontal cross-shears, creating “Eiffel tower”-

patterns in the strain rate contours.  
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The models with the power law quartz rheology (P-models) show fault bifurcation 

for qsR -values of 0.01, 5.0, and 13.2. However, model P2 with a viscous-to-frictional 

strength contrast (quartz/schist) of 1.2 shows a well localised shear even at the early 

stages of deformation (Fig. 3.11; ‘no bifurcation’).  

The Eiffel tower-patterns in L-models 1 to 3 and in model P1 developed because in 

those models, the quartz vein is so weak ( s
f

q
v 66 -- ), that the vein-schist interface acts 

like a free boundary in the quartz allowing strain accommodation in the high-stress halo 

near the fracture tip through the rotation of small schist blocks between the fault 

branches. The rotational movement of those “blocks” is impeded by the stiffness of the 

schist, leading to the formation of strain-softened subhorizontal cross-shears. This 

phenomenon is discussed in more detail in section 3.6.1. 

In models P3 and P4, slip occurs at the quartz vein-schist interface in the schist 

material. In model P3, the fault bifurcates and rotational cross-shears form in the schist. 

In P3, the viscous yield in the quartz vein is much higher ( q
v6  = 250 MPa) than the 

frictional strength of the schist in the unsoftened ( s
f6 50 MPa) or the softened state (15 

MPa). This means that almost the entire deformation needs to be accommodated by the 

schist. The stiff quartz vein impedes the rotation of the schist blocks, leading to the 

cross-shears in the strain-softening schist. In contrast, model P4 ( qsR  = 13.2) shows a 

tent-like pattern without the formation of cross-shears. Here, the quartz vein is so strong 

( s
f

q
v 66 77 ) that it acts almost like a rigid block, forcing the deformation to spread out in 

the quartz and enhancing bifurcation in the schist. The tent-like appearance of the fault 

in P4 is due to the top and bottom boundary conditions that force the model to initiate 

faulting at the imposed 2 mm wide zone (Fig. 3.9, model setup). If the top and bottom 

boundaries of model P4 were instead free and the location of fault initiation was not 

predefined, one would expect two separate (subparallel) shears to form at those 

boundaries. 

Figure 3.11 (previous page): Results of model series 1 – the influence of a viscous layer (quartz vein) 
on the propagation behaviour of an external brittle fault. Model plots are strain rate contours at 0.25, 
1.25, and 5 cm total vein displacement. Rqs is the viscous-to-frictional strength ratio between the ductilely 
deformed quartz and the brittlely yielding schist. Effective viscosity is increasing towards the right. L-
models use linear viscosity, P-models use power law quartz rheology. Note the ‘Eiffel-tower’-patterns 
(e.g., L1, P1) in the models with the weak quartz layers and the tent-like patterns in the models with a 
strong quartz (e.g., P4). P2 is the only model that has a fully and well localised fault from the beginning 
of deformation (“no bifurcation”). Note also, that the fault in none of the L-models ever localises in the 
initial stages of deformation. 
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Later deformation stages (25+ years, displacement > 1.25 cm) 

At higher displacements, all the models with a linear quartz rheology (L-models) 

and all the power law models (P-models) except P4 start to abandon one branch of the 

initially bifurcating faults. This is partly due to the external asymmetric velocity 

boundary conditions, but it is mostly an effect of progressive vein attenuation, since the 

shears prefer to take the “path of least resistance” in order to minimise the energy 

dissipation in the system (see section 3.6.1). In models L1 and P1, the path of least 

resistance is through the quartz vein, since it has a low effective viscosity; i.e., a lower 

strength than the schist. This results in the shear bending into the quartz vein (Fig. 3.11, 

L1 and P1 at 5 cm displacement). Conversely, in models L2, L3, L4, and P2, P3, where 

effective quartz viscosities are higher, the path of least resistance is along the quartz 

schist boundary, and the shear takes the shortest way through the quartz vein, resulting 

in the shear bending around the quartz vein. In the field, we mostly observe the latter: a 

shear bending around the quartz vein (e.g., Figs. 3.2c, 3.2d, 3.10). 

The fault in model P4 also abandons its left branch, but because of the high 

strength of the quartz, an additional new branch has formed in between the two older 

ones at 100 years of deformation. 

From the results of modelling series 1, we infer that the frictional-viscous strength 

ratio between the schist and the quartz veins strongly controls the localisation and 

propagation of the brittle fault. In the field, we usually observe a well localised fault 

intersecting a quartz vein without bifurcating at the intersection with the vein. We 

therefore assume that qs
ccR  was probably close to 1.0 during the shearing of the veins. 

 

3.5.5 Results – model series 2: brittle-ductile transition in the quartz veins 

From the field data that is described in section 3.4, we found that veins that are 

initially thicker than 2 cm usually deform in an entirely ductile fashion, whereas veins 

with original thicknesses <2 cm typically show a brittle slip component as well, with 

most of the brittle-ductile veins having D < 0.5 (Fig. 3.6c). We also described the 

relationship between the total amount of slip and the ratio ductile / total slip, where we 

found that only at total offsets > 3 cm do sheared quartz veins show a measurable brittle 

slip component (Fig. 3.6d).  

In this section we investigate under which deformation conditions (AM-values, 

initial vein thickness, and total displacement) a quartz vein embedded in the brittlely 



Chapter 3               Quartz rheology from scaling relationships and numerical modelling 

 71

deforming schist would deform with mixed ductile and brittle components across that 

shear. The following models represent cases A to C in Fig. 3.8. Since there are several 

independent parameters involved that can possibly influence the brittle-ductile transition 

in the quartz veins, we need to ensure that we address those parameters separately while 

keeping the other parameters constant. 

 

3.5.5.1 Vein thickness thorig and AM-values 

We first set up models that include a horizontal quartz vein each with a thickness 

range of 0.5 cm to 3.0 cm with 0.5 cm steps in between. The velocity boundary 

conditions are 0.5 mm/yr. We set the frictional yield strength in the quartz veins for 

these models to q
f6  = 50 MPa, identical to that of the intact schist, and we used the same 

entirely frictional schist rheology as in section 3.5.4 ( s
v

s
f 66 -- ). 

 

 

Under these boundary conditions, frictional yielding of an intact quartz vein will 

depend on the ratio of the nominal flow stress to the frictional yield stress in that vein 

( q
f

q
v

qR 66) ) and on its thickness. We set up models with different qR -values by 

changing the AM-value for the quartz flow law. For all of the following models, a stress 

exponent of n = 4.0 was used. The values for AM resulting in qR -values of 1.0, 1.2, and 

1.4 are summarised in table 3.3. 

In Fig. 3.12 we plot the ratio D against the original vein thicknesses thorig at a total 

displacement of 5.0 cm (i.e., after 100 years of deformation). For all three qR -values, 

there is a positive but non-linear correlation between thorig and the ratio D with the 

ductile component of slip increasing with increasing initial vein thickness (Fig. 3.12). 

For qR = 1.0 and qR  = 1.2 only the 2.5 cm and the 3.0 cm thick veins have deformed 

entirely ductilely, whereas the veins with thicknesses #  2.0 cm all yield frictionally as 

well. For AM = 1.65 x 10-16 MPa-n sec-1 ( qR = 1.4) all but the 3.0 cm thick veins are 

Table 3.3: Model parameters for testing the brittle-ductile transition in the quartz veins 

AM (MPa-n s-1) q
v6  (calculated flow stress) q

f
q
v

qR 66)  

6.35 x 10-16 50 Mpa 1.0 

3.06 x 10-16 60 Mpa 1.2 

1.65 x 10-16 70 Mpa 1.4 
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ductilely and brittlely deformed. The reason for the ‘bump’ (orange dashed line in Fig. 

3.12) in the curve for qR = 1.4 is due to the veins thinner than 2.5 cm yielding 

frictionally first, then ductilely (see section 3.5.5.2 below). 

 

 

 
 

In summary, the numerical models show that the ductility or D-value of a sheared 

quartz vein does not only scale with the original undeformed vein thickness, but also 

depends strongly on the ratio between viscous and frictional yield strength for quartz in 

the quartz veins ( qR ).  The brittle-ductile transition in the quartz veins seems to be very 

sensitive to qR . Even small changes (± 10 MPa) in the calculated flow strength can 

apparently control whether a quartz vein yields brittlely or ductilely and how high the 

resulting brittle component of slip is. When compared to the field data, the models with 
qR  = 1.2 and qR  = 1.4 fit the best. 

 

Figure 3.12: Results of model series 2 – plot of “ductility” D against original vein thickness thorig at a 
total displacement of ytot = 5 cm. Only field data with ytot between 3.5 and 6.5 cm are shown. D = 1.0 is 
fully ductile, D = 0.0 is fully brittle. The data suggests that D increases with original vein thickness. The 
kink in the line for 4.1)qR  expresses the modelled relationship that all veins that were originally 
thinner than 2 cm are predicted to fail frictionally first. Those veins acquire a final D-value of less than 
0.2. 
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3.5.5.2 Total vein displacement ytot 

In order to find out what influence the total displacement has on the ratio ductile / 

total slip D, we had to slightly modify our model geometry to 0.2 m high and 0.1 m 

wide. We had to increase the height of the models to be able to achieve higher 

displacements (up to 10 cm). This did not affect the outcome of the models, when 

compared to the ones deformed to only 5 cm displacement. 

Fig. 3.13a-c are plots of the ratio of D versus total displacement ytot for the different 

vein thicknesses and the three AM-values that were used in the models. For AM = 6.35 x 

10-16 MPa-n sec-1 ( 0.1)qR ) the 0.5, 1.0, 1.5, and 2.0 cm thick veins show a non-linear 

inverse relationship between the ratio D and the total displacement ytot, i.e., the higher 

the displacement, the lower D (Fig. 3.13a). The model with the thinnest quartz vein 

(thorig = 0.5 cm) produces the curve with the steepest gradient. 

Fig. 3.13b shows the plot of D versus total displacement for qR  = 1.2 for different 

vein thicknesses. From this graph it is evident that there are two ways for a quartz vein 

to accommodate both brittle and ductile deformation behaviour: i) the two veins with 

thorig = 0.5 and 1.0 cm both fail frictionally first and then continue to deform ductilely 

with increasing slip, since strain rates wane away from the vein centres and deformation 

spreads out through viscous flow; ii) the quartz veins that were initially thicker than 1.0 

cm deform viscously at first and then yield frictionally at a total displacement greater 

than 2.5 cm. This is due to ductile vein thinning so that the two stress tips at the fault 

tips are able to meet and join. 

For qR  = 1.4, all veins but the 3 cm thick vein yield frictionally first and then start 

to show viscous deformation behaviour as well (Fig. 3.13c). The 0.5 cm thick vein stays 

fully brittle. Interestingly, the models show that if the quartz veins fail frictionally 

before reaching their flow yield stress, D-values of all those veins lie under 0.5 at ytot = 

5 cm. Those veins show a peak in D before this ratio starts to decrease again. 

Figure 3.13 (next page): Results of model series 2 – plot of ductility D against total displacement for 
different qR  values. Each colored line represents a different original vein thickness thorig. These graphs 
show that there is a relationship between total displacement (ytot) and vein ductility (D): the higher ytot, 
the lower D. It is also evident from these graphs that two different failure sequences can occur: i) ductile 
yield first, then brittle as for all veins in (a), ii) brittle first, then ductile as for example in (c). See text for 
detail. 
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3.5.6 Results – model series 3: influence of stress exponent nq on deformed quartz vein 

shape 

In model series 3 we investigate the sensitivity of the final shape of the sheared 

quartz veins to the stress exponent nq in Eq. (3.3) in the quartz veins. Again, we set up 

0.1 x 0.1 m models with a 2 cm thick horizontal quartz vein and a boundary velocity of 

0.5 mm/yr. The frictional yield stress was 50 MPa in the quartz vein. We used stress 

exponents of nq = 1.0, 2.0, 3.0, and 4.0. In order to maintain the viscous-frictional 
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strength ratio 2.1)) q
f

q
v

qR 66  in the quartz (cf. section 3.5.5), i.e., to maintain the 

same overall viscous strength in the quartz vein of 60 MPa, we adjusted AM-values for 

different stress exponents nq according to Eq. (3.3) (Fig. 3.14; see also Kenis et al., 

2004). 

The schist was chosen to be fully frictional again so that this model series 

corresponds to cases A-C in Fig. 3.8. 

 

 

 
 

Figure 3.15 shows the results of the model runs at 2.5 cm and at 5.0 cm total 

displacement. Perhaps surprisingly, the stress exponent has little influence on the 

deformed shape of the quartz vein. For nq = 1.0 and 2.0, the subtle differences in the 

shapes of the quartz veins in Fig. 3.15 arise from incipient broadening or bifurcation of 

the brittle fault in the schist (section 3.5.4). 

The reason for this insensitivity to nq is that, under the chosen conditions, with 

relatively uniform quartz strength (effective viscosity), the rheological behaviour and 

the shape of the deformed veins seems to be predominantly controlled by the higher 

viscous strength of the enclosing wall rock material (the schist), rather than by the stress 

exponent of the vein material (cf. section 3.5.7). 

 

 

Figure 3.14: Log-log plot of strain 
rate versus viscous flow stress to 
determine the pre-exponential 
factor AM. The stress exponent n 
determines where the lines cut the 
strain rate axis. This interception 
point gives AM. The flow law of 
Hirth et al. (2001) was modified to 
accord with our plane strain 
numerical experiments and to 
include a calculated water fugacity 
of 200 MPa at the field site during 
deformation. All lines intersect at a 
flow shear stress of 60 MPa for a 
viscous-frictional strength contrast 
in the quartz of 2.1)qR  (see 
main text for details) and an initial 
strain rate of 3.95 x 10-9 s-1.  
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3.5.7 Results – model series 4: influence of the quartz-to-schist viscous-viscous strength 

ratio s
v

q
v

qsV 66)  on the deformed vein shape 

Until now we have treated the discretely faulted schist as a fully frictional material. 

However, locally the schist has been deformed viscously as well (e.g., in step-over 

zones between two adjacent faults, or at deeper structural levels towards the bottom of 

the shear array), so that in this section, we investigate the influence of a schist that is no 

longer required to fail fully frictional but can also deform viscously. 

 

We learned from section 3.5.4 that the ratio of viscous quartz strength to frictional 

schist strength ( s
f

q
v

qsR 66) ) needs to be close to 1 or slightly higher than 1 (e.g., 1.2) 

in order for the fault to stay localised where it transects a quartz vein, not to bifurcate, 

and to cause it to deflect around the outer margin of the sheared quartz vein, rather than 

to cut across it. 

In this series of experiments, we maintained a 2 cm thick horizontal quartz vein 

with a power law rheology for all models of this section (nq = 4.0, q
MA  = 3.06 x 10-16 

MPa-n sec-1). In addition, the wall rock schist was assigned a power law rheology with 

Figure 3.15: Modelling results of series 3 – influence of stress exponent on shape of vein. We plotted 
the shape of deformed quartz veins for different stress exponents at total displacements of 2.5 and 5.0 
cm. Note the remarkably similar shape of all four veins. 
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ns = 4.0. For the schist, different values of s
MA  were used in a series of experiments, 

resulting in different viscous-to-frictional strength ratios in the schist ( sR ) as is 

summarised in Table 3.4. 

 
Table 3.4 Model parameters for model series 4 

s
MA  (MPa-n s-1) Vqs sR  

1.25 x 10-16 0.8 1.5 

3.94 x 10-17 0.6 2.0 

1.91 x 10-17 0.5 2.4 

7.80 x 10-18 0.4 3.0 

2.48 x 10-18 0.3 4.0 

 

 

Fig. 3.16a plots the ductilely sheared width (dsw) from the quartz veins against 

their ductile displacement (d) across the shear. From this plot we conclude that the 

ductilely sheared width in the quartz veins is quite sensitive to the quartz-to-schist 

effective viscosity ratio qsV . The stiffer the schist, i.e., the lower the ratio qsV , the 

smaller is the dsw in the enclosed quartz vein. This relationship follows a power law for 

all values of qsV . There is a decrease in the gradient of the curves for decreasing values 

of qsV . 

We compared our modelling results for the 2 cm thick vein models with the subset 

of our field data embracing veins that have a thickness between 1.5 and 2.5 cm. When 

the modelling predictions are compared to the field data, the two model-based curves 

that best envelope the corresponding field data are those for qsV -ratios of 0.4 and 0.6, 

that is, where the effective viscosity of the schist is 2.5 to 1.6 times greater than that of 

the quartz veins. 

For this run of experiments, we also plotted the degree of vein thinning thatt versus 

the ductile slip (d). However, this parameter seems less useful, as all qsV  values seem to 

fit the field data approximately (Fig. 3.16b). 
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Recall that from the field data presented in section 3.4, we inferred that there is a 

positive scaling relationship between the original vein thickness thorig and the ductile 

shear zone width (dsw). Above, we argued that the best estimate of qsV  is 0.5, i.e., the 

Figure 3.16: Results of model series 4 – viscosity ratio of schist and quartz. a) Plots of ductilely sheared 
width (dsw) versus ductile component of slip (d = d1 + d2) for model vein with thorig = 2 cm. The field 
data (grey) is plotted for veins with original thicknesses between 1.5 and 2.5 cm. All curves for the 
models follow a power law relationship between d and dsw.  The field data is best bracketed by the 
curves for 6.04.0 55 qsV . b) Plot of vein attenuation (thatt) versus ductile component of slip (d). It is 
not possible to clearly discriminate between the results for vein attenuation under different Vcc. The range 
of thatt values from the computer models is indicated by the grey shaded area. Measurement uncertainties 
are ± 0.2 cm. The dashed lines correspond to the errors calculated for the trendlines 
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effective viscosity of the schist is 2 times greater than that of the quartz. As a final set of 

experiments, we modelled the shear deformation of the quartz veins across a range of 

original vein thicknesses of 1.0, 2.0, and 3.0 cm with that qsV -ratio. For these models 

we set the frictional yield stress in the quartz veins to 10 GPa again, so that they do not 

yield frictionally (our way of focussing on the wholly ductilely deformed veins, which 

are common for veins with thorig > 2cm). 

Fig. 3.17 shows the comparison of the modelling results at 2.5 and 5 cm total 

displacement. The field data was divided into two groups of ductile slip: a) 1.5-3.5 cm 

and b) 4.0-6.0 cm in order to make the modelling results comparable to the field data. 

The modelling results fit well within the field data and both suggest that there is a linear 

relationship between thorig and dsw. 

 

 

 
 

3.6 Discussion 

 

3.6.1 Shear bifurcation, energy dissipation, and frictional-viscous coupling between 

schist and quartz 

Since the majority of the surveyed fault-vein sets shows that the faults are either 

nearly straight or bend around the outside margins of the sheared quartz veins, we can 

Figure 3.17: Modelling results of series 4 – plot of dsw versus thorig. Results for qsV  = 0.5; i.e., schist = 
2 x quartz. There is a linear relationship between the resulting ductile shear zone width (dsw) and the 
original vein thickness (thorig). This relationship has a different slope depending on the total amount of 
ductile displacement (d). Measurement uncertainties are ± 0.2 cm. 
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infer from model series 1 that the viscous-to-frictional strength ratio between viscous 

quartz and frictional schist (respectively) must have been close to 1 ( qsR  = 1.2) or 

slightly higher ( qsR  = 5.0); that is, very nearly balanced. Additionally, in the field we 

only observed a single fault close to each sheared vein. We were only able to simulate a 

single fully localised fault propagating towards the quartz vein without bifurcating for a 

viscous-frictional ratio of qsR  = 1.2. 

 

The difference in fault bifurcation and propagation behaviour between the models 

with a linear quartz viscosity (L-models) versus those with a power law quartz rheology 

(P-models) can be understood by considering the effects of energy dissipation 

minimisation. Both frictional and viscous energy dissipation rates increase with 

increasing strain rate, most markedly for non-linear viscous materials. To reduce the 

dissipation rate, deformation may become more spread out or diffuse in the quartz, a 

relationship that can encourage bifurcation of shears in the schist. For example, for the 

same imposed boundary slip rates and flow stress in the linear vs. power-law model 

(e.g., a flow stress of 60 MPa, Fig. 3.14), it can be shown that to obtain the same rate of 

viscous energy dissipation, a lower viscous strain-rate is needed for the linear flow-law 

case. A reduction in strain-rate can most easily be attained by widening the ductile shear 

width. The statements above follow from the observation that viscous energy 

dissipation rate (per unit volume) in a power law material is proportional to the strain 

rate and depends on the stress exponent:  
n

svw 1189 +!!            (3.6) 

(e.g., Malvern, 1969, p. 300), where vw!  is the viscous energy dissipation rate, s+!  is 

shear strain rate, and n is the stress exponent. Fig. 3.18 depicts the physical meaning of 

Eq. (3.6) schematically: the higher the value of n, the closer to linearity the relationship 

between dissipation rate and strain rate (Fig. 3.18), which means that where n > 1 an 

increase in strain-rate causes a lesser increase in energy dissipation rate compared to the 

equivalent case with lower stress exponent (n = 1). 
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Considering an isolated shear with a constant yield strength in the schist, the total 

frictional energy dissipation rate (per unit volume) is linearly proportional to the strain 

rate s+!  and depends on the shear stress #: 

sfw +6 !! (9            (3.7) 

where fw!  is the frictional energy dissipation rate. The bifurcation of one shear results in 

two shears that each move at only half of the total strain rate. In other words, the 

frictional dissipation rate also depends on the number of shears (Nshears) that form 

(
shears

s
f N

w
+

6 (9! ). This is a way to reduce the energy dissipation in the schist. 

Integrated over the whole volume, however, the frictional energy dissipation rate for the 

same system split into two or many shears is the same, so that there is no inherent 

tendency of a frictional material to localise (e.g., Huismans et al., 2005). It is only with 

the imposition of strain softening that localisation of frictional shearing onto one 

through-going shear becomes favoured. Since the schist is inferred to be a strain-

softening frictional material, the lowest energy configuration for the schist after 

softening has occurred and at high strain rates will be along narrow and strongly 

localised shears or faults (e.g., Huismans et al., 2005). Therefore, a competition exists 

Figure 3.18: Schematic plot of eq. 
(3.6), viscous energy dissipation rate 

vw! versus shear strain rate s+! . 
Viscous energy dissipation is slower 
for higher stress exponents n. More 
brittle faults form for higher 
dissipation rates. The biggest 
difference in energy dissipation rate 
is between n = 1 and all stress 
exponents that are higher than 1. This 
explains the discrepancies between 
the L- and the P-models in section 
3.5.4. 
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between the “lowest energy dissipation configuration” for ductile vs. brittle materials; 

that is, localisation in the frictional schist and diffuse deformation in the viscously 

shearing quartz. 

For the frictional-viscously coupled quartz vein-fault sets in the Southern Alps, the 

frictional and viscous energy dissipation rates must have been nearly equal, since the 

faults that offset the quartz veins are very well localised (and they do not bifurcate in the 

vicinity of the quartz veins). This energy balance is also reflected in the modelling 

results: as we found that it was possible to achieve fault localisation from the earliest 

stages of deformation when the viscous-frictional (quartz-schist) strength contrast qsR  

was close to 1. These results are supported by the numerical model series of Schueller et 

al. (2005, 2009) who found that it is possible to achieve plastic strain localisation in a 

brittle material bracketed by two ductile layers for low to medium viscosities of the 

ductile material. An qsR -ratio of around 1 in our models would correspond to a 

viscosity of ~100 in the models of Schueller et al. (2005); the upper end of their 

“viscosity-dependent mode”. 

 

3.6.2 Brittle-ductile transition in quartz veins 

When compared to the field data in Fig. 3.6c and 3.6d, the numerical models with 

the frictional-viscous ratio qR  = 1.2 for quartz best simulate the scaling relationships 

observed in the field. Fig. 3.6c and 3.6d showed that the D-ratios of the majority of the 

veins with a brittle slip component lie below 0.5. The models in section 3.5.5 may 

provide one reason for this behaviour. We showed that there are two paths to producing 

vein displacements that have both brittle and ductile slip components: a) distributed 

ductile vein deformation first, followed by extreme vein attenuation, followed by brittle 

failure of the quartz vein or b) localised brittle failure first, followed by ductile shearing 

of the quartz vein in the areas of reduced strain rates that are away from the central 

shear zone (where strain rates are high). The question remains whether the brittle faults 

formed first or whether the distributed ductile shearing was first. If we assume that both 

failure sequences could have been present in the quartz veins, we can argue that qR  = 

1.2 is the best estimate for these quartz veins. 

We could explain that D < 0.5 for most of the brittle-ductile quartz veins by 

assuming that frictional slip continued to accumulate after brittle failure of the quartz 

veins. Soon after brittle failure of a quartz vein, ductile slip (d) stops whereas the total 
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slip (ytot) continues to increase by frictional slip. Since totydD ) , this results in the 

ductility D asymptotically approaching zero with increasing ytot. If this hypothesis 

proves true, ytot was high enough compared to d to result in D < 0.5 for most brittle-

ductile quartz veins in the study area. 

 

3.6.3 Stress exponent in the quartz veins 

At first we were surprised to find in our model series 3 that the choice of stress 

exponent in the quartz flow law did not have an influence on the resulting shape of the 

sheared quartz veins (section 3.5.6). Following the work of Talbot et al. (1999) and 

Kenis et al. (2004), we expected the shape of the quartz veins (in particular the ductile 

shear zone width) to carry information about the stress exponent and therefore also 

about the deformation mechanism. For example, if the modelling results suggested that 

nq = 1 for our field observations, then we would infer that the veins were probably 

deformed by diffusion creep or solution-precipitation creep. By contrast, if nq >> 1, we 

would conclude that the main deformation mechanism prior to static localisation was 

dislocation creep (cf. section 3.1). Our modelling suggests that even if there were a 

change in deformation mechanism, the macroscopically observed shape of a quartz vein 

would not reflect this transition because as shown in Fig. 3.15, the stress exponent (e.g., 

nq = 1 or nq = 4) in the quartz does not significantly influence the shape of the sheared 

vein as long as the surrounding schist is stronger than the quartz. Talbot (1999) 

describes the influence of the stress exponent on the width of a shear zone: the higher 

the stress exponent n, the narrower the shear zone. However, Talbot (1999) investigates 

shear zones in homogeneous, fully viscous materials, whereas our models include two 

materials (quartz and schist) with two different rheologies (viscous vs. frictional). Our 

data reveal that as soon as there is some frictional behaviour involved in the shearing of 

a transverse marker, the relationship between n and shear zone width (dsw) and 

deformed marker shape is no longer simple. 

 

3.6.4 Viscosity contrast between schist and quartz 

That the quartz veins in our study area are typically deformed in a ductile way, 

whereas the schist is brittlely displaced across narrow shear cracks leads to an inference 

that the schist was viscously stronger than the unfaulted quartz veins embedded within 

it. The stiffer schist reacted to the brittle yield criterion whereas the softer, flowing 
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quartz veins did not. In section 3.5.7 we were able to constrain the viscosity ratio 

between schist and quartz to 0.4 < qsV  < 0.6. This means that the schist had 

approximately twice the ductile strength of the quartz veins during shearing. This 

strength contrast is surprisingly small, but is in agreement with other rheological 

studies, that derived viscosity contrasts of 1-10 between quartz and psammite materials 

(e.g., Treagus, 1999; Treagus and Treagus, 2002, and references therein; Kenis et al., 

2004). We have shown that, even at a small viscosity contrast between schist and quartz 

vein, the rheology of the stronger material (schist) controls the resulting shape of the 

weaker material (quartz). 

   

3.6.5 Estimation of quartz flow parameters constrained by modelling  

The determination of the viscous-to-frictional strength contrasts of ductile quartz 

and brittle schist and of viscosity ratios of those two rock materials enables us (under 

certain assumptions) to calculate a minimum and maximum pre-exponential factor AE 

for the quartz veins across the full range (maximum and minimum) of possible mean 

slip rates for the shear array (cf. section 3.4). Based on a Mohr-Coulomb failure 

criterion, we could assume a minimum frictional yield strength in the quartz veins and 

the schist of s
f

q
f 66 )  = 50 MPa. Using the previously determined viscous-to-frictional 

strength ratios that best fit our field data ( 2.1)) s
f

q
vqsR
6
6

, and 2.1)) q
f

q
vqR
6
6

), we 

calculate from our models and field data a best-fit viscous quartz flow strength of q
v6  = 

60 MPa. The minimum slip rate estimate for the brittle-ductile shears was 1.4 x 10-4 

mm/yr and the maximum estimate was 2 mm/yr resulting in natural (= model) shear 

strain rates of 2.7 x 10-12 s-1 and 3.18 x 10-8 s-1 in the shears respectively. Assuming a 

stress exponent nq = 4 and inserting those values into Eq. (3.3) gives AM = 2.08 x 10-19 

MPa-n s-1 for the slowest (all shears active) and AM = 2.45 x 10-15 MPa-n s-1 for the 

fastest strain rate (one shear active). In a triaxial deformation experiment, the calculated 

natural minimum and maximum shear strain rates would correspond to 3.12 x 10-12 s-1 

and 3.67 x 10-8 s-1. Excluding water fugacity, these strain rates would result in AE 1 10-12 

MPa-n s-1 and AE 1 10-8 MPa-n s-1. 

In combination with numerical modelling, we were able to derive a flow law for 

quartz from a) the interaction between brittle faults and quartz veins that have been 
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ductilely-to-brittlely offset across those faults and from b) geometrical scaling 

relationships in those sheared quartz veins: 
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where +!  is the uniaxial strain rate, OHf
2

 is water fugacity, d*  is differential stress, 

n is the stress exponent, R is the universal gas constant, and T is temperature. In Fig. 

3.19, we plotted this flow law using a geological strain rate of +!  = 1.0 x 10-14 s-1 (at this 

strain rate, Fig. 3.19 can be compared to Fig. 1.1 in section 1.2). 

 

 

 
 

For comparison, we also plotted the laboratory-derived flow law of Luan and 

Paterson (1992) and the partly geologically derived flow law of Hirth et al. (2001). 

These flow laws are frequently used to describe the viscous behaviour of the Earth’s 

crust. The flow law that resulted from this study and the ones by Luan and Paterson 

(1992) and Hirth et al. (2001) all have a stress exponent of n = 4.0. Luan and Paterson’s 

Figure 3.19: Plot of differential stress versus temperature using eq. (3.1) with the flow law parameters 
that were derived for the quartz veins in this study. Plotted for a natural strain rate of 1.0 x 10-14 s-1 
(compare to Fig. 1.1 in section 1.2). Flow laws of Hirth et al. (2001) and Luan and Paterson (1992) are 
shown for comparison. Both published flow laws fall within the grey shaded area that indicates the range 
of differential stresses that are possible with our flow law parameters at that fixed strain rate. AE = pre-
exponential factor; n = stress exponent for quartz. 
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as well as Hirth et al.’s flow laws predict Q = 135 kJ mol-1, which we adapted for our 

models so we can directly compare them. Fig. 3.19 shows that our results bracket the 

flow laws by Luan and Paterson (1992) and Hirth et al. (2001). We therefore conclude 

that (under certain assumptions) experimentally derived flow laws can be used to 

describe the rheology of quartz, at least in the neotectonically deformed quartz veins 

from the Southern Alps, New Zealand. 

 

3.7 Conclusions 

 

The newly exhumed fault-vein arrays in the central Southern Alps, New Zealand 

provide a valuable natural laboratory for the investigation of quartz rheology and the 

interaction between viscous and brittle deformation. By comparing numerical models to 

field-based scaling relationships that were measured in ductilely to brittlely sheared 

quartz veins, we have derived two important ratios relating to the effective rheology of 

natural quartz veins: we concluded that due to the principles of energy dissipation 

minimisation the viscous-to-frictional strength ratio between ductile quartz veins and 

brittle host schist s
f

q
v

qsR 66)  must lie between 1.0 and 5.0, in order to form a single 

localised fault, and in order for that fault to bend around the margin of the deforming 

quartz vein rather than cutting across the vein. We further conclude that the viscous-to-

frictional strength ratio inside the quartz veins ( q
f

q
v

qR 66) ) needs to be between 1.2 

and 1.4 in order for the models to simulate that veins with original thicknesses greater 

than 2 cm commonly remained partly to fully unbroken or ductile up to a displacement 

of ~7.5 cm, whereas veins of less than 2 cm thickness commonly are fractured and 

include a significant brittle component of slip as well. 

We conclude that we cannot use the macroscopic deformed shape of the sheared 

quartz veins by itself to deduce operative flow law parameters such as the stress 

exponent for the quartz veins. In our numerical models, we were only able to attain 

planar fault localisation at its intersection with a quartz vein (as observed in the field) 

when that quartz vein had a power law stress exponent of nq = 4. We assume therefore 

that nq was probably closer to 4 than to 1. This means that the quartz veins in our study 

area probably deformed by dislocation creep rather than diffusional or dissolution 

processes. We further conclude that the viscous quartz material controls the propagation 

and bifurcation behaviour of the fault in a purely frictional schist. 
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We can, however use the scaling relationship between ductile shear zone width in 

the quartz vein and ductile displacement of the quartz vein to deduce a viscosity ratio 

between the quartz veins and the surrounding host schist. We have demonstrated that in 

an environment where the schist may deform viscously as well as frictionally, the 

viscosity contrast qsV  between quartz and schist seems to be the major control on the 

final shape of the sheared quartz veins. Our models predict that the schist host rock to 

the shears was effectively ca. 2 times more viscous than the quartz veins embedded in 

that schist ( 6.04.0 55 qsV ). 

Using the viscous-to-frictional and viscous-to-viscous ratios between schist and 

quartz, and assuming a minimum frictional yield strength for both materials, the schist 

and the quartz, as well as a stress exponent of 4 for the quartz, we are able to calculate a 

range of pre-exponential factors that seem to fit our field data well. If water fugacity is 

included in the flow law, this set of flow law parameters envelopes published 

experimentally derived flow laws. We therefore conclude, that laboratory derived flow 

laws are applicable to the naturally deformed quartz veins in the Southern Alps of New 

Zealand. Although we confirm that experimentally derived flow laws for quartz are 

applicable to the quartz veins in our study area, they may not be valid for quartz in the 

highly strained rocks of the Alpine Fault mylonite zone, where the deformational 

history and the preservation of an early high temperature fabric in these mylonites 

influenced the later flow behaviour and development of the final CPO (e.g., Toy et al., 

2008). 
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Glossary 

+! , s+!   uniaxial strain rate, shear strain rate 

d* , 6   differential stress, shear stress 

q
v6 , s

v6   viscous flow stress in quartz, schist 

q
f6 , s

f6   frictional yield stress in quartz, schist 

n  stress exponent 

AE  experimentally derived pre-exponential factor 

AM  pre-exponential factor used in models 
qsR  ratio s

f
q
v 66 , viscous-to-frictional strength contrast between quartz and 

schist 
qR , sR  ratios q

f
q
v 66 , s

f
s
v 66 , viscous-to-frictional strength contrast in quartz, 

schist 
qsV  ratio s

v
q
v 66 , viscous-to-viscous strength contrast between quartz and 

schist 

ytot  total displacement or slip 

b  brittle component of displacement or slip 

d  ductile component of displacement or slip (d1 + d2) 

D  ratio d/ytot 

dy/dt  differential velocity or total slip rate 

miny! , maxy!  minimum, and maximum field-based slip rate estimates 

dsw  ductilely sheared width 

thorig  original vein thickness 

thmin  minimum vein thickness 

thatt  attenuation ratio thmin/thorig 
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Appendix 3.A - The choice of initial flow law for the quartz veins 

 

Wightman at al. (2006) and Hill (2005) have investigated crystallographic 

preferred orientations (CPOs) in the deformed quartz veins at the studied sites of 

Crawford Knob and Chancellor Ridge. They have described the CPOs as being very 

weak to random. This is surprising considering the observed high shear strains of 5-15. 

The model for quartz vein deformation by Wightman et al. (2006) suggests a late 

increment of diffusion creep-accommodated grain boundary sliding which may have 

weakened or randomised a pre-existing CPO in the veins. Diffusion creep is a grain size 

sensitive flow mechanism and usually requires low differential stresses and a small 

grain size. To our knowledge, diffusion creep has only been detected and described in 

ultrafine grained (< 4.5 µm) quartz by the deformation experiments of Brodie and 

Rutter (2000) and Rutter and Brodie (2004a). The model of Wightman et al. (2006) 

essentially describes three stages in the deformation of the veins: a) grain-size reduction 

through dynamic recrystallisation (i.e., dislocation creep) during shearing of the rocks, 

b) a stress-drop once the shearing stopped, i.e., once the rocks have passed the foot of 

the Alpine Fault ramp, c) grain growth through static recrystallisation (annealing) while 

the rocks are being shifted upwards along the ramp. Small grain sizes after phase a) and 

the waning differential stress in b) may have induced a change in deformation 

mechanism from dislocation creep to diffusion creep-accommodated grain boundary 

sliding and hence randomisation of the CPO. 

In order to preselect an initial flow law for input into the numerical models (main 

text) we have investigated several published grain size sensitive (GSS) and grain size 

insensitive (GSI) flow laws as well as grain size – stress relationships 

(paleopiezometers) for quartz against the background of the geological setting of the 

Southern Alps (inset in Fig. 3.A-1a).  For these models we assumed an Alpine Fault dip 

of 45º, a convergence rate of 11 mm/yr, and a temperature gradient of ~21º C/km 

(resulting in a temperature of 450° C at 21 km depth; Fig. 3.A-1a). The linear 

temperature gradient simplifies the true thermal structure beneath the Southern Alps in 

that the gradient is thought to steepen to up to 95°/km in the Franz Josef area closer to 

the Alpine Fault and closer towards the Earth’s surface (e.g., Shi et al., 1996). In 

agreement with the entrapment fluid pressure that was measured in primary fluid 

inclusions in the shear-infilling veins (~310 MPa, cf. main text and Wightman, 2005), 

the ratio fluid pressure / lithostatic pressure was set to 6.0)2  (Fig. 3.A-1a). It was also 
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assumed that the escalator model of Little (2002a) could be used to simulate the 

evolution of the brittle-ductile fault array, and that only one shear was active at a time 

and that shearing continued until this shear reached the surface (depth = 0 km).  

In order to justify the choice of a dislocation creep flow law as input into the 

numerical models (main text), we demonstrate how different the amounts of shear strain 

are, that are accumulated over a time period of 0.5 Myrs through 1) a grain size 

independent  dislocation creep flow law, and 2) a grain size dependent diffusion creep 

flow law. We used the dislocation creep flow law of Hirth et al. (2001), the diffusion 

creep flow law of Brodie and Rutter (2000) and the paleopiezometer of Stipp and Tullis 

(2003) in order to investigate the contribution of GSI and GSS flow to the accumulated 

shear strain. Table 3.A-1 summarises the parameters that were used to calculate strain 

rates and accumulated strains. 

Since both flow laws include a water fugacity term, and since water fugacity is 

temperature and pressure dependent, we used a “water fugacity calculator” that is 

available on a webpage by the University of Minnesota 

(http://www.geo.umn.edu/people/researchers/withe012/fugacity.htm) and is based on 

the equation by Pitzer & Sterner (1994), in order to calculate the water fugacities for 

these temperature and pressure values. 

 
Table 3.A-1 Flow law parameters that were used to calculate accumulated strain by GSS and GSI 
processes. Note that AM includes the geometrical factor that converts triaxial data to plane strain simple 
shear. AM does however not include water fugacity since fugacity changes with depth. 
 Equation AM 

(MPa-n s-1) n r Q 
(kJ/mol) 

GSI flow law 
(Hirth et al., 2001) !

"
#$

%
&') RT

QA n
M exp6:!  4.92 x 10-11 4.0 --- 135 

GSS flow law 
(Brodie and Rutter, 
2000) 

r
g

n
M dRT

QA '!
"
#$

%
&') exp6:!  0.945 1.0 2.0 220 

 Equation A 
(MPa µm-1/m) k   

Paleopiezometer 
(Stipp and Tullis, 
2003) 

k
d

g A
d

1'

!
"
#

$
%
&)
*

 3630.78 1.26 
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The graphs in Figs. 3.A-1b and 3.A-1c show clearly that the GSI accumulated 

shear strain is approximately 50000 times higher than the shear strain that was 

accumulated by GSS creep. The maximum shear strain that is achieved by grain size 

sensitive creep is ~0.02 using the paleopiezometer by Stipp and Tullis (2003) to 

calculate the corresponding grain sizes. The fraction of shear strain that is contributed to 

the total accumulated shear strain by GSS creep is therefore negligible. To match our 

field data, we would have required a shear strain of at least 2.  

We therefore conclude that even if diffusion creep-accommodated grain boundary 

sliding had been active at some stage in the deformation of the veins, it barely 

Figure 3.A-1: a) Simplified PT-conditions 
that could have prevailed during the 
activity of a shear. We also plotted water 
fugacity according to the changes in 
pressure and temperature following the 
equation of Pitzer and Sterner (1994). 
Inset: kinematic setting in the Southern 
Alps that was used to calculate pressures, 
temperatures and strain rates. b) plot of 
shear strain that was accumulated by grain 
size insensitive power law creep during 0.5 
Myrs of shearing under changing water 
fugacity, temperature, and effective 
pressure conditions. c) plot of shear strain 
that was accumulated under the same 
conditions as (b) but by grain size sensitive 
creep (linear creep law) also in 0.5 Myrs. 
Note that in (c), 50000 times less shear 
strain than in (b) is accumulated. 
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contributed to the high strains in the veins, and would therefore not affect the deformed 

vein shapes observed in the field. We further conclude that GSI dislocation creep seems 

to be the dominant deformation mechanism during shearing of the veins, and that this 

deformation mechanism is responsible for the high shear strains and deformed vein 

shapes. We therefore used the GSI power law by Hirth et al. (2001) as an initial flow 

law input in the numerical models in this study. 

 

Appendix 3.B – Strain softening used in models 

 

In general, the faults that displace the quartz veins and Alpine Schist host rocks are 

narrow (~2mm wide) and planar, and are inferred to have propagated as cracks through 

the brittle schist to the quartz veins (section 3.5.3.1). In order to achieve crack 

propagation and fault localisation in the schist in the models, the brittle material (schist) 

needs to be strain softened. We ran four preliminary models (S1, S2, S3, S4) to find a 

plausible strain softening case resulting in a model that is able to simulate our field 

observations: a well-formed, narrow, straight fault (even at mm-scale offset) that has 

propagated as a crack to the quartz vein. In these models we varied a) the total amount 

of strain softening and b) the strain softening gradient (Fig. 3.B-1). The results of these 

models show that the fault localisation in the schist depends primarily on the slope of 

the stress-plastic strain curve (models S1, S2, S4 in Fig. 3.B-1) rather than the total 

absolute value of the softened yield strength (models S2, S3 in Fig. 3.B-1). The steeper 

the strain softening gradient is, the more localised and the further propagated is the 

shear. If the gradient is very steep as in S1, however, the shear is not well localised at 

the intersection with the quartz vein. For a shallow gradient (S4), the fault has not 

reached the quartz vein yet after 1 mm of displacement, and deformation is more diffuse 

than in the other cases. The results for cases S2 and S3 are very similar since both have 

the same softening gradient. The absolute value of the softened yield strength does not 

matter. For all the models in the main modelling series (1 to 4) presented in this paper, 

we chose softening case S2 (bold line in Fig. 3.B-1), so that the brittle fault is fully 

established after a maximum of 1 mm total displacement corresponding to a plastic 

strain of ~0.1. 
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Figure 3.B-1: Strain softening tests. The graph represents frictional yield stress plotted against plastic 
strain in a series of experiments. We chose to use the strain softening case that is represented by the 
bold black line in the models (S2), since it best represents our field observations. Results are contour 
plots of plastic strain after 2 years of shearing (corresponding to 1.0 mm displacement). Note how the 
models with the steeper softening gradients have already fully established fault zones whilst the fault 
in the model with the shallower gradient has not propagated as a crack to the quartz vein yet. 
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Appendix 3.C – Conversion of triaxial laboratory experiments to plane strain 

numerical experiments 

 

When flow laws that were derived from laboratory experiments are used to assign 

rheologies in plane strain numerical models, it is essential to ensure that the laboratory-

derived stress-strain rate relationships are correctly expressed in terms of these 

modelled plane strain conditions. In general, experimental deformation apparatus work 

under a triaxial (or more correctly, biaxial) stress state (e.g., Griggs-type apparatus) in 

that they exert principle stresses 321 """ )7  on the sample, where 1" is in the 

direction of compression (piston direction). The mean pressure p in this system is equal 

to the mean of the three principle stresses: 

!
"

#
$
%

& 88
)

3
321 """

p         (3.C.1) 

The triaxial stress state can be described equivalently in terms of the three principle 

deviatoric stresses 321 ''' *** )7 , where we used the dash to differentiate deviatoric 

from principal stresses. Here,  
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is the deviatoric stress tensor. 

 

Laboratory deformation experiments are often reported in terms of an equation 

relating strain-rate +!  to differential stress 3 431 *** ')d : 

3 4n
E RT

QA 31exp **+ '!
"
#$

%
&')!        (3.C.3) 

where AE is the experimentally derived pre-exponential constant for a triaxial 

experiment, and 3"  is equal to the confining pressure of the apparatus. It is understood 

that +!  refers to the uniaxial strain-rate in the 1-direction ($ 11-direction) so that, for 

clarification, we should add the index “1” to the strain rate and rewrite Eq. (3.C.3) to 

3 4n
E RT

QA 311 exp **+ '!
"
#$

%
&')!         (3.C.4) 
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Since a flow law is a material property, it cannot be affected by the choice of 

experiment type or the choice of coordinate system (e.g., Paterson, 1981). Hence, we 

need to generalise the flow law by expressing it in terms of the effective strain rate and 

effective stress: 

n
EME RT

QA *+ !
"
#$

%
&') exp!  (3.C.5) 

where E+!  and E*  are the effective strain rate and effective stress respectively, and AM 

is the pre-exponential constant that we will use in the plane strain numerical models. 

 

Following Ranalli (1987), the effective stress is computed as 

3 4 3 4ijijE """"""""" ''
2
1''''''
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or in terms of the three principle deviatoric stress components 
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3
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1 **** 88)E        (3.C.6b) 

and the effective strain rate as 
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or equivalently as 

3 42
3

2
2

2
1 '''

2
1 ++++ !!!! 88)E        (3.C.7b) 

In order to compute the deviatoric stress components in terms of the principal stress 

1" and the confining pressure pc, we first consider a case where confining pressure 

0)cp  (i.e., a true uniaxial experiment). Then: 

032 )) ""  and from Eq. (3.C.1): 13
1 "p ) . 

Inserting into Eq. (3.C.2) results in 

11 3
2' ** )  and 132 3

1'' *** '))  

 

In an experiment with confining pressure (triaxial experiment), 2"  and 3"  are no 

longer zero, but are equal to the confining pressure pc, and 1"  is equal to the applied 

load app"1 : 
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cp"" )) 32  ; app"" 11 )  and the pressure becomes 
3
21 cp"

p
8

) . 

Inserting into Eq. (3.C.2) results in the following deviatoric stress components, written 

in terms of the principal stress 1"  and confining pressure pc: 

3 4cp') 11 3
2' **  

3 4cp'')) 132 3
1'' *** . 

Since the confining pressure pc is equal to the principal stress in the 3-direction, we can 

express the deviatoric stresses in terms of the differential stress d" : 

3 4 d****
3
2

3
2' 311 )')  and 3 4 d*****

3
1

3
1'' 3132 ')'')) . 

Substitution into Eq. (3.C.6b) relates the effective stress to the differential stress as 

follows: 

dE ""
3

1
)  or Ed ** 3)        (3.C.8)  

 

We assume that the sample is incompressible, so that we can express the 

components of the deviatoric strain rate in terms of the rate of shortening in the 1-

direction 1$!  in the following way: 

11' ++ !! )   

and 132 2
1'' +++ !!! '))  

Inserting the deviatoric strain rates into Eq. (3.C.7b) relates the effective strain rate to 

the uniaxial strain rate as follows: 

12
3 ++ !! )E  or  E++ !!

3
2

1 )        (3.C.9) 

 

Using the relationships of Eqs. (A.8) and (A.9) and substituting in Eq. (A.4) gives: 
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Setting Eqs. (3.C.5) and (3.C.10) equal leads to the following relationship between the 

experimentally derived pre-exponential factor AE and the pre-exponential factor we 

wish to use in the plane strain models AM: 
3 4

E

n

M AA
2

3 218

)         (3.C.11) 

 

Appendix 3.D – Strain rate conventions in our code 

 

Our code reports shear strain (and shear strain-rate) as: 

3 4jiijs +++ !!! 8)
2
1         (3.D.1) 

For example, consider the shear strain rate near the upper boundary of a model where a 

differential velocity V, is applied across a total length dl. Our code will report the shear 

strain rate as: 

3 4
dl

V
jiijs 22

1
)8) +++ !!!         (3.D.2) 

 

Appendix 3.E – Frictional yield parameters in our code 

 

The code used in this paper assumes a Coulomb yield criterion of the form: 

AA6 cossinmax cp 8)         (3.E.1) 

which is derived from the yield on a particular surface, by assuming slip occurs on 

optimally-oriented planes, and where d*6
2
1

max ) , p is pressure, c is cohesion and A  is 

the slope of the failure envelope, i.e., the angle of friction (e.g., Ranalli, 1987, pp. 95). 

 

If we set 0)A  then Eq. (3.E.1) reduces to the “maximum shear stress criterion” (also 

known as Tresca criterion): 

c)max6           (3.E.2) 

 Therefore, for the experiments performed here, where A  is set to zero and the frictional 

strength is prescribed as a cohesion, the cohesion should be entered as the maximum 

shear stress in our code. 
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Appendix 3.F – Creep flow parameters in our code 

 

Our code uses a creep flow law that relates flow stress and strain rate by a factor known 

as effective viscosity effB  (e.g., Ranalli, 1987): 

ijeffij +B* !2' )           (3.F.1) 

Eq. (3.F.1) expressed as a power law and solved for stress results in  

n
ijij nRT

QB 1exp2' +* !!
"
#

$
%
&)        (3.F.2a) 

where B is the pre-exponential factor that we input into our code. Here, too we need to 

find a relationship between B and the pre-exponential factor AM derived in App. 3.C. 

 

Eq. (3.F.2a) can also be written as 

3 4 n
ijnIIij E

nRT
QB 111

exp2' +* !'!
"
#

$
%
&)       (3.F.2b) 

where EII is the second invariant of the strain rate tensor. 

This leaves the effective viscosity to be 

3 4 11
exp '!

"
#

$
%
&) nIIeff E

nRT
QBB        (3.F.3) 

Since our models are plane strain simple shear models, 12'*  and 12+!  are the only non-

zero component of the deviatoric stress tensor and the strain rate tensor respectively, 

and we can define 

12'' *** )) ijE          (3.F.4) 

and 

12+++ !!! )) ijE           (3.F.5) 

and can hence rewrite Eq. (F.2a) in terms of effective strain rate and effective stress: 

n
EE nRT

QB 1exp2 +* !!
"
#

$
%
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Recalling Eq. (3.C.5) and solving for the effective stress gives 

n
E

n
ME nRT
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so that we can relate B and AM as follows: 

n
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2
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4.1 Introduction 

 

Exhumed shear zones provide an excellent opportunity to study the interplay 

between brittle and ductile rock deformation. In homogeneous rocks, it is impossible to 

form a localised ductile shear zone without the introduction of a rheological 

inhomogeneity into the rocks. Such a change in rock strength may be related to a change 

in deformation conditions, e.g., strain rate, stress state, temperature (e.g., Hobbs et al., 

1990; Burlini and Bruhn, 2005). Effective rock viscosities may also be changed by grain 

size reduction, followed by a switch to grain-size sensitive deformation mechanisms 

(Handy, 1989; Montési and Zuber, 2002; Jin et al., 1998; see also discussions in De 

Bresser et al., 2001, and in Montesi and Zuber, 2002), or by reaction-induced changes in 

mineral composition, or by hydrolytic weakening (chemical softening). Many studies 

conclude that it is not possible to localise ductile deformation in a homogeneous rock 

without precursory brittle deformation of that rock (e.g., Simpson, 1986; Tourigny and 

Tremblay, 1997; Pennacchioni, 2005; Mancktelow and Pennacchioni, 2005; 

Pennacchioni and Mancktelow, 2007; Fusseis et al., 2006; Fusseis and Handy, 2008). 

Brittle precursory fracturing may occur on all scales. i.e., from microfracturing to 

crustal scale faults. The precursory embrittlement may or may not be followed by the 

ingress of fluids into the fractured rocks, which may subsequently lead to fluid-

alteration of the affected rocks and create a rheological inhomogeneity that can later be 

exploited as a ductile shear zone (Fig. 4.1). Using numerical modelling, Ellis and 

Stöckhert (2004) showed that a seismogenic brittle fault in the upper crust can also 

induce periodic shear zone localisation in a viscous lower crust. In numerical computer 

models of ductile shear zones in homogeneous material, strain localisation is usually 

initiated by introducing a thermal or a viscous “perturbation” into the model (e.g., by 

attributing a slightly different temperature or viscosity to a small part of the model (e.g., 

Kaus & Podlachikov, 2006; Mancktelow, 2006). Kaus & Podlachikov (2006) conclude 

that the degree of localisation and the maintenance of a shear zone depend on the size of 

that initial perturbation among other factors. Another common way to achieve strain 

localisation in numerical models is simply to prescribe a plastic strain softening 

behaviour for the modelled rocks (e.g., Schueller et al., 2005; Grigull et al., this study, 

section 3.5.3.2; for a summary of localisation methods see Montesi and Zuber, 2002). 

Although such methods can lead to the formation of a localised shear zone in the 
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homogeneous material, neither of them bears information about the actual weakening 

processes affecting naturally deformed rocks. 

 

 

 

In this paper, we present a case study of naturally formed mid- to lower-crustal 

faults and shear zones deforming quartzofeldspathic, foliated schist and quartz veins in 

the central Southern Alps, New Zealand. Here, an array of shears accommodating 

variably brittle to ductile displacement of the quartz veins has been exhumed from  20 

km depth during the past 3-4 m.y. (Little at al., 2002a, b; Wightman, 2005; Wightman et 

al, 2006; Wightman and Little, 2007).  

In order to retrieve information about the localisation process at this site which has 

led, in particular, to the ductile shearing of some of the quartz veins, this study 

addresses the evolution of shear zones in these layered rocks. We focus on the variable 

brittle to ductile behaviour expressed by compositionally similar quartz veins. Some 

quartz veins have been displaced across fully ductile shear zones whereas others have 

Fig. 4.1: Flow diagram illustrating two ways (out of many) to form localised ductile shear zones in 
homogeneous, isotropic rock. Precursory brittle fracturing is followed by fluid infiltration and either 
hydrolytic weakening (case 1) or chemical hardening (case 2) of the wall rocks. The resulting type of 
ductile shear zone depends on whether the wall rocks were chemically hardened or weakened by the 
introduced fluids. In both cases, the introduced rheological contrasts determine where the shear zones 
form. 
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instead been brittlely displaced. Whereas the quartz veins may be either brittlely or 

ductilely displaced, their quartzofeldspathic schist country rock is everywhere displaced 

across a narrow, fault-like, brittle crack (Fig. 4.2). 

 

  

 

 

In this paper, we will investigate potential causes for either a potential softening or 

hardening behaviour of the quartz veins, and in particular evidence for precursory brittle 

deformation prior to shear zone formation. A key geometrical scaling parameter used in 

this paper is the “ductility” D of a quartz vein offset. The ductility is defined as the ratio 

between the ductile component of slip d and the total slip ytot, i.e., D = d/ytot of a 

displaced quartz vein marker across a given brittle-ductile shear zone (Fig. 4.2). When 

D is plotted against the original vein thickness thorig of the displaced veins or against the 

total vein displacement ytot, the diversity of observed scaling ratios between these 

parameters suggests that the rheological properties of the individual quartz veins must 

have varied significantly between one vein and the next. A goal of this paper is to 

understand what has led to this variability in D between individual quartz veins and to 

extract any information on inherited pre-deformational rheological conditions that might 

be provided by these differential D-values. In summary, we try to answer the following 

fundamental questions. How did the ductile shear zones initiate in the quartz veins? 

Was a hardening or weakening process operative to localise the ductile shear zones? 

Was precursory brittle deformation of the rocks with associated fluid ingress a 

necessary pre-condition for the formation of the highly localised ductile shear zones in 

the quartz veins? What controlled the variable style of rock deformation in the quartz 

veins (i.e., brittle vs. ductile)? 

Fig. 4.2: Schematic drawing of basic 
“brittle-ductile shear”: a ductilely-to-
brittlely displaced quartz vein (white) 
embedded in brittlely displaced schist 
(grey). “Undeformed” and “deformed” 
parts of the vein, “infilling vein” and 
geometrical measurements as used in 
the manuscript are labelled accordingly. 
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In order to answer these questions, we will present detailed meter-scale outcrop 

maps of the brittle-ductile shears, and plots of several geometrical scaling relationships 

to analyse vein to vein variability in D. We then evaluate three possible factors that may 

have caused differential softening or hardening between one quartz vein and the next, 

and which resulted in the observed variations in the ratio D. These factors are: calcite-

fraction, molecular water content and local slip rates. We also evaluate whether any of 

these factors may have facilitated shear zone localisation in the quartz veins. In 

addition, we evaluate whether local (meter-scale) changes in deformation conditions 

(e.g., temperature or stress state) could have led to the variable D-values measured in 

the sheared quartz veins. 

  

4.2 Geological and tectonic setting 

 

The shear array is situated in the central Southern Alps, New Zealand (Figs. 4.3a, 

4.3b). Here, glaciated outcrops provide the opportunity to study the development of the 

shears and to document the interplay between the brittle and ductile deformation that 

variably affects the host rocks of these shears. The shear array formed during the late 

Cenozoic in the hanging-wall of the Alpine Fault (e.g., Little et al. 2002a, b). The 

Alpine Fault is the main structural expression of the Pacific-Australian plate boundary 

(Fig. 4.3a), accommodating ~75 % of the convergence between those two major plates 

(Norris and Cooper, 2001). In the central Southern Alps, the Alpine Fault strikes 

approximately 055° and dips moderately (~45°) to the SE (e.g., Norris and Cooper, 

1995; Kleffman et al., 1998; Stern at al., 2007; Little et al., 2007). Convergence during 

the past several m.y. has been oblique at 37 mm/yr at N71°E (NUVEL-1A global plate 

motion model of DeMets et al., 1990, 1994). In the central Southern Alps, the dextral-

reverse Alpine Fault has moved with an average late Quaternary strike-slip rate of 27 ± 

5 mm/yr, and a reverse dip-slip rate of 8-12 mm/yr (Sutherland, 2006; Norris and 

Cooper, 2001, 2007). Uplift rates are reported to be a maximum of c. ~10 mm/yr in the 

area between the Franz Josef and Fox glaciers (Wellman, 1979; Bull and Cooper, 1986; 

Tippet and Kamp, 1993; Beavan et al., 2007). The high uplift rates have led to the 

exhumation of Mesozoic quartzofeldspathic rocks (metagreywacke) along and to the 

east of the Alpine Fault ramp. This east-tilted crustal section of metamorphic rocks is 

termed Alpine Schist. The Alpine Schist ranges from amphibolite facies metamorphic 
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grade adjacent to the Alpine Fault and its adjacent ~1 km-wide mylonite zone to 

prehnite-pumpelleyite facies in the supracrustal greywacke sequences near the Main 

Divide of the Southern Alps 15-20 km to the east of the Alpine Fault (Fig. 4.3b; Grapes 

& Watanabe, 1992; Cox and Barrell, 2007). Recent earthquake refraction travel-time 

studies across South Island have led to a crustal thickness estimate of 48 ± 4 km beneath 

the Southern Alps in the southern part of South Island (Bourguignon et al., 2007). This 

depth of the crustal root is 18 km beneath the average 30 km at the coast and 

corresponds to approximately twice the thickness that would be expected for the recent 

topographic elevation of the Southern Alps (Stern et al., 2002; Bourguignon et al., 

2007). 

 

Stern et al. (2001, 2007) have traced the Alpine Fault down to 35 km depth via 

seismic experiments. At that depth, Stern et al. (2001, 2007) imaged sub-horizontal 

reflectors that they interpreted as a detachment along which crustal rocks are being 

delaminated and transported westward onto the Alpine Fault ramp (Fig. 4.4). These 

authors also imaged a zone of low P-wave velocity above the fault surface that extended 

from ~8 km down to 35 km depth. This low-velocity zone parallels a low-resistivity 

anomaly and is interpreted as interconnected fluids that were expelled and have 

travelled upward during shearing and dewatering of the rocks above the detachment 

(Stern et al., 2001, 2007; Wannamaker et al., 2002). A recent study of devolatilisation in 

an Alpine Schist sample by Vry et al. (2009) also argues for the presence of fluids 

down-dip of the Alpine Fault near the region of this upward ramp step. They propose 

that, during exhumation, metagreywacke rocks are dehydrated largely as a result of 

decompression following the peak conditions of temperature (~600° C; Vry et al., 

2004). Vry et al. (2009) propose that this fluid expulsion accompanied the sudden 

upramping and deformation of the Pacific plate from the flat detachment onto the 

locally steeper dipping plane of the Alpine Fault, as has been proposed by Little (2004), 

Little et al. (2005) and Wightman and Little (2007). 

Based on seismicity cut-off depths, Leitner et al. (2001) inferred that the brittle-

ductile transition zone (BDTZ) in the central Southern Alps is at 8-10 km depth. This 

depth corresponds approximately to the top of the low seismic velocity zone that was 

imaged by Stern et al. (2001). This is only slightly shallower than other typical depths 

of 12-15 km in such transpressive or convergent orogens in e.g., the western United 

States or the eastern European Alps (e.g., Sibson, 1983; Stöckhert et al., 1999). Such 
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shallowness of the Southern Alps BDTZ has been attributed to an elevated thermal 

gradient in that central part of the orogen due to high uplift rates in that area (e.g., Shi et 

al., 1996; Leitner et al., 2001). 

 

 

 

Fig. 4.3: Tectonic setting. a) Schematic map of South Island, New Zealand. The dextral-reverse Alpine 
Fault is the major expression of the Pacific-Australian plate boundary. The plate motion vectors are 
from the NUVEL-1A model by DeMets et al. (1990, 1994). D = Down, U = Up. b) Close-up of the 
study area showing the known aerial extent of the brittle-ductile shear or fault array, its spatial relation 
to the Alpine Fault and the two main study and sampling localities Crawford Knob (location of map in 
Fig. 4.5a) and Chancellor Ridge (location of map in Fig. 4.5b). Mineral isograds are taken from Cox 
and Barrell, 2007. 



Chapter 4                                                Controls on brittle-ductile shear zone formation 

 106

 

 

 

 

As a result of the reverse component of slip on the Alpine Fault and high erosion 

rates, the Alpine schist and its cargo of ramp-related, late Cenozoic brittle-ductile shears 

have been exhumed to the surface from ≥20 km depth during the past ~ 3-4 Myrs (Little 

et al. 2002a). The above mentioned shear array occurs in mid- to lower-crustal rocks 

(biotite-zone). There, the observed brittle deformation is inferred to have occurred at 

temperatures hotter and deeper than the seismogenically defined BDTZ (i.e., below 8-15 

km depth). This deep embrittlement within otherwise ductilely deforming rocks of the 

Fig. 4.4: Schematic cross-section through the central Southern Alps after Wightman and Little (2007). 
The grey shaded areas indicate the low resistivity zone that was imaged through geoelectric 
measurements by Wannamaker et al. (2002). Dashed lines are one possible isotherm structure after Batt 
and Braun (1999). The position of the 300° C-isotherm is here taken to coincide with the bottom of the 
seismogenic zone. Note how rapid erosional exhumation has caused the isotherm to bend upwards near 
the Alpine Fault (1) and that this isotherm becomes progressively deeper to the SE of the Southern Alps 
(2). 
Inset: Escalator model after Little (2004). Pacific Plate rocks are delaminated along a detachment and 
transported westwards towards the Alpine Fault ramp. While passing the foot of that fault ramp, the 
rocks are subjected to transiently high shear stresses and strain rates, leading to distributed ductile 
shearing in the lower crust and to embrittlement and the formation of discrete backshears in rocks that lie 
~7 km above the Alpine Fault. After passing this critical point, deformation stops and the rocks are 
passively transported to the surface in an escalator-like fashion. 
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lower crust is inferred to have been a transient process that resulted from an acceleration 

in strain rates and increase in differential stresses that affected the Pacific plate rocks, at 

near-lithostatic fluid pressures as they were upturned across the foot of the Alpine Fault 

ramp (e.g., Little et al., 2002a, 2002b, 2005; Wightman et al., 2006). Little (2004), Little 

et al. (2002a, 2002b), Wightman et al. (2006), and Wightman and Little (2007) have 

suggested a model for the formation and evolution of the brittle-ductile fault array. The 

model (Fig. 4.4, inset) proposes that rocks in the hanging wall of the Alpine Fault were 

first displaced along the sub-horizontal detachment before being tilted eastward and 

back-sheared in an oblique, escalator-like fashion upon reaching the base of the Alpine 

Fault ramp. When the rocks negotiated the step at the foot of this fault ramp, they were 

subject to high shear stresses and strain rates leading to a transient embrittlement into 

the lower crust (Fig. 4.4, inset). This neotectonic brittle-ductile regime forms the natural 

laboratory for this paper. 

 

4.3 Study area and field description of brittle-ductile shears 

 

The field data and samples for this paper were collected at two locations in the brittle-

ductile shear zone array: Chancellor Ridge and Crawford Knob (Figs. 4.3b, 4.5a, 4.5b). 

There, biotite zone Alpine Schist consists mainly of quartzofeldspathic metagreywacke 

(metapsammite) that is interlayered with subordinate pelitic layers up to 2 m thick (Figs. 

4.6a-c). The dominant foliation in the schist strikes between 030º and 060º and typically 

dips steeply to the SE (see stereograms in Figs. 4.5a, 4.5b and 4.9c, 4.10c). The mean 

foliation orientation at Crawford Knob is 133/881 (n=27), whereas at Chancellor Ridge 

it is 128/79 (n=29). Both compositional layers in the schist and abundant quartz veins 

which occur embedded in that schist are dextrally and vertically separated across a 

systematically and closely spaced array of parallel, planar, near-vertical faults (Figs. 

4.5a, 4.5b, 4.6a-c, and 4.9a, 4.10a). The average orientation of these faults at Crawford 

Knob is 336/88 (n=34) and 307/89 (n=29) near Chancellor Ridge. At both locations, the 

faults strike approximately parallel to the Alpine Fault. The movement of the hanging 

wall along those faults was consistently both dextral and NW-up. This is revealed by 1) 

the consistent SW-rake of fault surface vein striae (e.g., Fig. 4.6d) and 2) a detailed fault 

                                                 
1 If not stated otherwise, we will give the orientation measurements of planar geological features such as 
faults, foliations and quartz marker veins in ‘dip direction / dip angle’. Linear features (e.g., fibre 
lineations) are given in ‘trend / plunge’. 
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kinematic analysis of the offsets of variably oriented planar markers by Wightman 

(2005) and Wightman and Little (2007). These studies indicate that the mean pitch of 

the slip vector was 36 ± 5° SW in the near-vertical average fault plane. 

At Chancellor Ridge, the faults cut the dominant foliation in the schist at a mean 

angle of ~12° anticlockwise of that fabric (Figs. 4.5b, 4.6b), whereas at Crawford Knob, 

they cut the foliation clockwise at a mean angle of ~23° (Figs. 4.5a, 4.6c). The 

deformed quartz veins that are embedded in the schist typically strike N-S and dip 

moderately to the east (Figs. 4.9a, 4.9d and 4.10a, d).  

The style of deformation of the rocks displaced across these faults varies for 

different types of markers and rock types. The shears are sharp, discrete (mm-wide) 

faults and wholly brittle where they crosscut quartzofeldspathic schist. By contrast, 

quartz veins embedded in this quartzofeldspathic schist are typically partly to wholly 

ductilely displaced by the same shears (Fig. 4.6c). Some of the more ductile of the 

deformed quartz veins have been smoothly and coherently smeared out to achieve bulk 

ductile shear strains of 10-15 across shear zones transecting the veins that are ~2-3 cm 

wide (Fig. 4.6c). The only places where ductile deformation of the host 

quartzofeldspathic schist occurs is in the local area of overlap between two adjacent 

strands that are arranged en échelon. There, we infer that the wider deformation volume 

caused lower strain rates, a change that reduced the effective viscosity of the 

quartzofeldspathic schist between the two fault strands. Everywhere else the shears are 

sharp and fault-like where they cut the quartzofeldspathic schist. The contrast in 

deformation behaviour between the schist host rocks (brittle) and the quartz veins 

(variably ductile) suggests a difference in their effective viscosity and probably points to 

a difference in operative deformation mechanism (e.g., viscous creep in the quartz veins 

vs. frictional sliding in the host rocks). 

 

Most of the walls of the brittle faults in the schist host to the quartz veins are 

painted with slickenfibre veins of quartz + calcite + chlorite (Fig. 4.6d). The 

consistently aligned mineral fibres define a SW-pitching slip lineation on the faults (Fig. 

4.6d). These laterally continuous fault-infilling veins are 1-2 mm wide on average, 

suggesting a mean fault dilation of this magnitude. On the basis of the similarity of 

oxygen isotope analyses in the fault-infilling veins and its surrounding schist, the 

aqueous fluids from which the fault-infilling veins were precipitated are inferred to have 
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been released as metamorphic fluids expelled from actively metamorphosing and 

ductilely deforming rocks at a depth below the exposed levels of the brittle-ductile fault 

array (Wightman, 2005; Wightman and Little, 2007). 

 

 

Fig. 4.5: Maps showing the locations of Figs. 4.9, 4.10, 4.11, 4.12, 4.16 (in red) and sample locations for 
laboratory analyses (calcite content, TitaniQ geothermometry, FTIR spectroscopy) at a) Crawford Knob 
and b) Chancellor Ridge. Grid-coordinates are in New Zealand Map Grid. Strikelines of the mean shear 
orientations are drawn in dark grey. Formlines showing the strike for the mean foliation are in lighter 
grey. For location of maps see Fig. 4.3b. Stereograms are lower hemisphere projections of the measured 
brittle-ductile shears and Alpine foliation attitudes. nCrawford and nChancellor is number of attitudes measured 
at Crawford Knob and Chancellor Ridge respectively. 
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Fig. 4.6: Field photographs of the brittle-ductile shears. a) ca. 300 m high cliff at Crawford Knob, 
showing near-vertical brittle-ductile shears and steeply SE-dipping main Alpine foliation; facing NE 
parallel to the strike of the shears; the “stripey” appearance of the schist is due to alternated layering 
of metapelites (dark) and metapsammites (light). b) Glaciated outcrops near Chancellor Ridge. 
Photograph taken facing SW. Note the regular (~30-50 cm) spacing of the brittle-ductile shears; c) 
Outcrop photograph, Crawford Knob. Here, the shears brittlely offset the host Alpine schist as well 
as some of the thinner quartz veins. Where the fault tips encounter thicker quartz veins, they tip out 
into those quartz veins and displace them entirely ductilely; d) Plan view of a fault surface at 
Crawford Knob. The fault plane dips steeply to the NW. A qtz + cal + chl vein has infilled the brittle 
fault. Incrementally grown fibre lineations in that vein indicate the direction of slip (NE-SW, top to 
the SE). The grey arrow points in the direction in which the (now eroded)  hanging wall moved. 
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4.4 Microstructures and CPOs of the deforming quartz veins and the fault-infilling 

quartz-carbonate veins 

 

Today, the grain-boundaries in the ductilely sheared and deformed quartz veins are 

polygonal with straight grain boundaries and abundant ~120° triple junctions (Fig. 4.7). 

The mean 2D grain diameter in these quartz veins is 126 ± 16 µm in the internal sheared 

part of the vein and 171 ± 14 m in the external unsheared part (grain sizes from Hill, 

2005 measured in two orthogonal directions using the intercept method as described in 

Christie and Ord, 1980; Stipp et al., 2002). In the sheared veins, this strongly recovered, 

polygonal microstructure indicates a period of static recrystallisation subsequent to their 

ductile shearing. We infer that when the rocks passed the “corner region” at the foot of 

the Alpine Fault, they were temporarily subject to elevated stresses and rapid strain 

rates, but that subsequently they were unloaded while being passively advected upwards 

towards the surface in the hanging wall of the Alpine Fault ramp (Little et al. 2002b; 

Wightman et al., 2006). During this advective phase, they remained at high 

temperatures, but were not subject to further significant differential stress or shearing 

(“inactive faults” in inset of Fig. 4.4). Static recrystallisation and grain growth during 

their transport to the surface led to the observed foam-like microstructures (Figs. 4.7b, 

4.7c; also Wightman et al., 2006). 

Crystallographic preferred orientation (CPO) measurements on ductilely sheared 

quartz marker veins by Wightman (2005), Hill (2005), and Wightman et al. (2006) 

indicate that despite the demonstrably high finite ductile shear strains of 5-10 locally 

accommodated inside the sheared quartz veins, the CPO in these strongly and ductilely 

deformed veins is today either very weak or random. Wightman et al. (2006) suggest 

that dynamic recrystallisation led to very fine grain sizes during initial shearing. Waning 

stresses towards the end of the shearing deformation might have allowed activation of 

diffusion creep-accommodated grain boundary sliding for a final increment of ductile 

shearing prior to the later static recrystallisation phase. This grain-size sensitive process 

of grain boundary sliding may have weakened or randomised any pre-existing CPOs in 

the sheared veins that had been imposed by the initial dislocation creep. CPOs in the 

undeformed part of the older quartz veins are also relatively weak, but not as weak as in 

the sheared part of the same veins (Wightman, 2005; Hill, 2005; Wightman et al., 

2006). Quartz c-axes in the undeformed vein parts are arranged in an expectable pattern 
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about the Alpine Foliation for ductile shortening related to basal-<a> slip during 

greenschist-facies deformation (Wightman, 2005; Hill, 2005; Wightman et al., 2006). 

 

 

 
 

The younger, fault-infilling quartz-carbonate veins also show a statically 

recrystallised microtexture with a mean grain size of 141 ± 20 µm (2D-grain sizes from 

Hill, 2005; Fig. 4.8a). Under the microscope, some of these fibrous infilling veins 

preserved elongate, remnant depositional quartz grains that are interpreted by Wightman 

(2005) as indicative of vein-growth during hybrid-extensional shear failure. Sub-parallel 

planar arrays of fluid inclusions in those large remnant quartz grains indicate that the 

veins grew incrementally through a crack-seal mechanism and that this brittle 

deformation was followed by partial healing of the fractured quartz (Fig. 4.8c; 

Wightman, 2005). Growth of such delicate and presumably progressively grown 

Fig. 4.7: Microphotographs of ductilely deformed quartz vein CK72 under cross-polarised light. For 
sample location see Fig. 4.5a. a) Stitched microphotograph of CK72. Note the smooth, fracture-free bend 
in the quartz vein where the shear zone transects it. The dominant foliation in the host schist wall rock to 
this vein is clearly expressed by a preferred dimensional alignment of biotite. b) Statically recrystallised, 
foam-like microstructure in unsheared part of CK72, external to the ductile shear zone. c) Statically 
recrystallised, foam-like microstructure in sheared part of CK72, internal to the ductile shear zone. Note 
how similar the polygonised grain shapes and the microstructure are in both the sheared and the 
unsheared part of the quartz vein. Orange arrows point to ~120° triple junctions between the 
approximately polygonal-shaped grains. 
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mineral fibres suggests that the causative displacements were slow and not abrupt as 

during an earthquake (e.g., Gratier and Gamond, 1990). The complete lack of any brittle 

wear products such as fault gouge, cataclasites or pseudotachylites implies that slip was 

sufficiently slow to prevent brittle comminution of the wall rocks. Also, the lack of 

macroscopically visible fracturing of many of the quartz veins displaced across the 

faults implies slow strain rates. On the basis of the delicate microstructure of the fibrous 

fault-infilling veins (Fig. 4.6d), shearing of the quartzofeldspathic host schist is 

interpreted to have been accommodated by an aseismic stable sliding process that 

included some dissolution-precipitation creep along the sliding surface (e.g., Gratier and 

Gamond, 1990; Ohlmacher and Aydin, 1997; Little et al., 2002a; Wightman, 2005). 

The remnant quartz fibers in the fault-infilling quartz-carbonate veins are now 

largely recrystallised and show shape- and <c>-axis crystallographic preferred 

orientations at a high angle to the shear zone walls (Figs. 4.8b, 4.8c). The presence of 

undulous extinction, <c>-axis crystallographic preferred orientations and subgrain 

formation in the remnant grains indicates that the shear-infilling quartz-carbonate veins 

were subject to some dislocation creep after their precipitation (Fig. 4.8c). 
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4.5 Field data documenting brittle-ductile deformation of quartz veins 

 

4.5.1 Detailed maps showing brittle-ductile shear geometry 

Figs. 4.9a and 4.10a show detailed maps of the brittle-ductile shears from two 

glaciated surfaces at Crawford Knob. We mapped the rock surface using a 1 x 1 m grid 

that was divided into 10 x 10 cm sections. Mapping precision was <1 cm. Only outcrop 

separations (offsets) are revealed on these maps, because the outcrop planes did not 

exactly coincide with the average movement plane of the brittle-ductile shears (Grigull 

and Little, 2008). Using the average attitudes of the glaciated outcrop surfaces, the 

brittle-ductile faults and its slip lineations, and the average orientation of the quartz 

marker veins (Table 4.1), we were able to determine that offsets (strike separations) on 

the outcrop surfaces overestimate the true slip by ~8 % on average at the locality of Fig. 

4.9a; and by ~18 % on average at the locality of Fig. 4.10a. In detail these differences 

vary slightly between the consistently oriented individual shears and individual quartz 

veins. The main point is that there is not much difference between the outcrop 

separation and true displacement at the localities of the maps in Figs. 4.9a, 4.10a. The 

D-value is a ratio of ductile slip to total slip across a marker vein and is relatively 

insensitive to errors that arise from the overestimated absolute displacement values. 

  

The maps in Figs. 4.9a and 4.10a show how regularly spaced the shears are and 

how they cut and offset the dominant schist foliation (represented by grey pelite layers) 

at an angle of ~23°. The maps also show the variable interaction between the faults and 

the older quartz veins that they crosscut. Mapping of individual shears along strike 

indicates that they persist both laterally and vertically over distances of 1 to 10s of 

metres (Figs. 4.9a, 4.10a, 4.11, 4.12; e.g., shears labelled CK-A, CK-B and CK-D in the 

upper part of Fig. 4.10a).  

Fig. 4.8 (previous page): Microphotographs of fault-infilling quartz-calcite vein taken under cross-
polarised light. Photographs from Wightman (2005). a) Microstructure of shear-infilling quartz-calcite 
vein. Note the polygonal foam-like grain-shape structure similar to that of the deformed quartz veins 
(Fig. 4.7c). b) Microstructure of shear-infilling quartz-carbonate vein showing local preservation of 
quartz porphyroclasts interpreted to be remnants of original fibrous vein structure in a dilational shear 
vein (hybrid extensional-shear) that has since been largely recrystallised. Gypsum plate inserted. c) 
Inferred remnant quartz fibre grain (now porphyroclastic) in shear-infilling vein that is transected by 
secondary fluid inclusion trails. Subgrains have formed in the relict grain also indicating some dynamic 
recrystallisation of the infilling vein after deposition. d) Primary fluid inclusions that occur trapped in a 
coarse, remnant quartz fibre in a fault-infilling vein. Fluid inclusions are two-phase, liquid-vapour H2O. 
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Fig. 4.9: a) Detailed outcrop map of brittle-ductile shears at Crawford Knob. For location of map see Fig. 
4.5a. Maps were prepared using a 1 x 1 m grid divided into 10 x 10 cm sections. Mapping accuracy is     
<1 cm. “D” marks quartz veins that have been fully ductilely displaced; all other veins are displaced 
brittlely to various degrees. “T” indicates fault terminations. b) Lower hemisphere equal area stereogram 
of brittle-ductile shear orientations in the mapped area, and their associated quartz-calcite fibre lineations. 
The lineations were measured in the vicinity and within the mapped area. The mean lineation is 
indicative of the slip direction on the shears (Wightman, 2005). It is represented by a diamond and 
plotted in c) and d) as well. c) Stereogram of dominant Alpine foliation in the mapped area. Mean 
orientation of foliation is indicated by grey line. Mean shear orientation is indicated by solid black line. 
d) Stereogram of quartz vein attitudes in the mapped area. Mean quartz vein orientation is indicated by 
stippled line. Mean shear orientation is indicated by solid line. Black diamond is mean mineral fibre 
lineation. The mean outcrop trace of the shears (intersection between mean outcrop surface and mean 
shear) is indicated by the “X”, and is only 29° from the true slip direction. 
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Fig. 4.10: a) Outcrop map of brittle-ductile shears at 
Crawford Knob. For location of map see Fig. 4.5a. 
Maps were prepared using a 1 x 1 m grid divided into 
10 x 10 cm sections. Mapping accuracy is <1 cm. 
b) Lower hemisphere equal area stereogram of brittle-
ductile shear orientation in the mapped area and mean 
orientation of mineral fibre lineation. c) Stereogram 
of dominant Alpine foliation in the mapped area. d) 
Stereogram of quartz vein attitudes in the mapped 
area. The mean outcrop trace is indicated by the ‘X’ 
and is 141° from the true slip direction. 
Symbols and unit patterns are the same as those used 
in Fig. 4.9. 
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The brittle-ductile faults in the mapped areas strike SW-NE and dip steeply to the NW 

(see Table 4.1 and stereograms in Figs. 4.9b, 4.10b). The mineral fibre lineations on the 

fault planes have an average trend of 251° and an average plunge of 30° (n=21; Table 

4.1 and Figs. 4.9b, 4.10b). We obtained this average striation attitude by taking lineation 

measurements within a radius of ~300 m around the mapped fault traces. The dominant 

foliation strikes ~045° and is nearly vertical (Figs. 4.9c, 4.10c, Table 4.1). Most of the 

sheared quartz veins at Crawford Knob dip moderately (60-70°) to the East. Only ~19 

% of the veins dip to the opposite direction at relatively moderate angles of ~30-70° 

(see dip symbols in the detailed maps in Fig. 4.9a and 4.10a). In Fig. 4.9, the mean 

quartz vein marker has an attitude of 085/65 (Fig. 4.9d). In Fig. 4.10d it has an average 

attitude of 089/67. Table 4.1 summarises the average orientation measurements of the 

relevant geological structures that were measured in and around the mapped areas. 

 

Table 4.1 Mean attitudes (in dip direction and dip angle) of structural features 

at Crawford Knob (see also stereoplots in Figs. 4.7 and 4.8)  

 Fig. 4.9 Fig. 4.10 

Shear plane 337/86 (n=31) 335/88 (n=29) 

Mineral fibre lineation 251/30 (n=21) 

Dominant foliation 133/87 (n=9) 137/87 (n=13) 

Quartz vein 085/65 (n=53) 089/67 (n=65) 

Outcrop plane 327/21 (n=30) 352/29 (n=52) 

Intersection outcrop/shear 247/01 065/09 

 

 

At first glance, the faults may appear to be planar, straight, through-going 

structures; however, in detail fault-fault interactions and fault refraction across different 

lithological layers (e.g., quartz veins vs. pelite layers) causes them to be locally curved. 

Many faults deflect in a characteristic manner to follow the outer margins of the 

otherwise ductilely deformed quartz veins that they transect. Others terminate into the 

interior of quartz veins, across which the fault-slip is converted into a wholly ductile 

slip in those veins (in Figs. 4.9a and 4.10a these veins are marked with “D” to indicate 

that D = 1.0). The width of overlaps between two adjacent shears is typically on the 

order of ~10 cm, whereas the distance of their overlap is typically 20-100 cm (e.g., 

regions between overlapping fault terminations marked with “T” in Figs. 4.9a and 

4.10a). 
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The displaced quartz veins and the pelite markers that are cross-cut by the shears 

can be used to measure the total separation (y*) across the shears as a function of strike-

parallel distance (x) along these shears (Figs. 4.11 and 4.12). Shears CK-A (Fig. 4.11) 

and CK-B (Fig. 4.12) both start within the map of Fig. 4.10a and extend to the SW, 

outside the mapped area. We traced the remaining lengths of those two shears from 

photographs that were stitched together. The mapping precision from photographs is <2 

cm. This is due to lens distortion of the photographs, which could not entirely be 

removed during photo stitching. Shear CK-C (Fig. 4.12) lies inside the mapped area and 

overlaps with CK-B.  

The shape of the displacement-length curves for these three brittle-ductile faults is 

slightly asymmetric. CK-A (Fig. 4.11) extends over 396 cm and we measured a 

maximum separation of 8.2 cm along that shear. CK-A shows a crude apparent 

displacement plateau rather than a distinct maximum displacement. The plateau in the 

displacement profile may be due to the measurement plane not cutting through the 

centre of the fault and/or the fault surface not being exactly elliptical in shape (e.g., 

Cowie and Scholz, 1992). Shear CK-C (Fig. 4.12) is 192 cm long and has a maximum 

separation of 25.3 cm; shear CK-B (Fig. 4.12) is 458 cm long and the maximum 

measured apparent offset is 38.2 cm. Shears CK-B and CK-C overlap across a length of 

58.5 cm (Fig. 4.12). The overlapping zone between CK-B and CK-C is ~6 cm wide. The 

thick pelite layer close to the overlap is partly ductilely deformed in front of the NE 

termination of CK-B.  

The Separation/length-gradient (∆y*/∆x) near the shear terminations of those three 

shears (CK-A, CK-B, CK-C) are 0.48 on average. Locally the ratio is as low as 0.05 

(SW-termination of CK-A, Fig. 4.11) or as high as 1.05 (NE-termination of CK-C, Fig. 

4.12).  These values are reminiscent of those measured by Christiansen and Pollard 

(1997) in ductile shear zones that had formed in granites in the Sierra Nevada, 

California. They reported 0.4-0.48 as separation/length-gradients for those shear zones. 

In a similar way, Pennachioni (2005) measured displacement gradients in the range of 

0.1-0.3 (with a maximum of 0.8) in amphibolite facies ductile shear zones formed in 

tonalites in the Adamello massif, northern Italy. 
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4.5.2 Geometrical scaling relationship between ductile displacement (d) of the quartz 

veins and ductile shear zone width (dsw) – Does it indicate shear zone hardening or 

softening? 

We have measured the ductilely sheared width (equivalent to the shear zone width, 

dsw, Fig. 4.2) and the total ductile displacement (d) of 72 quartz veins at Crawford 

Knob and Chancellor Ridge. In Fig. 4.13, we have plotted “true” d and “true” dsw, i.e., 

these measurements have been corrected for the deviation of the outcrop plane from the 

actual movement plane. This correction was done following a projection method that 

has been developed and described by Grigull and Little (2008). Given the attitudes of 

the outcrop surface, marker vein, fault surface, and the slip vector, the method enables 

us to measure the true shape and offset of a deformed quartz vein as observed on an 

arbitrary outcrop plane by means of a projection of the map data onto the actual 

movement plane of the faults. Note that especially within the first 2-3 cm of 

displacement the ductile shear zone width (dsw) increases in a non-linear fashion with 

increasing ductile slip (d). The positive slope of this curve seems to indicate that the 

shear zones that have formed in these veins appear to have progressively widened into 

previously undeformed rocks as a function of slip (or time). This suggests that the 

shears were behaving as type I or type III shear zones in the sense of Means (1984, 

1995) and Hull (1988); i.e., these shear zones probably hardened with progressive 

displacement, at least during the initial stages of shearing.  

 

 

 

Fig. 4.13: Actual ductile shear-width (dsw) of a deformed quartz vein plotted against the ductile 
component of slip (d). Regression indicates a crude non-linear increase of dsw (shear zone width) with 
increased d. The positive slope of the fitted curve suggests that the shearing quartz veins hardened with 
increasing ductile displacement (e.g., Means, 1984, 1995). Dashed lines correspond to trendline errors. 
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4.6 Variations in D-values – Do they hold information on rheological 

(pre)conditions of the quartz veins prior to shear zone localisation? 

 

4.6.1 Preface – Which factors can cause different D-values? 

We have shown in Figs. 4.9a, 4.10a, 4.11 and 4.12 that not all quartz veins have slipped 

fully ductilely. Some have slipped completely brittlely, and others have both ductile and 

brittle slip components, probably indicating that the veins had different effective 

viscosities. In order to understand what has led to the variable D-values, we seek the 

factors that may have caused a change or a difference in the effective viscosity from one 

quartz vein to another. In the following, we will investigate whether differences in vein 

thickness (thorig) and total vein displacement (ytot) or in pre-deformation conditions or 

rheology of the veins were responsible for the scattering of the scaling relationships or 

whether local differences in slip rate could explain this variable degree of 

embrittlement. Resolving this is a first step towards understanding the dominant shear 

zone localisation processes in the quartz veins. We will determine whether there are 

differences in calcite content, precursory embrittlement, water content and deformation 

temperature and try to correlate them with more ductile or more brittle deformation in 

the quartz veins. Fig. 4.14 summarises the dependency of D on the factors that will be 

investigated in the following sections. Going into the study, we might expect that D-

values decrease as a function of increasing total displacement, fault slip rate, pore fluid 

pressure, and differential stress, whereas D-values should be high for increasing original 

vein thickness, calcite content, water content, and deformation temperature (Fig. 4.14). 

It is difficult to estimate in what way these factors may influence one another. We will 

therefore investigate each factor separately, assuming that the other factors did not 

change during deformation. In each of the following sections, we first explain why D 

may scale with the factors listed in Fig. 4.14. 

Experimentally and geologically derived flow laws predict that the viscous yield 

strength of the quartz veins depends chiefly on creep strain rate, deformation 

temperature and water fugacity (Eq. 4.1; e.g., Paterson and Luan, 1990, Post and Tullis, 

1998; Hirth et al., 2001). Impurities such as different mineral phases can also change the 

strength of the veins (e.g., Brodie and Rutter, 2000; Holyoke and Tullis, 2006; 

Mancktelow and Pennacchioni, 2010). Grigull et al. (this study, Chapter 3) have used a 

combination of field observations and numerical modelling to constrain aspects of the 

operative flow law for the quartz veins. Grigull et al. (this study, Chapter 3) found that 
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the bulk shearing of the quartz veins was probably accommodated by a grain-size 

insensitive, dislocation creep process, following a power law of the form: 






−⋅⋅⋅=

RT
QfA n

dOH exp
2

σε  (4.1) 

where ε  is the (uniaxial) strain rate in [sec-1], A is the pre-exponential factor in 

[MPa-n sec-1], OHf
2

 is water fugacity in [MPa], dσ  is the differential stress in [MPa], n 

is the stress exponent, Q is activation energy in [J mol-1], R is the universal gas constant 

[8.314 J mol-1 K-1], and T is temperature in [K]. Grigull et al. (this study) found that the 

numerical models that best reproduced the shape characteristics and scaling 

relationships of the naturally deformed quartz veins invoked A = 10-10±2 MPa-n sec-1 and 

n = 3-4. They assumed Q = 135000 J mol-1 by reference to the geologically derived and 

frequently used quartzite flow law by Hirth et al. (2001). In their numerical computer 

models, Grigull et al. (this study) assumed that each quartz vein was homogeneous. 

 

 

 

 

4.6.2 Variability of D with original vein thickness (thorig) and total slip (ytot) 

The displacement of the quartz veins is not always accommodated by purely 

ductile flow; however, most of the quartz veins that also slipped brittlely exhibit a 

ductile-to-total slip ratio of D  ≤ 0.5 (Figs. 4.15a and 4.15b). Moreover, to first order, 

the original thickness of a quartz vein seems to have determined whether its 

deformation was later largely brittle or ductile. Veins with an original (or undeformed) 

thickness thorig > 2.0 cm mostly deformed 100% ductilely, whereas thinner veins 

typically slipped with a mixed ductile to brittle style of offset (Fig. 4.15a). To some 

extent, the total vein displacement ytot also seems to control the ductility ratio of the 

Fig. 4.14: Inferred dependency of ductility D on increase in factors that could possibly influence D. ytot is 
total displacement, Pf is pore fluid pressure, d is differential stress, thorig is original vein thickness, T is 
deformation temperature. D-values are assumed to be low for increasing ytot, fault slip rate, Pf, d and 
high for increasing thorig, calcite content, H2O content, and T. 
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displaced quartz veins (Fig. 4.15b). This plot shows that measurable brittle slip of the 

quartz veins only occurs after a total slip of ~3 cm. After ~3 cm of purely ductile slip of 

all quartz veins, some of the veins reacted brittlely to ongoing shearing resulting in D < 

1.0. Other veins continued to deform in a 100% ductile fashion (D = 1.0). Since D is the 

ratio of ductile slip component (d) to total slip (ytot), one would expect D to decrease as 

a function of increasing total slip if, after brittle failure of a quartz vein, d remained 

relatively fixed whereas ytot continued to increase. The variability of the data plotted in 

Figs. 4.15a and 4.15b did not allow us to establish a scaling law that exactly describes 

the dependency of D on thorig or on ytot. In the following, we will investigate possible 

reasons for this scattering of D-values along-strike of individual faults. 

 

 

 

Fig. 4.15: a) Plot of ductility ratio D 
against the original thickness thorig of a 
vein, illustrating that quartz veins > 2 cm 
usually deform entirely ductilely (D = 
1.0) and quartz veins  2 cm can deform 
brittlely or ductilely or both (D  1.0). b) 
Plot of ratio D against the total 
displacement ytot of the quartz veins, 
showing that generally D  0.4 for veins 
that have failed in part brittlely. thorig and 
ytot are inferred to control the D-ratio in 
the quartz veins. The scattering in those 
plots does not reveal a simple relationship 
between thorig and D or between ytot and 
D. This suggests that local variability in 
the viscous strength or rheology of the 
quartz veins controlled the diversity of 
observed brittle to ductile offset. The data 
plotted here was corrected for the 
deviation of the measurement plane from 
the movement plane using the method by 
Grigull and Little (2008). 
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The data for the plots in Figs. 4.15a and 4.15b were collected from sheared quartz 

veins at various locations in the brittle-ductile shear array; i.e., these quartz veins were 

not displaced across the same individual faults. In the following, we investigate whether 

the scattering of D-values observed in Figs. 4.15a and 4.15b occurs along-strike of 

individual faults. In Fig. 4.16, we show plots of D vs. the position x of each sheared 

quartz vein along-strike of the faults for the following examples: CK-A, CK-B, CK-D, 

CH15-A, CH15-B. D is plotted on the right axes. Additionally, on the left axes, we 

plotted original vein thickness (thorig) and total outcrop separation (y*) of the sheared 

quartz veins in the top and bottom rows of Fig. 4.16 respectively. We were able to 

follow shears CK-A and CK-B along their entire length. The other three profiles are 

sections of representative brittle-ductile faults in the working area (for their locations 

refer to the maps in Fig. 4.5). The origins (x = 0 cm) of CK-A and CK-B correspond to 

the SW-terminations of these faults. The terminations of the other three faults were cut 

off by much younger joints perpendicular to their strike direction. For these faults we 

chose the origins of the fault profiles such that we could map sufficiently long, coherent 

fault sections towards the NE on an outcrop plane with an orientation similar to that of 

the movement plane of the shears. The outcrop separation y* along the faults in Fig. 

4.16a-e is close to the true value of the total displacement ytot. 

One of the main inferences to be made from the plots in Fig. 4.16a-e is that D 

varies rapidly over small distances along the individual faults. To a first order and as 

expected from Fig. 4.15a, this variability mimics the variability of quartz vein 

thicknesses along the shears (top row of Fig. 4.16a-e). The vertical red lines in Fig. 

4.16a-e mark locations along the faults, where D does not seem to scale with thorig. 

From Fig. 4.15b, we expect an inverse relationship between D and y*. The red lines 

extend into the bottom row of plots in Fig. 4.16a-e, where they intersect with the y*-x-

graphs. This is to show that in most cases at a location x along a shear, where the D-

ratio of a quartz vein does not scale with thorig, it does scale inversely with y*. We can 

therefore assume that generally 
*y

th
D

orig
∝ . This relationship is probably oversimplified 

since there may be a co-dependence of ytot and thorig in that a smaller amount of slip 

should be required in order to brittlely fracture a thin vein than a thick vein. The bottom 

row of plots in Fig. 4.16a-e also show that the total displacement does not only vary 

from fault tip to fault centre, but that y* also varies significantly over short distances 

along the shears. The difference in the displacements of neighbouring veins that are 



Chapter 4                                                Controls on brittle-ductile shear zone formation 

 128

only a few centimetres apart can be >20 cm from one vein to the next (e.g., shears CK-

B and CK-D in Figs. 4.16b and 4.16c respectively). 

 

4.6.3 Indicators of spatially variable fault slip rates 

We marked locations along the shears with blue vertical lines in Fig. 4.16 where D 

does not scale with thorig or with 1/y*. Figs. 4.17a and 4.17b illustrate two contrasting 

examples of different degrees of ductile and brittle deformation that relate to the blue 

lines in Fig. 4.16. Vein CK308 is displaced 100 % ductilely (D = 1.0); whereas vein 

CK326 is displaced only 10 % ductilely (D = 0.1). If original vein thickness and total 

displacement were the only factors controlling the ductility of offset, we would expect a 

higher D-value for CK326 than for CK308 because 1) CK326 is slightly thicker than 

CK308, and 2) CK326 is displaced ~7 cm less than CK308. However, what we 

observed in the field is exactly opposite to these two predictions; that is, CK308 is 

completely ductilely deformed whereas the slip in CK326 was almost entirely brittle. 

 

 

 

Fig. 4.17: Photographs of a) CK308 (fully ductile) and b) CK326 (90 % brittle), both from Crawford 
Knob. Despite having similar thicknesses, the D-ratios of those two veins are conspicuously different. 
Because of the higher displacement in CK308, one might expect this vein to conspicuously having failed 
more brittlely than CK326, but the opposite is the case. The displacement data in the white boxes have 
been corrected for outcrop deviation from the movement plane following the method of Grigull and Little 
(2008). 
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Theoretically, if slip rates were constant along a given fault (here we do not 

consider the fault tip regions), and if the rheology of the quartz veins displaced by that 

fault were the same, one would expect adjacent quartz veins of similar thicknesses to 

exhibit very similar offsets and to have a similar ductile-to-total slip ratio (D). The 

‘jaggedness’ of the y*-curves in Fig. 4.16, however, would seem to imply that the slip 

rate along a fault may not have been constant everywhere along that fault. Spatially 

variable slip rates along the faults could cause differences in the flow strain rate and 

therefore the flow stress of the viscously deforming quartz veins (Eq. 4.1). This could 

have led to differential ductility between one vein and another. With decreasing creep 

strain rate, the flow stress would also decrease, making brittle failure less likely. If there 

were no vein-to-vein differences in calcite content, precursory embrittlement, molecular 

water content, or temperature during deformation, and if water fugacity remained the 

same during deformation, variable slip rates along the faults may have been the chief 

factor leading to variable strain rates and therefore D-values. This condition might lead 

to brittle failure of quartz veins intersected by the more rapidly slipping fault sections at 

the same time that such yielding did not occur on other continuously ductilely 

deforming veins. In summary, fault slip rates and consequently shear strain rates seem 

to have varied rapidly along the brittle-ductile shear zones. Slip rate variation could 

have contributed to the differential ductilities in the sheared quartz veins. Some possible 

causes of the varying slip rates are discussed in section 4.7.3. 

 

4.6.4 Indicators of variable shear strain rates in regions of fault overlaps 

The effect of spatially variable strain rates on the D-ratio of a sheared vein is most 

obvious in the overlapping zones between some adjacent faults in the quartzofeldspathic 

host schist. Near the fault terminations (“T” in Fig. 4.9a, and 4.10a) deformation in the 

overlap zones caused the foliation to rotate dextrally into near-parallelism with the 

bounding shear zone walls. Fig. 4.18a and 18b shows examples of overlapping zones 

and foliation rotation. The rotation of the foliation is indicative of ductile creep in the 

otherwise brittlely faulted quartzofeldspathic schist that is spatially localised to the 

volume of rock between the overlapping fault strands. This volume is much greater per 

unit fault length than the rest of the faults and implies that the reduced shear strain rates 

across these wide overlap zones were low enough to suppress brittle failure there. At a 

smaller scale, the quartz veins also become more ductile in the area of fault-overlaps. In 

Fig. 4.18c, a single quartz vein has split up into two branches of approximately the same 
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thickness; the upper branch has been sheared between two adjacent faults and has 

deformed entirely ductilely (D = 1.0) indicating low strain rates in the wide area 

between the overlapping fault strands, whereas the lower branch has been sheared along 

one single fault which led to mostly brittle deformation (D  0) of this branch, 

indicating that in this narrow zone, strain rates were high enough to achieve brittle 

yielding in the quartz vein (Fig. 4.18c). Fault-fault interaction in three dimensions may 

create areas of higher and lower shear strain rates and could also lead to variable 

ductility ratios in the sheared quartz veins. 

 

 

Fig. 4.18: Examples of the ductilely deformed zones of fault strand overlaps or step-overs and the effect 
of spatially variable strain rates on vein ductility (D). a) Several overlapping strands (white dashed lines) 
with conspicuously, dextrally rotated foliation (black lines) in between them. b) Two fault terminations 
overlapping and rotation foliation consistent with dextral shearing along those faults. c) Two veins that 
are displaced across the same shear. The top vein is displaced in an entirely ductile way whereas the 
bottom vein is mostly brittlely offset. The schist foliation has been rotated into the overlap zone, 
consistent with a dextral shear sense. This photograph also shows that propagation of the shears was 
locally impeded by the uppermost quartz vein into which the fractures blunted and terminated. 



Chapter 4                                                Controls on brittle-ductile shear zone formation 

 131

4.6.5 Effect of varying calcite fraction in the quartz veins on D 

The occurrence of minerals other than quartz in the sheared veins could have 

influenced their rheologic behaviour, because the overall strength of a rock is governed 

by the composite strength of the polymineralic aggregate (e.g., Dell’Angelo and Tullis, 

1996; Saha, 1997; Dresen et al., 1998; Bruhn et al., 1999; Stünitz and Tullis, 2001; Ji 

and Xia, 2002). Different mineral phases may also lead to variable degrees of strain 

partitioning within the veins (e.g., Holyoke and Tullis, 2006). Using optical microscopy, 

we investigated mineral composition in the veins to determine whether it could have 

been a cause of variable flow strengths for different veins, and thus led to the different 

offset styles (i.e., brittle vs. ductile). 

Two chief minerals other than quartz are found in the deformed veins. Chlorite is 

sometimes present in small amounts (<<5 %) typically as a <1 mm wide selvage along 

the vein margins. We infer that such small amounts are insufficient to alter the overall 

vein rheology. The major other mineral fraction in the veins from the Southern Alps is 

calcite. The calcite grains that occur in the undeformed part of the veins have a grain 

size of 93 ± 6 µm on average, and 116 ± 5 µm in the sheared part of the veins (2D grain 

sizes by Hill, 2005). At these grain sizes, calcite is usually inferred to be “weak” 

compared to quartz since diffusion-accommodated grain-size sensitive flow processes 

with n = 1-2 can dominate the deformation behaviour of calcite (e.g., Brodie and Rutter, 

2000; Renner and Evans, 2002; Rybacki et al., 2003; Mancktelow and Pennacchioni, 

2010), whereas quartz is usually deformed through grain-size independent dislocation 

creep (i.e., n = 3-4 in Eq. 4.1, leading to high viscous yield stress). If calcite played a 

key role in the overall rheological behaviour of the veins in the Southern Alps, then we 

should expect a positive relationship between calcite fraction of a sheared vein and the 

D-ratio of its offset. One might expect a lower viscous yield strength with increasing 

calcite fraction in a vein. Calcite, if present at all, is usually concentrated in thin, 

discontinuous layers that are aligned subparallel to the walls of the veins or in small 

clusters, and are never dispersed evenly throughout the vein (Fig. 4.19a). The calcite 

grains themselves have been dynamically recrystallised and show abundant deformation 

twinning with predominant slip on [r] and [f] planes (De Bresser and Spiers, 1990; 

Burkhard, 1993; Hill, 2005). Hill (2005) also describes a strong CPO in the calcite 

grains in the deformed part of some quartz veins. This reflects deformation of the calcite 

in the sheared veins by intracrystalline plasticity. 
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In order to test whether there is a relationship between the initial calcite content in 

the veins and their D-ratio, thin sections of quartz vein chips from the vein parts 

external to their sheared zones were prepared for 29 samples from Crawford Knob and 

25 samples from Chancellor Ridge. We used an optical microscope to estimate the 

approximate calcite fraction in 2D section by eye (estimated precision of ± 5%). 

Fig. 4.19: a) Microphotograph of calcite in the undeformed part of a quartz vein (sample CK75). For 
sample location see Fig. 4.5a. Calcite occurs in layers or clusters in the quartz veins but not disseminated 
throughout the vein. “q” is quartz. b) Scatter plot of D-ratio versus calcite-fraction. Black diamonds: 
veins with original thicknesses (thorig) of 1.5-2.5 cm. Grey diamonds: veins outside that thickness range. 
No clear relationship is recognisable between the calcite fraction and the ductility-ratio D of a quartz 
vein. 
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Fig. 4.19b is a scatter plot of D-ratios versus calcite fractions in the veins. Since 

there is a positive scaling relationship between original vein thickness and the ductility 

ratio D, we only compared veins of similar thickness. Quartz veins with undeformed 

thicknesses ranging from 1.5 cm to 2.5 cm (average thorig = 2.0 cm) are plotted as black 

diamonds, whereas the ones that were originally thicker or thinner than this are plotted 

as grey diamonds. 

The plot shows that while some veins contain up to 40 % calcite, the calcite fraction for 

most of the veins is <25 %. The most important observation here is that there is no clear 

relationship between D and the calcite fraction of an individual vein. This suggests that 

the main part of the deformation was taken up by the quartz matrix and that the overall 

flow behaviour of the sheared veins was solely controlled by quartz rheology. We infer 

that the pre-deformational calcite-content in the quartz veins does not control the D-

values of those veins. 

 

4.6.6 Influence of precursory embrittlement, water-content and water-species in the 

quartz veins on the deformation type 

The incorporation of “water” into quartz has long been known to significantly 

decrease the viscous flow strength of quartz (e.g., Griggs, 1967, 1974; Jones, 1975; 

Kekulawala et al., 1978; Paterson, 1989; Kronenberg et al., 1990; Post and Tullis, 

1998). Water can be incorporated into quartz in the form of hydroxyl-groups (OH--

ions), leading to hydrolytic weakening of the Si-O-Si bonds in the quartz lattice (e.g., 

Kronenberg and Wolf, 1990). Water can also be present as molecular water, usually in 

the form of fluid inclusions within the quartz crystal, e.g., in healed microfractures or 

lining grain boundaries (e.g., Roedder, 1984). 

We used fluid inclusion microscopy and FTIR spectroscopy to investigate a) 

whether there is evidence for precursory embrittlement of the veins followed by fluid 

infiltration (e.g., through microcracks), b) how water was incorporated into the quartz 

veins and c) whether local differences in initial pre-deformational water content, or 

water species in those veins could have been responsible for the variable degree of 

ductility (D) observed for the sheared veins. If water was the chief weakening agent in 

the quartz veins, one would expect to see a positive correlation between water content 

and the observed vein ductility D. 
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4.6.6.1 Optical microscopic evidence for precursory embrittlement in the sheared 

quartz veins 

Following Roedder (1984, pp. 343-346) all the fluid inclusions in the sheared veins 

are interpreted to be secondary. One type of fluid inclusions occurs as abundant, 

isolated very small inclusions (<2µm) that are randomly dispersed in the quartz veins 

and are only recognisable as tiny spots under an optical microscope (orange arrows in 

Fig. 4.20a, 4.20b). Based on the resemblance of these small fluid inclusions in our 

samples with the results of static recrystallisation experiments of wet quartz, we infer 

that these fluid inclusions may have been derived from OH--point defects in the quartz 

crystals by the reaction Si(OH)4 → SiO2 + 2H2O during the pervasive static 

recrystallisation of the quartz veins subsequent to their deformation (e.g., Griggs, 1967; 

Kerrich, 1976). These µm-sized fluid inclusions occur both in the sheared and the 

unsheared parts of the deformed quartz veins. Additionally, both outside and inside of 

the shear zones in the quartz veins, water occurs as large fluid inclusions (up to ~10 

µm). These fluid inclusions are typically arranged along grain- and subgrain-boundaries 

or in curved arrays (Figs. 4.20c, 4.20d). The curved arrays are interpreted to represent 

healed microfractures. Some of the larger fluid inclusions in these microfractures 

contain bubbles, probably of water vapor. The decrease in size of fluid inclusions from 

the centre to the edge of the healed microfractures indicates that the originally large 

fluid inclusions that infilled the open microfractures have undergone necking down 

resulting in several smaller inclusions (Fig. 4.20e, I-IV; Bodnar, 2003). The occurrence 

of bubbles of different sizes in the fluid inclusions in Figs. 4.20a and 4.20b indicates 

that the rocks have undergone cooling during necking down and healing of the 

microcracks (Fig. 4.20f; Roedder, 1984, pp. 59-61; Bodnar, 2003). 

During static recrystallisation, fluid inclusions are generally inferred to be swept 

out of quartz grains and into grain boundaries (e.g., Kerrich, 1976). However, a recent 

study of the interaction between grain boundary migration and ethanol fluid inclusions 

in the rock analogue camphor has shown that under certain conditions, fluid inclusions 

may actually hardly be influenced by passing grain boundaries (Schmatz and Urai, 

2010). These authors report that whether or not a fluid inclusion will be affected by a 

migrating grain boundary depends to a great extent on the fluid inclusion size and on the 

grain boundary velocity. In general, the larger an original inclusion is and the slower a 

grain boundary moves the more likely it is that fluid inclusions are affected by the 
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sweeping grain boundary (Schmatz and Urai, 2010). A grain boundary that migrates 

with an intermediate velocity can drag a fluid inclusion and later drop it at a different 

location. Consequentially, the shape of the affected fluid inclusion may change from 

spherical to elliptical pointed perpendicular to the moving grain boundary (Schmatz and 

Urai, 2010). Most of the larger fluid inclusions in Fig. 4.20d are slightly elliptical in 

shape with the long axes of the individual fluid inclusions being parallel to each other, 

possibly indicating that these fluid inclusions may have been dragged, stretched and 

then dropped by a relatively fast migrating grain boundary. This would mean that the 

healed microfracture must have existed before the onset of static recrystallisation and 

grain growth. Also, most of the healed microfractures are curved, indicating that they 

were affected by the migrating grain boundaries during static recrystallisation and 

therefore suggesting their development prior to that static grain growth. 

Healed microfractures are abundant in both the undeformed and the deformed parts 

of the sheared (ductilely deflected) quartz veins. If focused brittle deformation at the site 

of the future ductile shear zones was a necessary precursor to their inception, and played 

a key role in the subsequent localisation of ductile strain in the fluid infiltrated quartz, 

one would expect to observe an increase in the density of microfractures, or a difference 

in their width and interconnectivity in the shear zone relative to outside it (e.g., Fusseis 

and Handy, 2008). However, the appearance and the density of the healed 

microfractures in the statically recrystallised quartz grains are very similar in both the 

external, unsheared part and the internal, sheared parts of those same veins (Fig. 4.20c, 

20d). We therefore conclude that brittle precursory fracturing may have been important 

in leading to the introduction of water into the quartz veins, and could have made them 

weaker than the surrounding schist host rocks. Precursory embrittlement and associated 

water infiltration, however, did not localise strain within the quartz veins, because there 

is no microstructural evidence for enhanced microcracking or secondary fluid inclusions 

in the sheared parts of the veins relative to the undeformed parts of the same veins. 

Evenly distributed microfracturing has apparently taken place within both the sheared 

and unsheared parts of the quartz veins. We cannot, however, exclude the possibility 

that evidence for differential microcracking could have been removed during the static 

recrystallisation of the quartz veins post-shearing. Under the microscope, we were not 

able to find any differences in microfracture density or character between fully ductilely 

deformed quartz veins and those veins with D < 1.0. 
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4.6.6.2 Determination of water species and water content in the quartz veins 

Water species and water content in quartz are the main controlling factors on 

hydrolytic weakening in quartz (e.g., Kronenberg and Wolf, 1990). We conducted FTIR 

spectroscopy in order to quantify any differences in water content or species between 

brittlely versus ductilely deformed quartz vein samples. 

 

4.6.6.2.1 FTIR – Sampling philosophy and analysis 

In order to find out whether the water content or species in a quartz vein was an 

important influence on the resulting D-ratio of a deforming quartz vein, we chose the 

samples for the FTIR analysis so that we could compare the D-values of those veins 

with either similar thorig and ytot or veins that do not follow the scaling relationships 

between D and thorig and/or ytot as described at the start of section 4.6.2; e.g.,, sample 

CK326 was derived from a vein that is originally 1.7 cm thick and displaced by 3.6 cm, 

whereas CH330 has an original thickness of 0.8 cm and a total displacement of 4.3 cm 

(Table 4.2). The D-value for CK326 is 0.1 and for CH330 it is 1.0 (Table 4.2), despite 

CH330 being only about half as thick as CK326 and having been displaced 0.7 cm 

more. The original thicknesses and the total displacements of the sheared quartz veins 

are given in Table 4.2 for comparison. We measured samples of the non-sheared parts 

of four veins and of the sheared parts of two quartz veins from Chancellor Ridge, as 

well as samples of six undeformed vein parts from Crawford Knob. The water contents 

of the deformed vein samples were measured and compared to those of the unsheared 

parts of the two veins in order to determine whether there is a difference in water 

Fig. 4.20 (previous page): Microphotographs of secondary fluid inclusions in quartz grains from the 
undeformed (left) and deformed (right) parts of two veins. For sample locations see Fig. 4.5a. a) Sample 
CK72a, undeformed part of a quartz vein. Polygonised grain-boundary (gb) is decorated by small (<2 
µm) fluid inclusions. Orange arrows point to some of the very small fluid inclusions that are distributed 
throughout the vein. b) Sample CK72b, deformed part of the same quartz vein. Orange arrows mark 
some of the abundant small (<2 µm) fluid inclusions that could only just be resolved with an optical 
microscope. Note the similar size and density of fluid inclusions in both sample parts (undeformed and 
deformed). The bigger, dark irregularities are not fluid inclusions (“no FI”) but are due to thin section 
preparation. c) Sample CH304a, undeformed part of the quartz vein. Healed microfracture (hmf) in 
quartz grain. The microfracture is decorated by fluid inclusions that are > 1 m. Note the curved nature 
of the healed microfracture. d) Sample CH304b, deformed part of the same quartz vein. Healed 
microfracture plane, decorated by large (up to ~10 m) fluid inclusions. View is onto the healed 
microfracture plane. Note slightly elliptical shape of the medium sized fluid inclusions. e) Schematic 
illustration of necking down of a fluid-filled fracture at a constant temperature (modified from Bodnar, 
2003) and f) during cooling (modified from Bodnar, 2003). The fact that the fluid inclusions in (a) and 
(b) contain bubbles indicates that these fluid inclusions underwent necking down during cooling. 
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content in the quartz veins before and after deformation and whether this could be 

consistent with initial strain hardening in the shear zones as inferred in section 4.5.2. 

The samples were prepared at Ruhr-University Bochum and measured with their 

FTIR spectrometer Bruker IFS 48. Selected areas of polished slabs with a thickness of 

0.6 to 0.8 mm were measured with a nominal spot size of 0.08 mm. These parameters 

represent a compromise between sensitivity and spatial resolution. For the FTIR 

measurements the most suitable samples were selected, but unfortunately these are still 

of limited quality, mainly due to second phase particles (carbonate) and discontinuities 

leading to reduced transparency. Some impregnation of the samples with glue was 

unavoidable due to fractures and fissures that formed during sampling of the rock chips; 

this glue could not be completely removed and remnants can give rise to weak CH-

absorption bands. Under these circumstances, measurements were necessarily restricted 

to spots providing the required degree of transparency. Ten to fifteen spots were 

measured per vein sample and the mean water concentration of those spots is taken as 

the representative minimum concentration for that sample.  

 

Table 4.2 Original thicknesses (thorig) and total displacement (ytot) of the veins 

that were chosen for FTIR analyses (Figs. 4.21 and 4.22)  

Sample name thorig  ytot  

CK326 1.7 cm 3.6 cm 

CH302 2.0 cm 6.3 cm 

CH304 3.0 cm 10.8 cm 

CK309 1.6 cm 11.9 cm 

CH326 2.0 cm 7.5 cm 

CK308 1.6 cm 11.2 cm 

CK330 2.5 cm 3.1 cm 

CK324 3.3 cm 11.2 cm 

CH330 0.8 cm 4.3 cm 

CK315 1.1 cm 4.8 cm 

 

 

4.6.6.2.2 FTIR – Results 

All twelve samples show broad band absorption, indicating the presence of 

molecular water. We have plotted the FTIR-spectra for an example vein (CH326; Fig. 

4.21a) in Fig. 4.21b. Low temperature measurements (-190°C; liquid nitrogen) reveal 

the broad band absorption with the characteristics of ice (Fig. 4.21c). This means that 
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the molecular water is freezable and present as fluid inclusions, with a size large enough 

to form ice. According to experience gained from similar material in other studies, the 

typical inclusion size may vary between about 0.05 and 0.5 µm (Bohren and Huffman, 

1983). The concentration of point defects and non-freezable water is below the limit of 

detection. 

 

 

 

Fig. 4.21: FTIR results for vein sample CH326 (D = 1.0) from Chancellor Ridge. For sample location cf. 
Fig. 4.5a. a) Photograph of sampled vein with approximate sampling locations in vein. b) Transmission 
spectra for the two different samples of CH326 at room temperature. Red line: undeformed sample 
external to shear zone; blue line: deformed sample internal to shear zone. We have plotted a FTIR 
spectrum for ‘dry’ quartz for comparison (black line). c) Transmission spectrum for the undeformed part 
of vein CH326 from low temperature measurements. The sample shows broad-band transmission for 
wavelengths between ~3000 and 3700 cm-1 for room temperature and for ~2900-3600 cm-1 for the low 
temperature measurements. This is indicative for molecular water (H2O). Low-T measurements reveal 
the broad band transmission characteristic for ice. This means that the water is freezable and present as 
fluid inclusions, large enough to form ice. There are no “peaks” in the FTIR spectrum between 3000-
3700 cm-1 which means that the concentration of point defects is too low to be detected by FTIR. 
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We present the results of the FTIR analyses in Fig. 4.22a, where we plotted the 

mean water concentration (green and orange diamonds) for each sample of the external 

vein parts on the left vertical axis and the D-ratio (black diamonds) of the corresponding 

samples on the right axis. The horizontal axis contains the sample labels (CK: Crawford 

Knob; CH: Chancellor Ridge). The samples along that axis are ordered such that D is 

increasing from left to right. 

As shown in Fig. 4.22a, the water concentrations appear relatively uniform at a 

given locality (e.g., Chancellor Ridge, Crawford Knob). The water concentrations for 

the samples from Crawford Knob (orange diamonds) range from 443 ± 136 ppm H/Si 

(1) to 802 ± 236 ppm H/Si (1) with a mean of 550 ± 135 ppm H/Si.  The Chancellor 

Ridge samples (green diamonds) yield an average concentration of 1198 ± 267 ppm 

H/Si, ranging from 922 ± 208 ppm H/Si to 1499 ± 485 ppm H/Si. 

The inset in Fig. 4.22a shows that there is no correlation of the molecular water 

concentration with the deformation type (brittle or ductile) in the individual quartz 

veins. This becomes particularly obvious in a comparison of samples CK308 and 

CK326 (cf. Fig. 4.17a, 4.17b). For both veins, we measured water contents of ~500 ppm 

H/Si (Fig. 4.22a).    Both veins have similar thicknesses and CK308 is displaced 7.6 cm 

more than CK326. Because of the higher displacement, one would expect vein CK308 

to have a higher brittle slip component than CK326. However, the opposite is the case: 

CK326 was displaced in an almost entirely brittle fashion (D = 0.1) whereas the 

shearing of CK308 was entirely ductile, despite both veins having similar water 

contents and similar initial vein thicknesses. Thus there is now evidence that the 

difference in flow stress or relative ductility of different quartz veins was not caused by 

differences in molecular water contents (at least as preserved today). 

There is, however, an apparent difference in water content between the undeformed 

part of a quartz vein relative to the sheared part of the same quartz vein (Fig. 4.22b). In 

sample CH304, the water concentration in the deformed part of the vein is ~200 ppm 

H/Si lower than in the undeformed part of the vein. In sample CH326 the deformed part 

of the vein has nearly 400 ppm H/Si less than the undeformed part. This relationship 

(sheared parts of the vein are drier than unsheared parts) is exactly opposite to the 

simple idea of hydrolytic weakening controlled shear zone localisation in quartz. It is 

unclear how reliable those results are, since only two examples were measured and the 
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errors are very large. If these differences are real, perhaps it reflects water leakage from 

the sheared parts of the veins either during vein deformation or during static 

recrystallisation after vein deformation. If so, loss of water within the shear zones 

during the shearing process could explain the observed initial hardening behaviour of 

the deforming quartz veins (Fig. 4.13). 
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4.6.7 Influence of locally variable conditions of deformation on the vein ductility D 

In this section, we examine whether possible variations in deformation temperature 

or stress conditions could have caused the variable D-values in the sheared quartz veins. 

 

4.6.7.1 Temperature 

Temperature is a key factor in the transition between brittle and ductile 

deformation. In the quartz flow law (Eq. 4.1), temperature is a variable in the 

exponential part of that dislocation creep law. Temperature strongly influences the flow 

strain rate and therefore the effective viscosity (“strength”) of rocks. Local variations in 

temperature could potentially have influenced the ductility (D) of a given quartz vein. 

For that reason, it is important to determine the deformation temperature of the rocks as 

accurately as possible. The temperature range under which the quartz veins may have 

been ductilely deformed is here derived by quartz-calcite oxygen isotope exchange 

thermometry in the shear-infilling quartz-carbonate veins and by Titanium-in-Quartz 

geothermometry in the older, strongly sheared quartz veins. 

 

4.6.7.1.1 Quartz-calcite oxygen isotope exchange thermometry on shear-infilling veins 

Wightman (2005) conducted quartz-calcite oxygen isotope exchange thermometry 

on six shear-infilling vein samples from the area around Crawford Knob and Chancellor 

Ridge (Appendix 4.A). After having established isotopic equilibrium between the quartz 

and the calcite through cathodoluminescence imaging of the shear-infilling veins, she 

calculated a quartz-calcite fractionation factor of ∆qtz-cal = 1.51 ± 0.07 ‰. Using this 

fractionation factor with an oxygen isotope exchange thermometer that was calibrated 

by Sharp and Kirschner (1994) ( ( ) 261006.087.0 Tcalqtz ×±=∆ − ) she calculated an 

average temperature of 486 ± 34° C for the crystallisation of the infilling veins. This 

Fig. 4.22 (previous page): FTIR analysis results. For sample locations see Fig. 4.5a. a) Water 
concentration (left axis) in 10 samples of external (undeformed) vein compared to D-ratio (right axis, 
black diamonds). Orange diamonds: samples from Crawford Knob; Green diamonds: samples from 
Chancellor Ridge. Errors are (± 2). The water concentration in the samples from Chancellor Ridge is 2-
3 times higher than the concentration for Crawford Knob. The inset shows D-values of the same 10 veins 
plotted directly against water concentration. Water concentrations cannot be correlated to the D-ratios. b) 
Plot of water concentration for samples CH304 and CH326 that compares the deformed to the 
undeformed part of the same vein. CH304 shows a water content that is ~194 ppm less in the deformed 
part of the vein (CH304b) than in the undeformed part (CH304a). For sample CH326, this difference in 
water content between the undeformed and deformed parts (again less in the latter) of the vein is ~398 
ppm respectively. 
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temperature was interpreted by Wightman (2005) to be the temperature during 

deposition of the shear-infilling, syntectonic (fibrous) quartz-carbonate veins. In 

Appendix 4.A, we present these results and outline the analytical procedures that she 

used. 

 

4.6.7.1.2 Titanium-in-Quartz geothermometry (“TitaniQ”) 

For the TitaniQ-analysis, we have collected and prepared 20 samples from within 

the sheared part of the quartz veins from Chancellor Ridge and 8 from Crawford Knob. 

The samples were derived from different paleo-structural depths in order to evaluate 

whether local (1-100 m scale) high temperature gradients could have resulted in the 

variable D-ratios that were measured in the sheared quartz veins. We have also prepared 

samples from one fault-infilling vein from Chancellor Ridge and two from Crawford 

Knob in order to compare those temperatures with the ones that were derived from 

quartz-calcite oxygen isotope thermometry (section 4.6.1.1, Appendix 4.A). For both 

Crawford Knob and Chancellor Ridge, we also prepared one sample of undeformed 

vein material to determine whether there is a difference in apparent recrystallisation 

temperature external and internal to the shear zones in the quartz veins.  

 

The Titanium-in-Quartz geothermometer (“TitaniQ”) is based on the isovalent 

substitution of Si4+ by Ti4+ ions in the quartz crystal lattice. If quartz is in equilibrium 

with a Ti-bearing mineral (e.g., rutile, illmenite, titanite), the TiO2-activity (
2TiOa ) is 

fixed. In this case, the ion substitution increases exponentially with temperature (Wark 

and Watson, 2006). Wark and Watson (2006) calibrated the TitaniQ geothermometer 

with experiments on (mostly) igneous rocks in the 600-1000° C range. They derived the 

following relationship between Ti-concentration in quartz and crystallisation 

temperature: 

( )
( ) 273

)02.069.5(log

243765
)( −

±−

±−
=°

qtz

TiX
CT  (2) 

where qtz

TiX  is the Ti concentration in [ppm] by weight and T is the quartz crystallisation 

temperature in [°C]. 

If no rutile is present, the TiO2 activity (
2TiOa ) will be less than 1. For that case, the 

geothermometer needs to be slightly modified (Wark and Watson, 2006): 
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where 
2TiOa  is Titanium-activity. 

Ghent and Stout (1984) measured TiO2 activities for metamorphic rocks. They report 

2TiOa  = 0.8 – 1.0 for metapelites. Using 
2TiOa  = 1.0 in Eq. 4.3 therefore results in a 

minimum temperature for rutile-undersaturated rocks (Wark and Watson, 2006). 

 

We used the electron microprobe in order to check for the presence of Ti-bearing 

minerals like rutile (TiO2), ilmenite (FeTiO3), or titanite (CaTiSiO5) in any part of a 

representative vein (CK75, sample location in Fig. 4.5a). We also checked for those 

minerals in the vein that has infilled the fault across which vein CK75 was displaced. 

We could not confirm the presence of any Ti-bearing minerals in sample CK75. Since a 

Ti-bearing phase is absent, we assume 
2TiOa  = 1.0 for the following analyses, which 

results in the calculation of minimum recrystallisation temperatures. 

Cathodoluminescence (CL)-imaging of different locations in both undeformed and 

deformed parts of CK75 showed that there was no Ti-diffusion-related zoning present in 

the measured quartz veins (Fig. 4.23). The lack of Ti-related zoning could indicate 

either homogeneous, continuous grain growth at a constant temperature or 

homogenisation of the quartz grains after recrystallisation. We infer that the 

temperatures that are recorded by the Ti-concentration in the quartz veins are the 

temperatures that prevailed during static recrystallisation and grain growth (Kohn and 

Northrup, 2009; Spear and Wark, 2009; also refer to Appendix 4.B) and are thus a 

minimum estimate of the deformation temperature. 

Titanium concentrations in all samples were measured by LA ICP-MS (for 

analytical details see Appendix 4.B). The minimum temperatures under which the 

quartz veins deformed and recrystallised were calculated using Eq. 4.3, with 
2TiOa = 1.0. 

We have summarised all calculated recrystallisation temperatures with their individual 

errors (2) in Table 4.3. The errors contain both the analytical errors as well as the 

calibration errors from Wark and Watson’s geothermometer. Temperatures calculated 

for 
2TiOa = 0.8 are ~13 ± 1° C higher than for 

2TiOa = 1.0 for all samples. The calculated 

minimum (
2TiOa = 1.0) mean recrystallisation temperature is 425 ± 38° C (2) for the 
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veins from Chancellor Ridge and 400 ± 21° C (2) for the Crawford Knob veins (Table 

4.3). 

 

 

 

Fig. 4.23: Backscatter (BS) and cathodoluminescence (CL) images of ductilely sheared quartz vein 
sample CK75, and of adjacent shear-infilling vein. The CL-images illustrate the lack of Ti-diffusion 
zoning. This suggests isotropic, homogeneous grain growth during static recrystallisation in those veins. 
a) BS-image of undeformed part of sheared vein; b) CL-image of undeformed part of sheared vein; c) 
BS-image of deformed part of sheared vein; d) CL-image of deformed part of sheared vein; e) BS-image 
of shear-infilling vein; f) CL-image of shear-infilling vein. The CL-images for both the undeformed and 
the deformed parts of the quartz vein are very similar. No Ti-zoning is recognisable in (b) or (d). No Ti-
zoning is recognisable in the shear-infilling vein in (f) either. The bright small spots under CL-light are 
probably diamonds that are left over from polishing of the mounts. CL-images were taken at 223 nA, 15 
kV excitation voltage. 
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Table 4.3 Ti-in-Quartz analyses results (
2TiOa = 1.0) 

Sample qtz

TiX  (ppm, ± 1) Tmin (°C, ± 2) 

Chancellor Ridge   

CH301b 5.00 ± 0.80 481 ± 26 

CH302b 2.40 ± 0.28 436 ± 19 

CH303b 1.90 ± 0.31 423 ± 23 

CH304b 1.50 ± 0.27 410 ± 23 

CH305b 1.70 ± 0.20  417 ± 19 

CH306b 1.90 ± 0.22 423 ± 19 

CH307b 4.00 ± 0.20 467 ± 16 

CH308b 2.50 ± 0.87 426 ± 37 

CH310b 2.40 ± 0.36 436 ± 22 

CH311b 1.50 ± 0.23 410 ± 21 

CH312b 1.60 ± 0.19 413 ± 19 

CH313b 1.50 ± 0.22 410 ± 21 

CH314b 1.60 ± 0.33 413 ± 26 

CH315b 1.40 ± 0.14 406 ± 17 

CH316b 1.50 ± 0.20 410 ± 19 

CH323b 1.50 ± 0.61 410 ± 47 

CH324b 1.90 ± 0.57 423 ± 36 

CH325b 2.10 ± 0.48 428 ± 29 

CH329b 2.00 ± 0.42 426 ± 27 

CH330b 2.40 ± 0.21 436 ± 17 

AVERAGE TEMPERATURE 425 ± 38 

CH307a (undeformed) 8.00 ± 1.70 514 ± 34 

CH308c (infilling) 3.80 ± 0.39 464 ± 19 

Crawford Knob   

CK303b 1.10 ± 0.12 394 ± 34 

CK306b 1.90 ± 0.65 423 ± 21 

CK307b 1.10 ± 0.22 394 ± 17 

CK308b 1.20 ± 0.23 398 ± 24 

CK309b 1.20 ± 0.17 398 ± 20 

CK310b 1.30 ± 0.49 402 ± 24 

CK324b 1.00 ± 0.31 389 ± 20 

CK330b 1.40 ± 0.59 406 ± 43 

AVERAGE TEMPERATURE 400 ± 21 

CK75a (undeformed) 10.70 ± 1.10 535 ± 23 

CK309c (infilling) 1.20 ± 0.18 398 ± 41 

CK310c (infilling) 1.00 ± 0.17 389 ± 48 
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Since there could have been a difference in deformation temperature between the 

structural top (SE-side) and bottom (NW-side) of the NE-striking and SE-dipping shear 

array, and since this temperature difference could also have led to variable observed D-

values, we plotted the calculated temperatures against a paleo-structural depth relative 

to a reference height (Fig. 4.24). We chose an elevation of 1755 m as reference height 

because that is the highest point at which a sample was taken in that area (sample 

TL116 (E2283812; N5746771) for oxygen isotope thermometry, Appendix 4.A). For 

example, a data point that plots at a paleo-depth of 300 m in Fig. 4.24 was taken at an 

elevation of 1455 m, i.e., 300 m below sample TL116. This approach implies of course, 

that relative depth differences during the time of brittle-ductile shear formation were 

maintained during exhumation and are reflected in the current topography. We used 

different patterns and grey scales for the data points in Fig. 4.24 in order to differentiate 

between sample location, deformed vein part, undeformed vein part, and infilling vein. 

In the grey shaded area of Fig. 4.24, we also plotted the temperature range that was 

determined from quartz-calcite δ18O-exchange thermometry in section 4.6.1.1.1. Fig. 

4.24 shows that the quartz in most of the sheared veins has been statically recrystallised 

at minimum temperatures between 390° C and 450° C, with the Chancellor Ridge veins 

showing slightly higher apparent temperatures than those from Crawford Knob.  

 

For comparison with the above results in the deformed veins, we also calculated 

the recrystallisation temperatures for an undeformed part of a quartz vein from 

Chancellor Ridge (514 ± 23° C (2)) and at Crawford Knob (535 ± 34° C (2)) (Table 

4.3; Fig. 4.24). When compared to the average recrystallisation temperature that we 

calculated for the sheared parts of the same quartz veins in both locations, the data 

indicate that the quartz recrystallisation temperature of the original, unsheared vein part 

was c. 100° C hotter than that in the sheared part of the vein (∆T = 135° C for Crawford 

Knob and ∆T = 89° C for Chancellor Ridge). From this, we infer that the undeformed 

parts of the quartz veins had already been fully recrystallised (at higher temperature) 

before the onset of the Cenozoic shearing. The measured static recrystallisation 

temperatures in the undeformed vein parts could therefore provide an upper boundary 

on the temperatures during the subsequent shear zone formation. These maximum 

temperature estimates together with the minimum recrystallisation temperatures 

measured inside the sheared parts and the oxygen isotope temperatures in the infilling 
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veins, result in an inferred temperature range for the Cenozoic deformation of the quartz 

veins of 400-530°C.  

Fig. 4.24 also shows that, within error, the minimum recrystallisation temperature 

of the fault-infilling veins (~400° C for the two Crawford Knob veins and ~460° C for 

the Chancellor Ridge vein, cf. Table 4.3) was similar to that for the sheared marker 

veins (cf. Table 4.3). This agrees with the interpretation of Wightman and Little (2007) 

that the shearing and infilling of the shears were penecontemporary events. 
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Since the temperatures that were measured for individual deformed veins are 

temperatures that prevailed during static grain growth and recovery of the previously 

deformed quartz veins, single temperature measurements do not reflect the actual 

deformation temperature and cannot be used to directly explain the variable values of D 

for those veins (again, they are minima). The temperatures that were measured via Ti-

in-Quartz thermometry are not precise enough to resolve any vertical temperature 

gradient (see large errors on temperature gradients in Fig. 4.24). For that reason we 

were not able to determine whether temperature had a major influence on the D-ratio of 

individual veins, but infer that all quartz veins were deformed in the estimated 

temperature range (400-530°C). This temperature range together with Wightman’s 

estimate of 486 ± 50 ° C based on oxygen isotopes at an inferred paleodepth of 25 km 

implies a paleo-geothermal gradient of 16-21° C/km. The lack of any evidence for an 

abnormally high perturbed paleo-geothermal gradient for the shear array is consistent 

with the escalator model, because this requires that the shears formed above the toe of 

the orogenic ramp well to the east of the Alpine Fault. There, isotherms were assumed 

to have remained subhorizontal since the Mesozoic and not been advected upwards due 

to high uplift rates closer to the Alpine Fault (Fig. 4.4). 

 

4.6.7.2 Depth and differential stress during shearing 

The depth at which the brittle-ductile shears formed is the most difficult factor to 

obtain. It is also one of the most important factors because the overburden stress and 

brittle shear resistance is proportional to that depth (e.g., Kohlstedt et al., 1995). Several 

depth estimates have been made for the detachment and the deformation depth of the 

mylonites adjacent to the Alpine Fault. Stern et al. (2001) have used seismic imaging 

(megashot gathers) to estimate the depth of the crustal detachment to the east of the SE-

dipping Alpine Fault ramp to ~35 km. Based on the overgrowth textures of garnet in a 

Fig. 4.24 (previous page): Scatter plot of TitaniQ-determined minimum temperatures for quartz 
recrystallisation as well as temperatures calculated from quartz-calcite 18O-exchange thermometry 
versus relative paleo-structural depth. This plot shows that higher temperatures determined with TitaniQ 
were measured in the undeformed vein parts than for the deformed parts of the same sheared veins. 
Temperatures determined by Ti-in-Quartz thermometry in the sheared veins are within error of oxygen-
isotope temperatures for recrystallisation of the shear-infilling veins, indicating similar recrystallisation 
temperatures for both types of adjacent veins. The dashed lines are linear regression lines that could 
indicate geothermal gradients, however, the uncertainties of those lines are too high to use in the 
calculation of paleo-geothermal gradients. The grey-shaded temperature was derived from qtz-cal oxygen 
isotope geothermometry by Wightman (2005). 
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mylonitised garnet-oligoclase zone Alpine schist sample that was taken ~100 m to the 

east of the Alpine Fault and using garnet-biotite geothermometry and garnet-biotite-

plagioclase-quartz geobarometry Vry et al. (2004) estimate that mylonitisation took 

place in the Cenozoic at peak temperatures of c. 600° C at pressures of c. 1.1 GPa, 

corresponding to c. 40 km depth. Toy (2007) reports that deformation temperatures in 

the Alpine Fault mylonites did not exceed ~650° C at  700-850 ± 150 MPa, i.e., 

mylonitisation took place at 26-33 km depth. Her P-T values are based on feldspar 

thermobarometry, Ti-in-Biotite thermometry, and the absence of prism<c>-slip quartz 

CPO fabrics in the Alpine Fault mylonites. From these above mentioned depth 

estimates, we will here assume that during the brittle-ductile shear formation that the 

basal detachment was located at a depth of ~32 ± 5 km (Fig. 4.3). Since the rocks in the 

brittle-ductile shear array have been tilted east and are now exposed 5-7 km to the east 

of the Alpine Fault and that fault has a mean dip of ~45° (Fig. 4.4), we infer that they 

have been exhumed from a minimum depth of (32 km – 7 km) = 25 km. This 

calculation implies that the rocks to the east of the Alpine Fault were transported up that 

inclined plane as rigid blocks (e.g., Little, 2004), and ignores the effect of any viscous 

deformation on the geometry of the underlying rocks, e.g., a possible thinning of the 

mylonite zone towards the surface (Toy, 2007). 

 

Wightman (2005) measured fluid inclusion densities of aqueous fluids (H2O-NaCl) 

in what appear to be primary inclusions (Fig. 4.8d) of four infilling vein samples from 

different locations in the shear array (one SW of Franz Josef Glacier, two from 

Baumann Glacier, one from Sam Peak; for localities see Fig. 4.3b). The analytical 

procedure is detailed in Appendix 4.C. The results of the analysis are summarised in 

Table 4.C-1. Homogenisation temperatures were Th = 234 ± 15° C implying fluid 

densities of ρf ≈ 0.84 g/cm3. We determined the fluid pressure at the time of fluid 

inclusion entrapment in the infilling veins by combining fluid inclusion isochors with 

the temperature range that was derived in sections 4.6.6.1.1 and 4.6.6.1.2 from quartz-

calcite 18O/16O exchange thermometry and Titanium-in-Quartz geothermometry. Fig. 

4.25 illustrates this: the average fluid inclusion isochore (based on ρf = 0.84 g/cm3) 

intersects the lines of the minimum and maximum temperature estimate (400-530° C) at 

the fluid pressure Pf = 310 ± 90 MPa. This Pf is inferred to have been the fluid pressure 
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during growth of the fluid-entrapping infilling veins after development of the fractures 

and during their passive infilling as a result of fluid flow along these fractures. 

The minimum depth estimate of ~25 km leads us to infer an overburden pressure of 

Plith  660 MPa (assuming a rock density  = 2700 kg/m3 and gzPlith ρ= ). This suggests 

a ratio of fluid pressure to lithostatic pressure at the time of vein growth and fluid 

inclusion entrapment of 47.0≈= lithf PPλ , which is slightly above the theoretical 

hydrostatic ratio of 4.037.0 −≈λ . Simple Mohr-Coulomb analyses (Fig. 4.26) indicate 

that to allow brittle failure of the Alpine Schist at such depths in the lower crust, would 

require fluid pressures that were probably near-lithostatic (i.e., fluid pressure 

ratio 98.0≈= lithf PPλ ), an observation that is consistent with geophysical data 

interpreted to represent enhanced (near-lithostatic) fluid pressures in the hanging wall of 

the Alpine Fault (Stern et al. 2001, 2007). The different fluid pressure ratios indicate 

that the fluid pressure in the shears must have been cycling from near-lithostatic during 

fracturing of the Alpine schist host to near-hydrostatic during deposition of the shear-

infilling quartz-calcite veins (cf. Wightman, 2005; Wightman et al., 2006; Wightman 

and Little, 2007). 
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Fig. 4.25 (previous page): Pressure-temperature diagram for the determination of the fluid pressure Pf at 
the time of fluid inclusion entrapment in the fault-infilling quartz-carbonate veins from primary fluid 
inclusions in quartz and two different estimates for deformation temperature. The fluid pressure at the 
time of fluid inclusion entrapment is determined by the intersection between the average fluid inclusion 
isochor (f = 0.84 g/cm3) with the lines of the maximum and minimum estimates for deformation 
temperature. The resulting inferred fluid pressure is 310 ± 90 MPa. Quartz-calcite 18O-geothermometry 
by Wightman (2005), Appendix 4.A. Ti-in-Quartz (TitaniQ) geothermometry, this study. Hydrostatic and 
lithostatic pressure gradients (stippled lines) are based on hydro = 1.0 g/cm3 and rock = 2.7 g/cm3 
respectively. The average temperature gradient is 22° C/km. 

Fig. 4.26: a) Block diagram of near-vertical brittle-ductile shear (after Wightman, 2005), schematically 
indicating principal stress directions assuming Andersonian faulting behaviour. v is the vertical overburden 
stress. 1, 2 and 3 are maximum, intermediate and minimum principal stresses. The slip vector is indicated 
by the bold white arrow. The movement plane is perpendicular to the shear surface and contains the slip 
vector. 1 and 3 lie in the movement plane. b) Mohr-Coulomb-Griffith failure envelope for intact rock 
illustrating stresses during initial brittle-ductile shear zone formation at a depth of 25 km. i = coefficient of 
internal friction; n = normal stress; s = shear stress; v = overburden lithostatic pressure; Pf = fluid 
pressure; v*= n - Pf , effective normal stress. In this diagram, we inferred v = 2. Effective stresses are 
marked with (*). d is differential stress. 
Point (A): effective normal stress for  = 0.98. This fluid pressure ratio is necessary to fracture intact rock 
at 25 km depth. At (A), the maximum differential stress can be ~100 MPa without inducing brittle failure. 
This means that d  100 MPa is a minimum estimate for shear failure at near lithostatic fluid pressures. 
Point (B): effective normal stress for  = 0.47, as calculated from the entrapment Pf in fluid inclusions in 
the infilling veins (see text for detail) after brittle failure of the intact schist. 
Point (C): effective normal stress at hydrostatic conditions ( = 0.37). 
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Considering the near-vertical attitude of the brittle faults, which strike subparallel 

to the plate margin in this transpressive plate boundary setting, we inferred that the 

intermediate principal stress was nearly vertical and hence equal to the overburden 

lithostatic pressure at 25 km depth, i.e., Vσ = Plith = 660 MPa.  

Wightman (2005) interpreted microstructures in the shear-infilling veins (relict 

quartz grains with elongate shape and crystallographic preferred orientations at high 

angles to the faults) as indicators of emplacement of the infilling veins through crack-

seal processes into hybrid extensional-shear fractures in the quartzofeldspathic rocks 

although the relative timing of fracture dilation and shearing is unclear. For example, 

the initial fracturing may have been by shear failure requiring a larger differential stress 

than if the cracks nucleated as mode I structures. Assuming a depth of ≥ 25 km, and 

using a combined Mohr-Coulomb-Griffith analysis of brittle fracture for intact rock, we 

derived a minimum estimate for the differential stress at the time of brittle failure of the 

host schist of ( ) =−= 31 σσσ d  100 MPa (Fig. 4.26b, Point A). For this differential 

stress, the fluid pressure must have been near-lithostatic (Pf  645 MPa). Considering 

that fluid pressures were ~310 ± 90 MPa (i.e., λ = 0.33 – 0.61) at the time of the fluid 

inclusion entrapment in the infilling veins, one infers that the fluid pressure must have 

fallen as the infilling veins began to grow post-failure. At this Pf, the expected 

differential stress for conditions of brittle failure would have been ~390 MPa (Fig. 

4.26b, Point B). 

The cycling fluid pressures could have led to variations in the relative stability or 

the rate of fault slip that could in turn have led to local strain rate variations in a given 

quartz vein and thus to a partitioning of brittle to ductile deformation in a different way 

between the high Pf and low Pf area on an individual fault. 
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4.7 Discussion 

 

In the following, we discuss what could have led to the formation of well localised 

ductile shear zones in some veins and to brittle shear zones in others.  

 

4.7.1 Was precursory brittle deformation necessary for the localisation of the ductile 

shear zones? 

Gleason and DeSisto (2008) document a greenschist facies ductile shear zone that 

apparently developed without the aid of a brittle precursor. The shear zone formed in a 

pegmatitic dike cross-cutting granitic gneisses in the Adirondacks, New York. This 

example leads to the question whether a brittle precursor is a necessary precondition to 

form a ductile shear zone (as introduced in Fig. 4.1), even in already layered and 

lithologically inhomogeneous rocks. For example, Simpson (1986) reported that high 

fluid pressure had induced fracturing in diorites from southern California and in Striped 

Rock granite from Virginia. This fracturing was followed by hydrolytic weakening of 

the rocks to trigger crystal-plastic creep of quartz and feldspar and ductile strain 

localisation. Tourigny and Tremblay (1997) described a shear zone from Québec, where 

brittle fractures and joints have been ductilely reactivated multiple times after reaction 

softening and hydraulic weakening of wall rocks had taken place adjacent to the 

fractures. Similar processes (weakening through precursory embrittlement) have 

recently been described by Pennacchioni (2005) in Adamello tonalites in the Italian 

Alps, where joints in en-échelon arrangement were reactivated as “fault-like” shear 

zones under water-deficient conditions with ductile deformation only occurring in the 

overlapping region between adjacent joints, where strain rates were presumably lower 

and therefore facilitated ductile flow. Mancktelow and Pennacchioni (2005) and 

Pennacchioni and Mancktelow (2007) investigated the influence of fluid-alteration in 

metagranodiorites in the Tauern window, eastern Alps on the formation of paired 

ductile shear zones versus single shear zones. Their evolutionary shear zone model 

predicts that the observed paired ductile shear zones could only form along the 

relatively weaker rims of chemically hardened halos in the wall rocks, where fluids had 

been introduced through precursory brittle fractures and had led to the fluid-altered 

halos in the wall rocks surrounding the fractures. Single shear zones only formed where 

precursory brittle fracturing had taken place, but without obvious fluid-alteration 

effects. Shear zones and shear zone terminations in particular in foliated metasediments 
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at the Cap de Creus, Spain were investigated by Fusseis et al. (2006) and Fusseis and 

Handy (2008) among others. They concluded that the formation and propagation of 

ductile shear zones was induced by initial microfracturing that facilitated fluid ingress 

and subsequent hydrolytic weakening. 

In section 4.6.5 we have shown that there is evidence for microfracturing of the 

quartz veins in the form of healed microfractures before the shearing of the veins 

initiated. We also showed that the microfracture density is apparently similar in both the 

deformed and the undeformed parts of the veins. It is unclear what caused the 

microfracturing in the quartz veins. We interpret the homogeneously distributed 

microfracture array throughout the veins as having been an avenue of water introduction 

into them. Later, this could have led to a decrease in viscosity of those veins. In that 

sense, brittle precursory fracturing may have been a contributor to weakening of the 

quartz veins with respect to the schist. Our data suggest, however, that it did not control 

the place of shear localisation inside those veins. In the quartz veins from the Southern 

Alps, precursory microfracturing and water infiltration was probably not important for 

the subsequent localisation of the ductile shear zones at particular sites in those veins 

during the late Cenozoic. 

 

4.7.2 Was local softening or hardening of the quartz veins necessary to form the ductile 

shear zones? 

We could not find any evidence for a focused (intra-vein) softening process in the 

deformed quartz veins in the Southern Alps. In fact, the increase of the ductilely sheared 

width (dsw) with the ductile displacement (d) (Fig. 4.13, section 4.5.2) led us to infer 

that those quartz veins have actually locally hardened during the initiation of shear zone 

formation. Local hardening could also be supported by lower water concentrations in 

the deformed parts of the sheared veins than in their undeformed parts (FTIR; section 

4.6.5.2). Syndeformational water leakage in the quartz veins would be in agreement 

with a hardening behaviour of the quartz veins. Still, today we observe mainly ductile 

shear zones in most of the quartz veins. We infer therefore, that the faults in the adjacent 

schist controlled the formation of the ductile shear zones in the quartz veins ahead of 

their tips. Due to the water that may already have been introduced into the quartz veins 

via their older microfracture arrays either by late Cenozoic fluid flow along the brittle-

ductile shear faults (Wightman and Little, 2007) or by some previous event, the veins 

were already weak enough to not fail brittlely but to transform into ductile shear zones 
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when the brittle fault tips propagated through the schist to impinge on the veins. We 

argue that although the quartz veins are approximately homogeneous, it was not 

necessary to introduce a smaller scale rheological contrast into the quartz. This contrasts 

with the shear zone examples presented in the studies cited in section 4.7.1. Whatever 

controlled the spacing of the brittle faults in the host schist also controlled the location 

of ductile shear zone formation in the rheologically weaker quartz veins. In a similar 

way, but on a much larger scale Ellis and Stöckhert (2004) proposed that localisation of 

ductile strain in the viscous mid-lower crust can be achieved by seismic rupture of an 

overlying fault in the brittle upper crust and the transfer of the high stress from the 

down-dip fault tip into the ductilely deforming lower crust. 

 

4.7.3 What has caused the different degrees of ductility in the quartz veins? 

Variable degrees of ductile behaviour of the shear zones in the quartz veins raise 

the question as to what caused this differential behaviour. We have eliminated the 

calcite fraction as a weakening agent, as well as differences in fluid content or species 

(at least as preserved today). D-x-plots along five separate shears revealed that D varies 

along-strike of those shears and scales mainly with the original vein thickness and to a 

certain degree inversely with the total displacement (Fig. 4.16). In cases where these 

scaling relationships are clearly violated, we infer that variations of slip rates at the 

decimetre-scale along the shears may have been responsible for variable creep strain 

rates and therefore different effective viscosities in the sheared quartz veins along 

individual faults. From the results of this study, we could not determine what may have 

caused these variable slip rates. In the following, we present some possible 

explanations. 

The faults may seem like straight, planar, through-going structures, but as can be 

seen from detailed outcrop maps, in reality, these faults interact with each other and 

with lithologically different layers (Figs. 4.9 and 4.10). They bend around the older 

quartz veins and pelite layers, they merge, they terminate, and they create step-over 

zones between overlapping fault strand terminations. These interactions do not only 

take place in two dimensions, but also in 3D-space. Variable slip rates may therefore 

have been caused by fault-fault-interaction in the third dimension, which is mostly not 

exposed. 

Fluid pressure may have varied along the brittle faults and led to patches on the 

fault surface that may have moved by stable sliding and others that may have only 
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moved by semi-stable sliding. Applying a combined Mohr-Coulomb-Griffith brittle 

failure criterion for intact rock, we inferred that at the calculated depth of 25 km for the 

shear array formation, a minimum differential stress of ~100 MPa would have been 

necessary to fracture the Alpine schist host to the quartz veins by hybrid shear-

extensional failure. Fluid pressures were probably cycling between near-lithostatic at or 

just before the time of brittle failure of the metagreywacke schist and supra-hydrostatic 

after that brittle failure during emplacement of the syntectonic fibrous shear-infilling 

quartz-calcite veins. Along some (metre-scale) sections of individual brittle faults in the 

schist, fluid pressure could have been higher than along other sections. Hypothetically, 

variable fluid pressures could have been caused by different permeabilities of the Alpine 

schist host depending on whether it had, e.g., pelitic or psammitic grain sizes. The 

differential fluid pressures could in return have led to local spatial differences in shear 

resistance. Enhanced slip rates may have occurred where fluid pressures were high and 

decreased slip rates, where Pf was lower. More separation-length data perhaps in 

combination with schist permeability studies is needed to reliably and directly confirm 

an apparent link between the variability of the D-values to the cycling fluid pressures. 

Another possible reason for different shear resistances along the faults could be 

locally different fault roughness due to the incrementally grown fibrous shear-infilling 

veins. For example, Voisin et al. (2007) have performed experiments with a salt slider 

that developed striae due to dissolution-precipitation creep on the salt surface with 

progressive sliding. A decrease in fault roughness due to the striae development in their 

experiments led to the transition from stick-slip behaviour to episodic stable sliding. 

Since slip in the quartzofeldspathic host rocks was partly accommodated by dissolution-

precipitation creep (Wightman, 2005), we could also expect that differences in the 

Alpine schist lithology played a role in slip rate variations along the faults. Dissolution-

precipitation creep is a grain size sensitive deformation mechanism with 3
1

d
∝ε  (e.g., 

Rutter, 1983), meaning that an increase in grain size of only one order of magnitude 

(e.g., from 10 to 100 µm) could result in a decrease in strain rate of 3 orders of 

magnitude. Since slip rate is strain rate multiplied by shear zone or fault width, and 

since the average fault width is relatively constant (~2 mm) throughout the studied fault 

array, this would result in a decrease in slip rate by 3 orders of magnitude. A change in 

slip rate of three orders of magnitude is sufficient to achieve brittle yielding in some 

veins and ductile deformation in others. However, more data is needed to confirm that 
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e.g., quartz veins in psammitic (coarse grained) layers are more likely to deform 

ductilely than quartz veins in pelitic (finer grained) layers (e.g., Mair et al., 2002). 

Also, the fault planes in the brittle-ductile shear array are not entirely planar but 

can be undulose. An undulose fault surface has been shown to have an influence on the 

friction coefficient  and therefore the type and velocity of sliding along that fault 

(Chester and Chester, 2000). Fault movement was probably not only accommodated by 

stable sliding as we originally assumed but might be better described by a rate-and-state 

dependent frictional sliding law (e.g., Scholz, 2002; pp. 81-94). Such a law includes 

changes of the fault friction coefficient that does not only depend on the properties of 

the fault surface (e.g., fault roughness, asperities density) but also on the elastic 

properties of the host rocks. The development of the rate-and-state dependent friction 

coefficient controls whether a fault undergoes stable or unstable sliding (Scholz, 2002). 

Frictional sliding on the faults that were investigated here might have been of the 

unstable type especially during the initial stages of shearing, because the smoothness of 

the fault planes as observed today yet had to develop. Unstable sliding may have led to 

accelerated movement on some fault sections. The accelerated shearing may have 

induced locally higher shear strain rates at the quartz veins ahead of that sliding segment 

and therefore to local embrittlement in those particular quartz veins that were cross-cut 

by that section of the fault. We cannot directly confirm whether any of the processes 

mentioned above or if a combination thereof was responsible for the variable fault slip 

rates. We conclude however that variable slip rates along separate shears were probably 

the main factor leading to differential effective viscosities and therefore D-values 

between the different quartz veins. 

 

4.8 Conclusions 

In order to contribute to the understanding of ductile shear zone localisation 

processes in quartzose rocks with homogeneous but variably strong layers in the mid to 

lower crust, we have conducted a detailed examination of narrow (2-3 cm wide) brittle-

ductile shear zones that formed in quartz veins as a result of late Cenozoic transient 

embrittlement in the hangingwall of the Alpine Fault. The shearing took place above the 

foot of the Alpine Fault ramp at  20 km depth at temperatures between 400-530° C, a 

minimum differential stress of 100 MPa and fluid pressures that cycled between 

lithostatic and near-hydrostatic in the failure/post-failure period. 
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From the results of this study we conclude that: 

- in layered sequences of rocks, formation of a ductile shear zone in a weak 

layer that is surrounded by strong material is possible without focused local 

precursory embrittlement or focused local weakening of that layer; 

- in the investigated shear zones, the rheological contrast that was necessary to 

form a ductile shear zone can be pervasive microfracturing with subsequent 

water ingress through those microfractures; if so, 

- the location of shear zone formation in the sheared quartz veins can be 

determined by the location of the brittle fault tips impinging onto those 

veins, and not by any vein-scale weakening processes or inhomogeneities in 

the veins; 

Fig. 4.27: Schematic diagram showing proposed model for ductile shear zone formation in rocks with 
layers that are homogeneous but of different strengths. The flow diagram illustrates two ways to form 
localised ductile shear zones in a quartz vein that is hosted by metagreywacke schist. Inherited 
microfractures have led to fluid ingress in the quartz veins and has left the vein rheologically weaker than 
the surrounding schist. No rheological contrast had to be introduced in order to form those shear zones. 
The quartz vein was already weaker than the surrounding schist. The resulting type of shear zone in the 
quartz vein depends on the local slip rate. A high slip rate (case1) would lead to high strain rate and high 
flow stress possibly followed by brittle yielding in the quartz vein, whereas a low slip rate (case 2) 
invokes low strain rates and a fully ductile shear zone in the quartz vein. 
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- the shear zones that were investigated in this paper actually hardened, not 

softened; at least in the initial stages of shearing; 

- the locally variable styles of rock deformation (brittle vs. ductile) in the 

investigated shear zones and variable ratios of ductile to total displacement 

(D-value) were probably controlled by variable slip rates along segments of 

individual faults that were experiencing different types of frictional 

instability or slip leading to variable local strain rates and effective 

viscosities of those shear zones. 

In Fig. 4.27 we present a simple model that shows how the shear zones with variable 

ductilities could have formed. 
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Appendix 4.A – Analytical details of quartz-calcite 18O/16O exchange thermometry 

Quartz-calcite 18O/16O exchange thermometry was conducted on 6 samples from 

the brittle-ductile shear array by R. Wightman during the course of her PhD thesis. The 

following analyses results (Table 4.A-1) are taken from her PhD work (Wightman, 

2005) that resulted in a manuscript on the conditions during the formation of the brittle-

ductile shear array (Wightman et al., in prep.). We have adapted figure and table 

numbers to fit this paper. 

 

“For mineral separate oxygen isotopic data (Table 4.A-1), thick sections of the fault infilling 

veins were made ~500 m thick, then prepared using the thin sawblade technique (Elsenheimer 

and Valley, 1993; Kohn et al., 1993). Approximately 1-2 mg of each mineral sample was 

selected from the centre and rim of the veins to test for isotopic homogeneity across the vein, 

before further sample was crushed. Quartz analyses were collected using a laser probe 

extraction system at University of Wisconsin-Madison using a CO2 laser, BrF5 reagent and a 

Finnigan-MAT 251 mass spectrometer following procedures described in Valley et al. (1995) 

and Spicuzza et al. (1998). Calcite samples were reacted with anhydrous H3PO4 following the 

methods of McCrea (1950). Calcite-acid mixtures were maintained at 50°C overnight, then CO2 

extracted under vacuum and cryogenically purified. Values of 18O were then measured on the 

mass spectrometer. 

 

Table 4.A-1 Oxygen isotope composition and mineral fractionations from infilling 

veins 

 Quartz  Calcite   

Sample size δ18Oqtz size δ18Ocal ∆ (qtz-cal) 

IA43 -1 19.6 13.21 6 11.78 1.43 

IA43 -2 17.7 13.17 29 11.60 1.57 

IA44 -1 16.6 12.98 12 11.51 1.47 

IA44 -2 20.9 13.11 25 11.57 1.54 

IA46 -1 16.5 12.82 24 11.38 1.44 

IA46 -2 18.6 12.88 27 11.34 1.54 

I102 20.0 13.30 16 11.76 1.54 

TL27 12.9 12.56 12 10.94 1.62 

TL116 -1 24.4 12.99 25 11.94 1.05 

TL116 -2 19.7 13.05 15 11.62 1.43 

Note: compositions of quartz are corrected to UWG-2=5.8‰, and all values normalised to ‰ V-SMOW.  

Sizes are in moles CO2. 
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Oxygen isotope analyses are precise to within ± 0.06 ‰ (1 standard deviation) based on 

analysis of the standards NBS-28 quartz (18O = 9.44 ± 0.06 ‰) and UW Gore Mountain Garnet 

#2 (18O = 5.76 ± 0.05 ‰). These standards were periodically run during data collection in order 

to continuously check the integrity of the collection system. All isotopic values are reported in 

standard δ-notation, normalised to V-SMOW. 

Six samples of fault-infilling veins from the Franz Josef and Fox glaciers area (Fig. 4.1) 

were analysed for 18O in both quartz and calcite (Table 4.A-1). In four of the samples where 

the vein was >1 cm thick, several analyses were made, one in the centre of the vein and one at 

the rim of the vein. This was to evaluate isotopic homogeneity across the vein in order to 

ascertain mineral equilibrium so that stable isotope geothermometry could be used. Only one 

analysis pair was made on samples TL27 and I102 due to the limited thickness of the vein (<1 

cm) and the difficulty in extracting sufficient size calcite mineral splits (>1 mg) from discrete 

areas of the veins. 

Oxygen isotope values for both quartz and calcite fall within previously determined 18O 

values for the Alpine Schist (e.g., Vry et al., 2001). Sample analyses from the different areas of 

the veins are within 0.07 ‰ for quartz and 0.14 ‰ for calcite. These differences are only just 

larger than the analytical uncertainties for the laboratory standards (± 0.06 ‰). 

Cathodoluminescence (CL) imaging of the veins reveals only one microtexturally distinct set of 

quartz and calcite mineral phases. This suggests that the veins were deposited in one event 

and that the quartz and calcite grains analysed are likely to be in isotopic equilibrium with one 

another. 

 

 

 

Fig. 4.A1 (Wightman, 2005, her Fig. 3.7):  Plot of 18O in quartz against 18O in calcite from same 
infilling vein samples.  Line of no 18O/16O fractionation is shown (=0), and also line of best fit with data 
set (=1.51).  All values are normalised to V-SMOW. 
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A plot of 18Oqtz against 18Ocal from the same vein sample (Fig. 4.A1) allows the degree of 

isotopic equilibrium between the phases to be assessed. With one exception, the samples plot 

within analytical uncertainty of a straight line, demonstrating a constant fractionation factor 

between the two minerals, which is in agreement with the textural evidence that the two phases 

were deposited contemporaneously. Fractionation between the quartz-calcite mineral pairs from 

the centre and rims of the veins yields a consistent value of qtz-cal = 1.51 ± 0.07 ‰ (n=9). The 

quartz-calcite fractionation factor of Sharp and Kirschner (1994) yields temperature estimates of 

486 ± 34°C for deposition of these veins (uncertainties reflect the 2 error on the calibration of 

Sharp and Kirschner (1994) in combination with the uncertainty in our fractionation value).  

Another calibration for the fractionation of oxygen between quartz and calcite by Clayton et al. 

(1989) yield significantly lower temperatures (e.g., 229 ± 50°C for qtz-cal =1.51). This calibration 

was determined experimentally at temperatures between 600 and 1300°C (Clayton et al., 1989), 

and we consider the temperature estimate made using this calibration to be unreasonable given 

the greenschist facies vein mineral assemblage, and the minor ductile deformation that 

occurred post-deposition in quartz in these veins (indicative of temperatures >~300°C).” 

 

Appendix 4.B – Analytical details of Titanium-in-Quartz geothermometry 

We took cathodoluminescence (CL) images of different locations in the deformed, 

and undeformed parts of CK75 in order to test for Ti-diffusion-related zoning in the 

measured quartz grains (Fig. 4.21). The CL-images were taken at Victoria University of 

Wellington with a JEOL Superprobe 733 (at 223 nA beam current, 15 kV excitation 

voltage). As Fig. 4.21 shows, the deformed and undeformed parts of the quartz veins 

lack Ti-zoning. The infilling vein does not show any zoning in the quartz grains either. 

All samples (n=33) that were measured by Titanium-in-Quartz geothermometry are 

mm-sized unoriented rock chips that were mounted in polished epoxy briquettes. Ti-

concentrations were measured for all 33 samples by laser ablation inductively coupled 

plasma mass spectrometry (LA-ICP-MS) at Victoria University of Wellington. We 

measured mass peaks for the following isotopes: 29Si, 43Ca, 47Ti, 48Ti. The standard we 

used was NIST-612. 

The low variation in the temperatures that were measured with the TitaniQ 

geothermometer as well as the lack of Ti-zoning in the CL-images could be due to 

homogenisation of the Ti-concentrations after the static recrystallisation of the veins 

that took place after their deformation. The application of the Titanium-in-Quartz 

thermometer depends on the assumption that Ti-concentrations in the measured quartz 

grains did not change significantly through diffusion after the static recrystallisation 
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process had finished. We calculated Ti-diffusion rates DTi via Eq. 4.B-1 (Cherniak et al., 

2007): 
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
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The characteristic transport distance dc over which Ti may diffuse through the quartz 

lattice in two dimensions is given by 

tDd Tic 4=         (4.B-2) 

where DTi is diffusion rate in [m2s-1] and t is time in [s], and dc in [m] is the 

characteristic transport distance over which Ti may diffuse through the quartz grains. 

We can calculate the time for exhumation of the brittle-ductile shear array from 25 km 

depth at a dip-slip rate of 10 mm/yr on the Alpine Fault and a dip of the fault ramp of 

45° at that depth to be 3.5 Myrs. For this maximum time period, Eq. 4.B-2 predicts that 

at ~425°C (Chancellor Ridge) Ti will diffuse ~0.34 µm and at ~400°C (Crawford Knob) 

Ti will diffuse ~0.14 µm. Since the diameters of the quartz grains that were chosen for 

LA-ICP-MS analyses were in the order of > 50 µm, we conclude that Ti-diffusion can 

be neglected at these low temperatures and cannot be responsible for sample 

homogenisation. We infer that the temperatures that were measured in the quartz vein 

samples are actual minimum static recrystallisation temperatures (e.g., Kohn and 

Northrup, 2009; Spear and Wark, 2009). 

 

Appendix 4.C – Fluid inclusions analyses on shear-infilling quartz-calcite veins 

Fluid inclusion analyses were conducted on 4 samples of the shear-infilling quartz-

calcite veins from the brittle-ductile shear array by R. Wightman during the course of 

her PhD thesis. The following analyses results (Table 4.C-1) are taken from her PhD 

work (Wightman, 2005) that resulted in a manuscript on the conditions during the 

formation of the brittle-ductile shear array (Wightman et al., in prep.). We have adapted 

figure and table numbers to fit this manuscript. 

 

“Four samples of the veins that infill brittle-ductile faults around the Franz Josef Glacier 

and Sam Peak areas (Fig. 4.3b) were analysed for fluid inclusions.  Thick sections, ~60 µm 

thick, were prepared and doubly polished.  Initial petrography of the veins and inclusions was 

done on a standard petrographic microscope and the fluid inclusion analyses were undertaken 

on a Linkham heating-freezing stage at Victoria University of Wellington.  Slow heating rates 

were used (~1-2ºC/minute) and results were reproducible to ± 0.2ºC (Table 4.C-1).  
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Fluid inclusions in the infilling veins occur as part of two distinct petrographic textures: as 

isolated primary inclusions in both quartz and calcite (Fig. 4.8d, and as trails in texturally 

secondary, healed microfractures (Fig. 4.8c).  Most analyses were done on what appeared to 

be texturally primary inclusions in quartz, as these were larger than the 2-5 µm secondary 

inclusions that define the inclusion trails.  Texturally primary inclusions in sample TJFA44 were 

measured in both quartz and calcite hosts to ensure consistency of the trapped fluid between 

the mineral phases.  The primary inclusions in three of the samples analysed (IA28, IA31 and 

TJFA44) were large (10-20 µm), while the primary inclusions in IA44 were smaller (2-10 µm).  

All the inclusions analysed consist of two phases at room temperature (liquid and vapour H2O; 

Fig. 4.8d), and results are summarised in Table 4.C-1. 

 

 

The primary inclusions in both mineral phases melt at –1.6 ± 0.9ºC, indicating the 

presence of dissolved salts, averaging 3.2 wt % (equivalent) NaCl, in an aqueous fluid.  The 

inclusions trapped in calcite hosts in sample TJFA44 show little variation in salinity or melting 

temperature from the inclusions trapped in quartz from other samples.  Little to no CO2 is 

observed optically in the measured inclusions, but small amounts of dissolved CO2 (up to 

XCO2=0.01), if present, could account for up to 1.5ºC of the observed freezing-point depression 

(Hedenquist and Henley, 1985) without being optically detectable. All the inclusions 

homogenise to a single liquid phase at temperatures of 234 ± 15ºC, implying fluid densities of 

~0.84 g/cm3.  The isochores determined from these densities are shown in Figure 4.23.” 

 

 

 

 

 

 

 

Table 4.C-1 Fluid inclusion data from infilling veins        

        

Sample Mineral No. inclusions Inclusion type T(m)a T(h)b wt% salt Fluid density 

IA28 Quartz 28 Primary -2.2 ± 0.2 244 ± 6 3.55 0.83 

IA31 Quartz 100 Primary -1.1 ± 0.1 230 ± 3 1.89 0.84 

IA44 Quartz 26 Primary -1.3 ± 0.1 229 ± 3 2.19 0.84 

TJFA44 Quartz 22 Primary -3.0 ± 0.6 242 ± 5 5.2 0.85 

TJFA44 Calcite 18 Primary -1.9 ± 0.1 243 ± 4 3.2 0.83 
aT(m) = melting temperature of ice      

bT(h) = homogenisation temperature (to liquid)     
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Chapter 5 

 

Summary of results and conclusions 

 

5.1 Summary of results 

In order to contribute to the understanding of the deformation behaviour and the 

rheology of quartz and quartzofeldspathic rocks under natural conditions, we have 

investigated an array of neotectonically formed, dextral-oblique faults that have 

displaced biotite-zone quartzofeldspathic Alpine Schist and quartz veins embedded in 

that schist in the Southern Alps of New Zealand. Fault slip is generally brittle in the 

quartzofeldspathic host schist, but exhibits variable degrees of fully ductile to fully 

brittle deformation in a set of foliation-discordant quartz veins that are cross-cut by the 

faults. In this geological study we tried to extract rheological information from these 

naturally formed, brittle-ductile shear zones in the quartz veins. The main goals of the 

study were to determine whether we can extrapolate laboratory derived flow laws for 

quartz to geological conditions, and to find a set of flow law parameters, such as the 

stress exponent n and the pre-exponential factor A, that would be applicable to the 

deformed quartz veins. Building on these results, we make inferences about deformation 

mechanisms operating during ductile-to-brittle deformation of quartz. Another aim was 

to determine whether softening or hardening mechanisms were operating during the 

formation of the well-localised ductile shear zones in the quartz veins. We also try to 

understand what may have led to differential ductile and brittle behaviour from one 

quartz vein to another. 

 

5.1.1 Geometry of the brittle-ductile shears and slip rate estimates 

The shears are inferred to have formed in an escalator-like fashion in the late 

Cenozoic during a period of transient deep embrittlement during their tilting and 

upramping onto the Alpine Fault ramp (Little et al., 2002a). The array of shear zones 

was exhumed in the past few Myrs and is now exposed in the central part of the 

Southern Alps, New Zealand, west of the Main Divide and approximately 5-7 km to the 

southeast of the Alpine Fault. The faults strike subparallel to the Alpine Fault. They are 

near-vertical and are spaced 37 ± 54 cm (n=72) apart. We measured a mean slip of 7.2 ± 

5.8 cm (n=72) per shear across mostly ductile shear zones that are 2 ± 1 cm (n=72) wide 
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(Chapter 3; Table 3.1). The average ductile component of slip is 4.8 ± 3.4 cm (n=72) 

resulting in a mean finite ductile shear strain of 2.4 ± 2.16. The slip data have been 

corrected for the deviation of the measurement plane from the movement plane using a 

sequence of algebraic steps that are described in Chapter 2 (Grigull and Little, 2008). 

Based on the model for sequential shear activation by Little et al. (2002a), an estimate 

of the minimum time of shear activity per shear is 34 ± 49 yrs, resulting in a maximum 

slip rate of 2.0 ± 3.3 mm yr-1 (Table 3.1). If all shears in the shear array had been active 

simultaneously across the entire width of the shear array (~2 km), a minimum slip rate 

estimate would be in the order of ~10-4 mm yr-1 (section 3.3.4). 

 

5.1.2 Deformation conditions during shear zone formation in the quartz veins 

From studies on the depth of mylonitisation at the base of the Alpine Fault (e.g. 

Vry et al., 2001; Toy, 2007), we assume that the shears formed at a minimum depth of 

~25 km, i.e., ~5-7 km structurally above the Alpine Fault mylonites. Assuming a depth 

of 25 km and using a Mohr-Coulomb analysis of brittle failure of the host rocks, we 

infer that minimum differential stresses during embrittlement and shearing of the quartz 

veins were ~100 MPa. For this differential stress, near-lithostatic fluid pressures are 

required to induce hybrid shear-extensional brittle failure in the quartzofeldspathic 

Alpine schist at 25 km depth. The fluid pressure ratio  is inferred to have been ~0.98 at 

the time of brittle failure (section 4.6.6.2). 

Based on Titanium-in-Quartz geothermometry (section 4.6.6.1) in the deformed 

quartz veins and quartz-calcite oxygen-isotope thermometry in syntectonic fault-

infilling quartz-calcite veins (Wightman, 2005), the temperature during deformation of 

the quartz veins is inferred to have been 400-530°C. Fluid inclusion analyses on 

primary inclusions in remnant quartz grains of the fault-infilling veins resulted in a fluid 

density of ~0.84 (Wightman, 2005; see also Appendix 4.C in this study). Combining the 

fluid inclusion isochor for that fluid density with the temperature range above, we could 

estimate a pore fluid pressure of 310 ± 90 MPa at the time of fluid inclusion entrapment 

(Fig. 4.25). This fluid pressure would result in a near-hydrostatic fluid pressure ratio, 

indicating that fluid pressures were probably cycling from near-lithostatic to supra-

hydrostatic. After brittle failure of the host schist, differential stresses in the quartz veins 

could have been as high as ~390 MPa (section 4.6.6.2). 
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5.1.3 Can laboratory-derived flow laws be extrapolated to natural conditions?  

In Chapter 3, we addressed the question whether experimentally derived flow laws 

could be used to describe the flow behaviour of the naturally deformed quartz veins. A 

key tool in this study is a set of geometrical scaling parameters expressed in the 

deformed quartz veins. Fig. 3.6 shows that the ductile shear zone width (dsw) scales 

roughly with the ductile amount of slip (d) and with the original quartz vein thickness 

(thorig). This figure also shows that the ductile-to-total slip ratio in the quartz veins 

(‘ductility’ D) depends to a first order on thorig and to some degree on the total fault slip 

(ytot). Through finite-element modelling with a ‘home-grown’ code (SULEC, Chapter 

3), we tried to reproduce these observed scaling relationships. For that, we varied 

original vein thicknesses as well as flow law parameters in the computer models. All of 

our models included a water fugacity that was calculated to be ~200 MPa for the 

pressure and temperature conditions mentioned above. The scaling relationships and the 

field observation that the brittle faults are always well localised where they impinge on 

the quartz veins were used to distinguish between successful and unsuccessful models.  

We observed interesting interactions between the (mostly) ductile quartz vein and 

the surrounding brittle schist material in the numerical models. Fig. 3.10 shows that the 

propagation behaviour of the brittle fault through the schist towards the quartz vein is 

controlled by the effective viscosity of the quartz vein. For very stiff quartz veins, the 

fault bifurcates or even forms two separate faults. For very soft quartz veins, the fault 

forms rotational cross-shears in the strain-softening, much stiffer schist. The model that 

fits our field observation is the model where the viscous flow strength of the quartz vein 

and the frictional strength in the schist are nearly equal (model P2, Fig. 3.10). In model 

P2, the brittle fault stays well-localised and bends around the quartz vein. In that model, 

frictional and viscous energy dissipation must therefore have been relatively equal. The 

fault propagation also seems to depend on the stress exponent that was chosen for the 

quartz vein. Our results indicate that the fault stays localised when n is closer to 4 than 

to 1. 

We tried to further constrain the stress exponent in the quartz veins by setting up 

experiments with varying values for n in the quartz veins. We observed that as long as 

the ductilely deforming quartz vein is surrounded by the brittlely deforming schist, the 

resulting quartz vein shapes were indistinguishable from each other. The shape of the 

deformed quartz veins was controlled by the brittlely deforming quartzofeldspathic 

schist. The resulting shape depends on the viscosity ratio between quartz and schist. The 
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schist should be approximately twice as strong as the quartz in order to match the 

geometrical scaling relationship between dsw and d (Fig. 3.16a). 

We infer from the results of Chapter 3 that we can extrapolate laboratory derived 

flow laws to natural conditions as long as the range of the above mentioned strength 

ratios is adhered to and as long as water fugacity is included in the flow law. We predict 

a pre-exponential factor of AE = 10-10±2 MPa-n s-1 for our quartz veins, using a water 

fugacity of 200 MPa, and a stress exponent n that is closer to 4 than to 1. These results 

indicate that the shearing of the quartz veins was primarily accommodated by a 

dislocation creep process rather than a diffusional process. In Fig. 5.1, we compare our 

derived flow law with a range of published flow laws in a plot of temperature versus 

differential stress (see also Fig. 1.1).  

 

 

 
 

In order to make the flow laws comparable, here, no water fugacity was included. 

When compared at the temperature range that was determined for the deformation of the 

quartz veins (400-530° C), Fig. 5.1 shows that the following flow laws result in flow 

strengths that are similar to the ones calculated with our flow law: Jaoul et al. (1984, A, 

C), Kronenberg and Tullis (1984, A), Paterson and Luan (1990, B), Gleason and Tullis 

Fig. 5.1: Temperature-strength diagram illustrating range of flow stresses predicted by some published 
flow laws for quartz in comparison to the flow law derived in this study at a fixed strain rate of 10-14 s-1. 
The grey shaded area covers the range of strengths predicted by the flow law of this study. AE is the pre-
exponential factor in [MPa-n s-1]. GSI: grain-size insensitive creep; GSS: grain-size sensitive creep. When 
compared at 400-530° C (quartz vein deformation temperature), only some published flow laws result in 
differential stresses that are in the range of the flow strengths predicted by ‘our’ flow law (see main text). 
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(1995), and Brodie and Rutter (2000), Hirth et al. (2001). We predict that all other flow 

laws do not represent the rheology of the naturally deformed quartz veins in the 

Southern Alps. 

As a suggestion for future work, (deca)metre-scale modelling of the formation and 

evolution of brittle-ductile shears across several quartz veins (as opposed to only one 

vein like in this study) may provide insight into what rheological factors or processes 

may have controlled the spacing of these shears and the strength of the entire shear 

array. 

 

5.1.4 Reasons for differences in ductility of the quartz veins and implications for shear 

zone localisation 

In Chapter 4, we evaluated factors that could have introduced differences in the 

rheology of the quartz veins prior to their shearing and therefore led to the variable 

ductility (D) of the quartz veins. These factors were calcite fraction in the quartz veins, 

molecular water content, differences in fault slip rate, and potentially variable 

deformation conditions (temperature, stress). We also investigated whether any 

softening or hardening processes had preceded the localisation of the ductile shear zones 

in the quartz veins.  

Using optical microscopy, we measured calcite contents of individual quartz veins 

between 0 and 40%. We could however not determine a systematic scaling of the 

ductile-to-total slip ratio (D) with the calcite fraction of a vein (section 4.6.5). We could 

also not find any evidence for a localisation partitioning into the calcite layers that occur 

in some of the quartz veins. Calcite was therefore discarded as a potential softening 

agent. 

No primary fluid inclusions were observed in the sheared quartz veins via optical 

microscopy. Secondary fluid inclusions occur mostly in form of healed microcracks or 

decorating grain boundaries (Fig. 4.20). The observation of healed microcracks in both 

the deformed and the undeformed part of the sheared veins, led us to infer that 

embrittlement and subsequent healing by fluid ingress had taken place throughout the 

entire veins prior to their ductile shearing and prior to static grain growth. This may 

have led to an inherited weakness of the entire quartz vein with respect to the schist. 

FTIR-analyses of the undeformed parts of 10 quartz veins indicate that water 

contents in the quartz veins ranged from ~440 to ~1500 ppm H/Si on average. There 

was no significant difference in molecular water content between ductilely and brittlely 
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deformed quartz veins, at least as preserved today. However, water is abundant and we 

infer that the veins were wet enough and therefore weak enough for the brittle faults to 

blunt into them and transform into ductile shear zones. The deformed part of the veins 

seems to contain less molecular water, which would be consistent with an initial 

hardening process that we infer from the non-linear relationship between d and dsw. 

We could not confirm changes or differences in the deformation temperatures 

during deformation of the quartz veins, since the resolution of the temperature data was 

not high enough (section 4.6.6.1). 

The results of the laboratory analyses indicate that the rheological composition of 

the quartz veins prior to deformation was very similar and that the quartz veins were 

deformed under similar conditions. We therefore inferred that none of the listed factors 

contributed to the variable D-values from one quartz vein to the next. We could not find 

any evidence for inherited or induced softening or hardening processes that would have 

been necessary for the formation of the ductile shear zones in the quartz veins. We 

conclude that the localisation of the shear zones was imposed by the brittle faults 

impinging on the quartz veins. 

Plots of D-values, thorig, and ytot measured along 5 individual faults revealed that D 

strongly correlates with thorig and that there is an inverse correlation between D and ytot. 

Sometimes these relationships are violated. Displacement-profiles along five individual 

faults revealed that ytot is fluctuating rapidly across short distances along a shear (Fig. 

4.16). This fluctuation was interpreted to indicate that some fault segments moved at 

higher or lower slip rates than others. This may in turn have led to differences in creep 

strain rates in the cross-cutting quartz veins and therefore to variable differential stresses 

from one vein to another and the observed differential D-values. 

Despite the smooth and straight appearance of the faults, slip rates may have varied 

significantly along the faults. The faults may have moved via some kind of rate-and-

state dependent frictional sliding process, thereby affecting the quartz veins through 

varying strain rates. Sliding on the faults, especially at the initiation of shearing, was 

probably not of the stable type. We therefore concluded that fault slip rate was the chief 

controlling factor on the ductility of the quartz veins. 

Although we infer that fault slip rate was a major control on the ductility of the 

quartz veins, we were not able to provide much evidence as to how slip rate may have 

varied from one fault segment of the same fault to another. More mapping with special 

consideration of the composition of the surrounding quartzofeldspathic schist could be 
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useful to determine if, for example, quartz veins in pelitic layers are more or less 

ductilely deformed than in the psammitic layers. 

 

5.2 Conclusions 

From the analysis of macroscopic field observations, microstructural observations, 

FTIR-results, geothermometry, as well as from geological mapping and numerical 

modelling of variably ductilely to brittlely sheared quartz veins embedded in 

quartzofeldspathic host rock exhumed in the central Southern Alps of New Zealand, we 

conclude that: 

a) The deformed shape of a viscous geological marker may only contain information on 

the stress exponent of a viscous flow law if this marker is not surrounded by a stronger, 

brittlely deforming material. 

b) In layered rocks, the shape of a viscously deformed geological marker allows to 

determine viscous-to-frictional strength ratios between the weak and the strong material; 

c) In the presence of a viscously deforming layer, the propagation and bifurcation 

behaviour of a brittle fault across that layer is controlled by the effective viscosity of 

that layer. 

d) Laboratory-derived flow laws can be used to describe the ductile deformation 

behaviour of quartz if the boundary conditions that prevailed during deformation are 

well constrained and if water fugacity is included in the flow law. 

e) The dominant deformation mechanism operative during the deformation of the quartz 

veins investigated in this study was probably power law dislocation creep with a stress 

exponent n  3. 

f) Slip rate along metre-scale faults can vary rapidly along the faults. These variations 

can lead to differences in strain rate and effective viscosity between individual 

geological markers that are cross-cut by the faults. At high strain rates this may lead to 

the brittle failure of the otherwise viscously deforming markers. 

g) A ductile shear zone can form in a homogeneous rock layer without the aid of a 

softening or hardening process. As long as the rock is surrounded by viscously stronger 

or entirely brittle material, the location of ductile shear zone formation is predetermined 

by a propagating brittle fault in that stronger material. 

h) Shear zone width is controlled by the viscous strength ratio between strong and weak 

material and the original thickness of the deformed layer. 
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Appendix A - MATLAB® script for Chapter 2 

 

This appendix contains the MATLAB® script that enables one to project outcrop 

coordinates of deformed geological markers into the movement plane. The script 

consists of two separate M-files (‘projection.m’ and ‘dircosA.m’). ‘projection.m’ 

automatically calls ‘dircosA.m’. To run the code, type projection in the MATLAB® 

command window. The program will open a window which lets the user choose the file 

that contains xoc-yoc data from the outcrop. The chosen file must be a tab-separated *.txt 

file with the xoc coordinates in the first column and the yoc coordinates in the second 

column. Once the script has read the *.txt file, it prompts the user to input the geological 

attitudes (right-hand-rule) necessary for the conversion of the outcrop data into the 

movement plane of the fault. It then asks the user to save the projected coordinates in a 

*.txt file and creates a figure with the new coordinates. 

 

Script ‘projection.m’: 

% ------------------projection.m--------------------------------------
----- 
% 02 July 2007, Susanne Grigull, Victoria University of Wellington, 

New 
% Zealand, School of Geography, Environment and Earth Sciences 
% --------------------------------------------------------------------
----- 
% This program converts digitised outcrop coordinates into 

geographical 
% coordinates 
% To call run this program type: projection 
% --------------------------------------------------------------------
----- 
% 
clear 
% read digitised outcrop x-y data from txt-file; txt-file must be 
% tab-separated and may only contain two columns 
[filename,pathname]=uigetfile('*.*','Select data file') 
data=dlmread(filename); 
third_column=zeros(size(data,1),1) 
data=[data third_column] 
% run subroutine dircosA that converts orientation measurements to 
% direction cosines 
run dircosA;                 
geoA=[xOC yOC zOC];         % matrix describing outcrop coordinate 

system 
PGEO=(geoA*data(:,:)')';    % cf. Eq. 2.1b 
% 
%---------------------------------------------------------------------
----- 
% the following part of the script calulates 'lambda', the scalar 
parameter 
% in Eqs. 2.5 and 2.6 of the projection line; the actual projected 
% coordinates are also calculated 
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%---------------------------------------------------------------------
----- 
% 
lambda = (-((m' * (PGEO(:,:))' )/(m' * v)))'; % Eq. 2.6 
PPROJ = PGEO + (lambda * v');   % projection process (Eq. 2.7) 
% 
%---------------------------------------------------------------------

----- 
% the following steps include the rotations that lead to the plan view 

of 
% the m-plane (Eq. 2.8c) 
%---------------------------------------------------------------------

----- 
  
psi=(90-strike_m)*(pi/180);  % angle for rotation about the z-axis 
phi=(-dip_m)*(pi/180);       % angle for rotation about the y-axis 
  
PPLANX=(PPROJ(:,1)*cos(psi)-
PPROJ(:,2)*sin(psi))*cos(phi)+PPROJ(:,3)*sin(phi); 
PPLANY=PPROJ(:,1)*sin(psi)+PPROJ(:,2)*cos(psi); 
PPLANZ=-(PPROJ(:,1)*cos(psi)-
PPROJ(:,2)*sin(psi))*sin(phi)+PPROJ(:,3)*cos(phi); 
  
PPLAN=[PPLANX PPLANY PPLANZ]; 
  
%---------------------------------------------------------------------
----- 
% the following part of the code first calculates the rotation of the 

trace 
% of the fault on the m-plane to horizontal (Eq. 2.9), then it 

calculates 
% the angle 'delta' between the now horizontal fault trace and North 
% (1,0,0). 'delta' is needed for the rotation of the horizontal m-

plane to 
% a position where the fault traces on the m-plane all become parallel 

to 
% one another. This script part also includes the final rotation by 
delta 
% about the vertical zg-axis. 
%---------------------------------------------------------------------

----- 
  
TPLANX=(trace(1)*cos(psi)-

trace(2)*sin(psi))*cos(phi)+trace(3)*sin(phi); 
TPLANY=trace(1)*sin(psi)+trace(2)*cos(psi); 
TPLANZ=-(trace(1)*cos(psi)-

trace(2)*sin(psi))*sin(phi)+trace(3)*cos(phi); 
  
TPLAN=[TPLANX TPLANY TPLANZ]; 
  
NORTH=[1 0 0]; 
  
delta=acos(dot(NORTH,TPLAN)); 
if TPLANY > 0 
    delta=-delta 
else 
    delta=delta 
end 
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PFINX=PPLAN(:,1)*cos(delta)-PPLAN(:,2)*sin(delta); 
PFINY=PPLAN(:,1)*sin(delta)+PPLAN(:,2)*cos(delta); 
PFINZ=PPLANZ; 
  
PFIN=[PFINX PFINY PFINZ]; 
  
% plotting and saving commands 
plot(PFINY,PFINX,'+','MarkerSize',10); 
axis square 
hold 
[filename,pathname]=uiputfile('*.txt','Save projected coordinates'); 
dlmwrite(filename,PFIN,'delimiter','\t','precision','%.2f%'); 
  
 

Script ‘dircosA.m’: 
 
% ------------- dircosA.m ---------------------------------------- 
% the first part of this file calculates the direction cosines of the 
poles 
% to the outcrop, fault plane, marker vein, and of the slip lineation 
% --------------------------------------------------------------------
----- 
% 02 July 2007, Susanne Grigull, Victoria University of Wellington, 
New 
% Zealand, School of Geography, Environment and Earth Sciences 
% --------------------------------------------------------------------
----- 
% 
% enter all necessary data when asked 
% 
omegaOC=input('outcrop strike: '); 
while (omegaOC < 0.0) | (omegaOC > 360.0) 
    disp('strike must be positive and =<360.0!!'); 
    omegaOC=input('outcrop strike: '); 
end 
thetaOC=input('outcrop dip: '); 
while (thetaOC < 0.0) | (thetaOC > 360.0) 
    disp('dip must be positive and =<90.0!!'); 
    thetaOC=input('outcrop dip: '); 
end 
omegaFP=input('fault strike: '); 
while (omegaFP < 0.0) | (omegaFP > 360.0) 
    disp('strike must be positive and =<360.0!!'); 
    omegaFP=input('fault strike: '); 
end 
thetaFP=input('fault dip: '); 
while (thetaFP < 0.0) | (thetaFP > 360.0) 
    disp('dip must be positive and =<90.0!!'); 
    thetaFP=input('fault dip: '); 
end 
omegaMV=input('marker strike: '); 
while (omegaMV < 0.0) | (omegaMV > 360.0) 
    disp('strike must be positive and =<360.0!!'); 
    omegaMV=input('marker strike: '); 
end 
thetaMV=input('marker dip: '); 
while (thetaMV < 0.0) | (thetaMV > 360.0) 
    disp('dip must be positive and =<90.0!!'); 
    thetaMV=input('marker dip: '); 
end 
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etaSL=input('slip vector trend: '); 
while (etaSL < 0.0) | (etaSL > 360.0) 
    disp('trend must be positive and =<90.0!!'); 
    etaSL=input('slip vector trend: '); 
end 
epsilonSL=input('slip vector plunge: '); 
while (epsilonSL < 0.0) | (epsilonSL > 360.0) 
    disp('plunge must be positive and =<90.0!!'); 
    epsilonSL=input('slip vector plunge: '); 
end 
  
zOC1=sin(omegaOC*pi/180)*sin(thetaOC*pi/180); 
zOC2=-cos(omegaOC*pi/180)*sin(thetaOC*pi/180); 
zOC3=cos(thetaOC*pi/180); 
zOC=[zOC1;zOC2;zOC3]; 
  
xFP=sin(omegaFP*pi/180)*sin(thetaFP*pi/180); 
yFP=-cos(omegaFP*pi/180)*sin(thetaFP*pi/180); 
zFP=cos(thetaFP*pi/180); 
FP=[xFP;yFP;zFP]; 
  
xMV=sin(omegaMV*pi/180)*sin(thetaMV*pi/180); 
yMV=-cos(omegaMV*pi/180)*sin(thetaMV*pi/180); 
zMV=cos(thetaMV*pi/180); 
MV=[xMV;yMV;zMV]; 
  
xSL=cos(etaSL*pi/180)*cos(epsilonSL*pi/180); 
ySL=sin(etaSL*pi/180)*cos(epsilonSL*pi/180); 
zSL=sin(epsilonSL*pi/180); 
SL=[xSL;ySL;zSL]; 
  
% --------------------------------------------------------------------
----- 
% this part of the file calculates the cross products that lead to 
% the unit vectors and their vector components parallel to the axes of 
the 
% outcrop coordinate system 
% --------------------------------------------------------------------

----- 
  
xOC=cross(zOC,FP); 
if xOC(3,1) < 0 
    xOC=-xOC./norm(xOC); 
else 
    xOC=xOC./norm(xOC); 
end 
yOC=cross(zOC,xOC); 
zOC=zOC; 
  
% --------------------------------------------------------------------
----- 
% this part of the file calculates the cross products that lead to 
% the projection vector v and the direction cosines of the pole to the 
% movement plane. The strike and dip of the m-plane are also 

calculated. 
% --------------------------------------------------------------------

----- 
  
v=cross(FP,MV); 
v=v./norm(v); 
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m=cross(SL,FP); 
if m(3,1) < 0 
    m=-m./norm(m); 
else 
    m=m./norm(m); 
end 
% vector components of pole to m-plane: 
xm=m(1,1); 
ym=m(2,1); 
zm=m(3,1); 
  
% trend and plunge of pole to m-plane: 
mju=(180/pi)*atan(ym/xm); 
if xm == 0 
    mju=sign(ym)*90; 
elseif xm < 0 
    mju=(180/pi)*atan(ym/xm)+180; 
elseif atan(ym/xm) < 0 
    mju=(180/pi)*atan(ym/xm)+360; 
else 
    mju=(180/pi)*atan(ym/xm); 
end 
  
rho=(180/pi)*atan(zm/sqrt(xm^2+ym^2)); 
if (sqrt(xm^2+ym^2)) == 0 
    rho=sign(zm)*90; 
else 
    rho=rho; 
end 
  
if (rho < 0) & (mju+180 > 360) 
    mju=mju-180; 
elseif (rho < 0) & (mju+180 < 360) 
    mju=mju+180; 
else 
    mju=mju; 
    rho=abs(rho); 
end 
  
% strike and dip of movement-plane 
strike_m=mju+90; 
if (90+mju) > 360 
    strike_m=mju-270 
else 
    strike_m=strike_m 
end 
dip_m=90-rho 
  
%---------------------------------------------------------------------
----- 
% this part of the file calculates the intersection between the m-
plane and 
% the fault plane; this is needed later on to calculate the angle 
'delta' 
% for the last rotation 
%---------------------------------------------------------------------
----- 
  
trace=cross(m,FP) 
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if trace(3,1) < 0 
    trace=-trace./norm(trace) 
else 
    trace=trace./norm(trace) 
end 
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Appendix B – Benchmark our code vs. Abaqus/Standard 

 

Our code has been tested against several standard visco-plastic benchmark 

problems. In addition, we have tested vein deformation problems using our code against 

the commercial code Abaqus (version 6.7, Simulia). Since Abaqus/Standard is a 

Lagrangian code with limited remeshing facilities, it is unable to handle the extremely 

large strains generated by the deforming quartz veins in an accurate fashion. Despite 

this limitation, Abaqus incorporates elastic as well as visco-plastic rheologies and has 

been rigorously tested against many engineering and analytical problems, and so 

provides a useful benchmark for the initial stages of deformation. 

 

Appendix B.1 – Model setup 

We set up the same model in both codes (see also model setup in Chapter 3). The 

model dimensions are 10 x 10 cm and a 1 cm thick horizontal quartz vein is embedded 

in the model. For both codes, we choose initially square elements with side dimensions 

of 1 mm, giving a total mesh of 100 x 100 elements. We imposed four tracers per 

element in the visco-plastic code leading to a total of 40,000 tracers in the model. For 

the Abaqus models, we used plane strain elements with four integration points. 

Velocity boundary conditions are prescribed on all edges of the model, so that the 

left half is moving upwards and the right half downwards. We prescribed a 2 mm wide 

zone (initial fault) in the middle of the top and bottom edges in which the displacement 

rates change from left to right via a sinusoidal function, in order to prevent the build-up 

of sharp corners and hence avoid convergence problems in Abaqus/Standard. We used 

the flow law for viscous creep from Hirth et al. (2001) with a water fugacity of 200 

MPa. We translated the experimental pre-exponential factors into our model parameters 

according to Appendices 3.C. The frictional yield stress is defined in terms of the 

maximum differential stress and is set to 150 MPa (giving a maximum shear stress maxτ  

of 75 MPa) in both materials. Plastic strain softening is included in the schist in order to 

achieve strain localisation (Appendix 3.B). We used a competence contrast of 10 in the 

models, meaning that the effective viscosity of the schist is an order of magnitude 

higher than the effective viscosity of the quartz. Since the Abaqus models also require 

elastic material properties, we chose a Young’s modulus of 30 GPa and a Poisson’s 

ratio of 0.26 for both materials. 
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We ran the models at two different velocities: a) 7.9 x 10-12 m/sec (0.25 mm/yr), 

and b) 7.9 x 10-14 m/sec (0.0025 mm/yr) on either side of the model. At the same 

amount of offset, we then compared the following output results: vein shape, 

differential stress, frictional yield, shear strain rate, accumulated plastic strain, and 

accumulated creep strain. 

 

a) Vein shape after deformation 

We compared the resulting vein shapes of both codes at a total offset of 25 mm. 

For both velocities, the resulting vein shapes for the two codes are reasonably similar 

(Fig. B.1a). For the fastest high velocity (Fig. B.1a) both codes predict a sharply 

displaced quartz vein localised on the shear zone. Our visco-plastic code shows some 

“granularity” resulting from the limited tracer resolution. In our code, the vein loses 

coherence in the middle, whereas in the Lagrangian Abaqus models, it is continuous. At 

the slow displacement rate (Fig. B.1a), both codes predict a less localised shear zone 

and a smooth vein shape. In both codes, the quartz vein is strongly thinned out in the 

middle of the shear zone, but is still coherent. 

 

b) Differential stress 

At a total offset of 25 mm, the overall contour pattern of the differential stress is 

similar for both codes (Fig B.1b). Within the fault zone in the model schist, the stress 

values of our code match those of the Abaqus model.  

In the models with the fast velocity, there is a difference in the stress contours in 

the “brittlely” sheared part of the quartz vein: the Abaqus models still show stress 

values of 150 MPa, whereas the stresses in an equivalent location in our code have 

lower values. This is due to our code averaging material properties in each element to 

reflect dominant tracer properties, whereas the material properties in Abaqus are 

advected with the deforming finite elements. This means that once a material property 

has been assigned to an element in Abaqus, it will not change, i.e. if the assigned yield 

strength of the quartz elements has been reached, the differential yield stress will stay at 

the yield value (150 MPa), since there is no strain softening in the quartz. In contrast, 

since the tracer densities can vary in our code, the quartz tracers become thinned out and 

eventually overwhelmed. Once the frictional yield for the quartz vein has been reached, 

the quartz in our code does not flow ductilely any more in this area, and if shearing 
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continues, quartz tracers are dispersed, the vein rips off, and the Eulerian elements adopt 

schist material properties. 

 

c) Frictional yield 

The frictional yield flag shows where elements in the model have reached the 

assigned plastic yield strength (although, this does not necessarily mean that these 

elements are accumulating plastic strain). Both models in both codes yield along the 

fault in the schist (Fig. B.1c). In the faster model, the quartz yields as well, i.e. the vein 

deforms brittlely. The fast displacement case shows a widening of the “yielding zone” 

in both codes. However, the zone widens slightly more in the Abaqus models, possibly 

due to the high distortion of the elements at 25 mm offset. When compared at an offset 

of 2.5 mm, both codes show approximately the same frictional yield width (Fig. B.1c).  

 

d) Shear strain rates 

At 2.5 mm offset within or near the quartz vein, both codes show the same values 

for the shear strain rates for both model velocities. 

In the schist material, at an offset of 2.5 mm, our code seems to produce slightly 

slower strain rates than Abaqus/Standard (factor of less than 2). This is due to the 

Abaqus models localising onto a slightly narrower fault zone in the schist compared to 

our models at this stage, so that the strain rates are more concentrated on fewer elements. 

If compared at 25 mm, the strain rates in both the schist and the quartz material are 

almost the same (Fig. B.1d). 

 

e) Accumulated strains 

Due to the slightly more localised strain rates in the Abaqus models, they 

accumulate slightly higher strains over the same amount of time compared to our code. 

However, the plastic strain values for the faster model are very similar for both codes 

(Fig. B.1e). 

For the accumulated creep strain, the slow model provides the best match (Fig. 

B.1f). Here, both quartz and schist creep viscously. Agreement at faster velocities is not 

so good; this is because the elements in Abaqus can both fail plastically and creep 

viscously at the same time, whereas our code only features either plastic or viscous 

behaviour. 
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Despite minor discrepancies, based on this small benchmark, we conclude that our 

code is very suitable for the modelling purposes of this paper. It produces modelling 

results that are very similar to the ones produced by Abaqus/Standard. In addition, our 

code significantly reduces CPU time (Abaqus: days, our code: hours). 

Fig. B.1 (previous page): Benchmark comparison of our code with the commercial code Abaqus 
(Simulia) and at a fast velocity (0.25 mm/yr) and a slow velocity (0.0025 mm/yr) at 25 mm displacement. 
a) resulting vein shape; b) differential stress; c) frictional yield (red: yielding, blue: not yielding); d) shear 
strain rate; e) accumulated plastic strain; f) accumulated creep strain. 


