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Abstract

I consider the problem of water usage, developing a model to analyze the optimal
pricing of water within a second-best economy. Consumers are assumed to have two
main needs for water—drinking and non-drinking. Water is also used to produce food:
The agricultural sector has a derived demand for water. As a water supplier, the
local government may price discriminate across consumers and farmers. I introduce
the second-best pricing scheme, derive conditions for the marginal-cost pricing and
inverse-elasticity rules to apply, and analyze when it is optimal for the government to
optimally deviate from these two pricing schemes.
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1 Introduction

About seventy percent of water withdrawals in all OECD countries are by agriculture.
As water becomes relatively scarce, government protection through subsidization of the
agricultural sector has become increasingly questionable. Irrigation water does not only
affect other agricultural input demands (such as capital, fertilizers, and labor), but it also
has implications for the composition of agricultural output. Furthermore, inefficient use
of water by the agricultural sector may cause overuse of water as well as water pollution,
which is a problem in both developed and developing countries. In figure M, I illustrate
sectoral water prices in several OECD countries in late 1990s. The agricultural sector paid
substantially less than industry and households; specifically, the ratio is around one percent;
see the OECD [, 13, 4]. For example, on average, farmers in the United States pay about
$0.05 per cubic meter, while households pay around $1.25 per cubic meter. In France, these
prices are $0.08 and $3.11 per cubic meter, respectively. Finally, in Spain, on average, farmers
pay $0.07 per cubic meter whereas households pay $1.07 per cubic meter. In some countries
(including Italy, Japan, and Turkey), marginal cost of using an additional unit of irrigation
water equals zero, because of non-volumetric pricing schemes. Part of the difference between
tap and irrigation prices can result from quality of water provided to these sectors. For
example, households and industries may require pressurized water, whereas the agricultural
sector does not require a high quality of water. However, one would not expect the effect of
differences in quality to be this much.

Putting cost differences aside, another factor is government protection of the agricultural
sector. Subsidizing the agricultural sector can result in inefficiencies such as overuse of water
consumption and water pollution, and without government protection, marginal-cost pricing
implies equal prices across sectors which use water from the same reservoir. In the water
literature, nonetheless, the main focus has mostly been on analyzing the market frictions
and the resulting pricing schemes. Some authors have worked on the estimation of tap
water demand, including Gaudin, Griffin, and Sickles [[4], Kim [}, and irrigation water
demand, including Iglesias, Garrido, and Gémez-Ramos [[0], Appels, Douglas, and Dwyer
[M], de Fraiture and Perry [d]. However, different sectors may often use water from the same
reservoir, so analyzing the optimal pricing of water in one sector, while ignoring the changes
in the demand by another sector, may have implications for the policy suggestions. For
this reason, sectoral water prices are usually interconnected through a resource constraint.
To account for multiple uses of water and to choose optimal prices simultaneously, some
researchers (such as Diakité, Semenov, and Thomas [5], Garcia and Reynaud [6], Griffin [R])

have employed a static Ramsey pricing scheme. However, the intertemporal allocation of
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Figure 1: Water Prices for Different Sectors in OECD Countries

water may have important effects on the second-best water prices, as low volume of water
can make the resource constraint tighter and cause increase in water price(s). Finally, the
dynamic water reservoir management has been an important factor in water pricing; see
Castelletti, Pianosi, and Soncini-Sessa [3], Howitt, Msangi, Reynaud, and Knapp [9], Schuck
and Green [I6]. However, dynamic water reservoir management mostly fails to consider
multiple uses of water, as in Schuck and Green [I6], or a government revenue constraint, as
in Howitt, Msangi, Reynaud, and Knapp [9].

In this paper, I incorporate both dynamic resource and revenue constraints to attempt
to explain why the observed pricing schemes may differ from marginal-cost pricing. I do
not attempt to explain each of the many pricing schemes, but rather I concentrate on a
commonly-observed pricing scheme: two-sector pricing. To investigate this price discrimi-
nation problem, I set up a simple model in which a water supplier, which I shall refer to
as the (local) government, charges different customer groups different prices. I construct a
partial-equilibrium model where both domestic households and agricultural producers de-
mand water. The government seeks to maximize net social welfare of the economy, subject
to both dynamic resource and revenue constraints. The government achieves its goal through
price discrimination between domestic demand, which is the demand by households, and agri-
cultural demand. Also, I ignore any government protection toward agriculture. Nonetheless,

in an illustrative example, I showed that in the optimal allocation, the agriculture, which I



assumed to have a relatively less inelastic demand, may be charged a lower price than what
the households pay. This is because when water scarcity is severe enough, the dynamic re-
source constraint becomes dominant and the government’s water allocation problem changes
from a Ramsey pricing problem to a resource allocation problem with no revenue constraint.
Also, since the households can shift part of their income to other commodities as a response
to higher water price(s), the marginal-cost pricing is not necessarily optimal. Consequently,
the optimal pricing rule can be quite different from marginal-cost pricing or Ramsey pricing
schemes, implied by the inverse elasticity rule.

This paper is in four more parts: In the next section, I provide a brief summary of the use
of the Ramsey pricing on the water literature, while in section 3, I introduce the model. In
section 4, I analyze the dynamic Ramsey pricing problem of the local government. Then, I
focus on the static problem to analyze prices, derive conditions that make two-sector pricing
efficient, and present a numerical example for an assumed objective function, a cost function,
and constraints. Finally, I shall discuss the qualitative results of my paper in light of the

inverse elasticity rule. I summarize and conclude the paper in section 5.

2 Model

In my model, water can be used for domestic and irrigation purposes. Domestic demand
has two parts—drinking water and other uses of water, the second of which I shall refer to
as bathing water. These are supplied from the same tap, so the two different uses cannot
be priced differently. Drinking water is, however, more important than bathing water, but
charging a sufficiently low price for drinking water may result in an “overuse” of bathing
water. Agricultural output is as important to well-being as drinking water. Thus, charging
low prices for agriculture and high prices for tap water is a solution which avoids the need
to monitor bathing-water usage, while still providing for basic needs.

For simplicity, the following scenario may be useful: a representative agent has two taps
that provide water. One tap provides water for drinking and bathing purposes, while the
second tap can only be used for food production. As I shall discuss below, these three water

uses are valued differently.

2.1 Households

Suppose households have a fixed income I in every period and do not save. Income is
completely spent on three commodities—food f, tap water w;, and a consumption good ¥y

which represents all other commodities except food and water. Tap water can be used for



drinking and non-drinking purposes. Drinking use represents the necessary uses of water,
while non-drinking use, which I shall refer to as bathing water, is associated with all other
uses of water except drinking water™.

With their income, households purchase food and consumption good as well as tap water.
The prices of food and tap water are denoted by p; and p;, respectively. I assume that all
the prices and income are in terms of the price of the composite good. The price of food may
vary because water is used in agricultural production, and there it may have a different price.
I shall discuss this in the agricultural-production section. Moreover, the reason why drinking
and bathing water have the same price is that both are tap water. Even when drinking and
bathing water are different commodities, they typically cannot be priced differently because
they come out of the “same” tap. Thus, the price of drinking water and bathing water are

assumed to be equal. The household’s budget constraint then is

pow+pp fHy=1 (2.1)

At this point, I do not assume specific preferences for the per-period utility function,
except to assume that preferences are locally non-satiated and strictly concave. Let wqy
and wio denote drinking and bathing water, respectively, and their sum equals the total
tap water use w;. The utility-maximization problem of the representative agent is a static

maximization problem:

max  U(f, w1, wia,y)
<fowi1,wi2,y>

> (win +wie) +pp fHy=1.

By solving the optimization problem, one can derive the indirect utility function Y(-),

and the Marshallian demands as a function prices and income (P, I).

2.2 Producers

Producers are farmers who require water to produce food. Farmers demand irrigation
water wq at its price py, which may be different from the price of tap water p;, because the
government may set different prices for different sectors. Note that, in this model, no quality

differences exist between irrigation water and tap water, so I shall assume that the cost of

'In some countries, such as Italy, drinking and bathing water are priced differently. There, this problem
does not arise.



supplying tap and irrigation water are the same?.

As the price of irrigation water changes, producers determine how much inputs to em-
ploy and how much to produce. I assume perfect competition in agricultural markets, so
maximized profits are zero in equilibrium. Land is taken as fixed, and consumers are as-
sumed to supply labor inelastically. Agricultural production is assumed to follow constant

returns-to-scale (CRS), having the following production technology:
f=f(ws) =K wq, kK>0. (2.2)
A representative agricultural firm’s profit maximization problem becomes:

max H(ws; py,p2) = max prf(ws) — paws.

Three points are worth noting: first, since the market is competitive, the price of food equals
the marginal cost of producing food, so ps equals (ps/k). Second, the equilibrium profits
will be driven to zero. Finally, since equilibrium profits are zero, the volume of water used
as input is found from the Marshallian demand for food. This means that ws equals (f/k).

In other words, the agricultural sector has a derived demand for water.

2.3 Government

I assume that the government manages water supply and provides water to consumers
and producers. This assumption is reasonable as it is estimated that less than ten percent
of the world’s population is provided drinking water through private sector services; see the
OECD [15]. In each period, the government is responsible for supplying water and taxing
consumers as well as the agricultural sector. It does so by choosing the price of tap water,
p1, and of irrigation water, p,. The two water prices may be equal, when the government
prefers to charge both sectors the same price, or they may be different, when the government
price discriminates across the two sectors.

The government seeks to maximize the net social welfare of households and producers.
Since profits in the agricultural sector are zero in equilibrium, the only component of the
government’s objective function is the indirect utility function of the households. The in-
direct utility function is taken as a criterion function for the maximization problem. The
government has to satisfy two constraints. The first constraint is that it must collect enough
tax revenues to fund supplying water; i.e., it must generate enough revenue to cover fixed

capital investment, operating and maintenance costs of the water supply. In doing this, the

2Even though this assumption is not critical, it is useful to compare the two water prices.



government may choose to invest in purchasing bonds b;,1, which has a fixed return r. The
second constraint on the government involves intertemporal resource allocation of water.
Specifically, it must decide how much water to save for the future.

The optimization problem faced by the government is to maximize the net social welfare
in the economy subject to the resource constraint as well as raising revenues. In this respect,
I shall refer to this problem as the Ramsey problem. That the government must collect
revenues to cover its costs introduces a distortion in the economy. However, even without
this distortion, it is not necessarily the case that the solution to this problem is no price
discrimination, in which both domestic households and agricultural producers are charged the
same price. Let Py represents the vector of water prices (pys, p2r). The water prices depend
on the current water stock and the amount of bonds at time ¢. Within this framework, the

stochastic version of the Ramsey problem is as follows®:

max & [i BT (Py; 1) (2.3a)
t=0

D pu Wi + Par wop — W (wyy + way) + by > T 47 by, (2.3b)
wyy1 < St (wy, By) — (wy + way) (2.3¢)

pfe = pat/K; (2.3d)
W11t Wige, Wat, Wiy 2> 0, (2.3e)

Wi = Wi + Wiz, (2.3f)

wp is given (2.3g)

where the water quantities {w11¢, wias, wor b depend on (Py; I), due to the consumer and
producer optimization problems. The parameter 7 denotes the fixed cost of production.
The available water stock at time ¢, denoted by S; (wy, E;), depends on both the water
saved from previous period and a random shock F; which may follow a specific, stochastic
Markovian process. The available stock may also be limited by capacity constraint. Under
the assumption that there are no quality differences among different water uses, the cost of

water, denoted by W (.), is a function of only the total withdrawals®.

3Note that the water supplier in this problem may tax more than 7 in order to discourage water use,
thus ensuring a larger stock in the future. What is done with this surplus in tax revenue is currently not
modeled.

4Since this is a surface water management problem, there are no abstraction costs that depend on the
water stock or the elevation.



3 Analysis

The Ramsey problem stated in the previous section is a two-stage maximization problem.
In the first stage, the government chooses w;, 1 and b; 1 optimally; the rest of the water supply
will be released for sectors in the current period. In the second stage, the government chooses
the two water prices optimally for efficient use of water by the sectors. Since the focus of
this paper is on the differential prices, analyzing the prices in the static setup is sufficient.
Hence, I assume that the government chooses w;,; and b, optimally, and I will focus on
the static version of the problem where the government chooses the water prices given the
water supply and the fixed cost®. Suppose that the government collects the revenue from
selling water and does not use the money for any purposes. In this case, households have no
other income source than their per-period income. Thus, their budget constraint is given in
equation (E1).

3.1 Analysis with Resource Constraint

First, I shall focus on the resource constraint and thus, I shall ignore the revenue con-
straint in this first part of the analysis. The static version of the dynamic Ramsey problem

becomes:

max L (P;I) (3.1a)
<p1(w),p2(w)>

S wi(P; 1) + wa(P; 1) = WD(P; ) < 1, (3.1b)

wy(P; T), wa (P ) > 0, (3.1¢)

pr = p2/K; (3.1d)

f(P; 1) = kwe(P; 1) (3.1e)

where WD denotes the total withdrawals from the water stock, and w is the available

water supply. For notational simplicity, I shall continue with the following notation:

Let A and 6 be the Lagrange multipliers on the resource constraint and the budget
constraint of households, respectively. Note that the budget constraint is not given in the

maximization problem since using Marshallian demands and the indirect utility function will

°T abuse the notation here and denote the fixed cost in the static problem by 7. The fixed cost in the
static version in fact equals the fixed cost plus (r by — by11).



make the budget constraint hold. The economic interpretations of A and ¢ are the marginal
value of water and marginal utility of income, respectively. The Lagrange multiplier  can
be ignored through normalization, so I shall interpret the ratio (A\/d) as the marginal value

of water. The first order conditions (henceforth, FOCs) of the static Ramsey problem are

oY (-, 1) owy (-, 1) Ows(+, 1) oy(-, 1)
=MU,—————=+ MUy——————= + MU
om ! Op ? Op Y Opr
) {0w1<-,f> awac,n}
p; Op
=MU|————+ MUy——————= + MU
Opa ' Opa ? Ipa Y dpa
3w1(-,l) 8w2(71)]
=\ +
[ Opa Opa

where MU, is the marginal utility with respect to commodity 7. Note that the first
components of the partial derivative of the indirect utility function with respect to the two

water prices equal:

8w1(-,1) _ MU118w11(~,I) i MU128’LU12(‘,I)
Op; Op; Ip;

The solution to household’s utility-maximization problem requires that the marginal

MU, Vi=1,2.

utility of a water use equals its price. Using this property, one can rewrite the FOCs in the

following way:

A Ows (-, 1) /O y(-,1)/0p:
3 =p1 + (P2 _pl)OWD(-,[)/ﬁpl oWD(-. 1) /op, (3.2a)
=p2 + (p1 — p2) Own(:,1)/Op: Oy, 1)/ O (3.2b)

OWD(-,1)/dps  OWD(-,1)/0py’

To see the relationship between the two water prices, I derive a condition that follows
from the two prices being equal. Assuming that equal prices solve these FOCs, the FOCs

can be simplified to

oA oy D/opr A 0y(,1)/0ps
== S T WD D)o 6 OWD(-1)/dps

where (A\/6) is the marginal value of water. Notice that, without a composite good, equal

sectoral water prices would solve the system of equations, so the optimal pricing scheme



would be the marginal-cost pricing rule. Thus, including a non-water-related commodity is
crucial here to ensure that income spent by the consumers on water and food changes with
the water prices. Nonetheless, it is still possible to have the two water prices equal, if the
following condition is met:

ay/apl . 5’WD/6’p1 €y1  €WD1

dy/Ops N OWD [Op, €y2  €EWD;2

where ewp,; and €,; denote the elasticity of total withdrawals and the composite good
with respect to the water price p;, for i = 1, 2, respectively. The condition above implies that
the two-sector pricing policy and the marginal-cost pricing rule coincide, and it is interpreted
in the following way: the local government sets p; equal to ps, as long as the ratio of the price
elasticity of y with respect to p; and ps equals the ratio of elasticity of total withdrawals
with respect to p; and po, at the optimum. The last terms on the right-hand side of both
FOCs in equations (B3); i.e., the change in the consumption good with respect to changes in
the water prices, leads to this condition. If the consumption good is unaffected by the water
prices, then changing water prices will have no effect on the consumption good, and water
prices could be set equal to the marginal value of water. Since I assume that the consumption
good is a substitute (or a complement) of water-related commodities, the consumption good
changes with at least one of the water prices.

It is important to note that the inverse-elasticity rule, described in Baumol and Bradford
[2], does not necessarily apply in this case. Specifically, although households are assumed
to have relatively more elastic demand for water, they may be charged a higher price than
the agricultural producers. To see the intuition behind this, consider the situation: First,
suppose that there is no consumption good. Further assume that the cross-price elasticities
of different water uses are zero and that households have a relatively more elastic demand
for water than the agricultural producers do. If the government aims to maximize utility
subject to only the revenue constraint, households would pay a lower price, because of the
inverse-elasticity rule; i.e., enough revenue can be generated by charging a higher price for
the relatively less elastic demand. With only the resource constraint, the government would
adopt marginal-cost pricing rule; i.e., both sectors are charged the same price which is the
marginal value of water. As a result, without any consumption good, the revenue constraint
would imply inverse-elasticity rule, while the resource constraint would lead to marginal-cost
pricing rule.

Suppose now that households can also purchase a non-water-related commodity; i.e., a
composite good non-taxable by the local government. Further assume that the consumption

good is affected only by the price of tap water, and unaffected by the price of irrigation

10



water. In this case, the water supplier prefers to charge a higher price to households. This
is because, in the absence of the consumption good, enough revenue may be generated
by setting p; higher than p,, but at a larger cost, which means less utility than optimal.
However, utility may now be maximized by setting p; higher than py since increasing p;
also increases the demand for the consumption good. In other words, more income can
be allocated to the consumption good. As an optimal solution, the water supplier prefers
to allocate as much income as possible for the consumption good, which is equivalent to
collecting as less revenue as possible. Thus, it charges more to the households who have a
relatively more elastic demand than the agricultural producers, and it still generates enough
revenue to cover costs. Although this result contrasts with the inverse-elasticity rule and the
second-best pricing scheme, it may explain why it is observed that households pay a higher
price for water consumption than the agricultural producers although the demand for tap

water is usually predicted to be more elastic.

3.2 Analysis with Both Constraints

The corresponding Ramsey problem with both constraints becomes

<p1<g§%§(w>>T<P; ) (3.30)
S wi (P 1) + ws(P; 1) = WD(P; 1) < 1, (3.3b)

pwy(P; 1) + powa(P; 1) > & (WD(P; 1)) + 7, (3.3¢)

wi(P; 1), we(P; 1) >0, (3.3d)

P = p2/K, (3.3e)

f(P; 1) = rwe(P; I). (3.3f)

Let © and A be the Lagrange multipliers on the revenue and the resource constraints,
respectively. Using the households’ budget constraint, the revenue constraint (B=3d) can be

written as:

WD(P;I) < &' (I — 7 — y(P; 1)) (3.4)

where the function ®~1(.) is the inverse of the cost function®.

The FOCs lead to the following necessary condition:

50ne can find the inverse of a cost function since for any cost level, there is a corresponding production
level and also not two different production levels can lead to the same cost level.

11



1 e
1 [M% (I-t=y) _ ()\_i_u)aavglp]

1 — w1 Ip1
T D1 (I—7—y) dWD
w—2[ﬂ Ip2 y—()\—l—,u)am]

where the FOCs declare that both the numerator and the denominator in the right-hand-
side (henceforth, RHS) equal —§, which is the negative of the marginal value of income.
Although it is unclear from the FOCs which constraint will bind, if not both, one can

divide the solution into three regions:

3.2.1 Region 1: No Water Scarcity

Assume that the water supply is abundant (w — +o00). In this case, one can ignore
the resource constraint. The solution to the problem is unique, and the revenue constraint
is binding, while the resource constraint is irrelevant. Without loss of generality, denote
this solution by {pi*,p3*} , so { WD* y**}. As long as the water supply is above the total
withdrawals at the optimum; i.e., w** equals WD, the solution stays the same, so do the
prices. This is also the solution to the static Ramsey problem with no resource constraint;

so the inverse-elasticity rule should apply.

3.2.2 Region 2: Water Scarcity

Assume that the water supply is quite low. In this case, the solution for prices {p}*, p5*}
in region 1 does not satisfy the resource constraint, so the water prices should adjust to
make the resource constraint hold. Denote the new optimum by {p (@), p,(w)} , and so
{WD'(w),y'(w)}, which would depend on the water supply. In this new solution, the total
withdrawals are lower. As long as the profits are above zero, the revenue constraint should
become slack in this new optimum. As the water supply gets enormously scarce (w — 0),
the resource constraint will be a much stronger factor, and the price changes will be more
drastic. It is noteworthy that the solution is derived according to the FOCs presented in

equation (B22), so water prices may exceed one another, depending on the parameter values.

3.2.3 Region 3

It is possible that both constraints bind at the optimum for a connected interval of w.
The lower and upper bounds of this middle region, [w*, @w**], can be found in the following

way:

12



w* =max {ﬁ) | WD(P) < ! <I -7 — y(15)> P = argmax Y(P) > WD(P) < u‘)}
@™ =min{w | ® > WD(P*™);P* = argmaxT(P) > WD(P) < &' (I — 7 —y(P))}

In words, w* is maximum of ws such that the value for which the solution to the optimiza-
tion problem with only the resource constraint delivers a positive profit for the government.
Meanwhile, w** is equals to the optimal total withdrawals for the optimization problem with

only the revenue constraint.

3.3 Numerical Example

I assume the Stone-Geary function for preferences of consumers™:

U(wy, f,y) :W110g(w1—w1)+ﬂ210g(f—i) + (1 —m —ma)log (),
wh izoy

T, Ty € [O, 1]

where m; and m, denote the marginal budget shares of tap water, and food, respectively.
The parameters w,; and f represent the subsistence level consumption of tap water and food.
One can view the drinking water use under the subsistence level, so the two different uses
of water for households can be distinguished in this way. I assume that consumers need to
consume some food for survival, and that the composite good does not a subsistence level.
Given the functional form, the Marshallian demand for tap water is:

wy = (1 —m)w, +m U= P1%1 — pfi).
1

The demand consists of two components: the subsistence level w,, and the price-responsive

component. The price-elasticity of demand for tap water and food are always inelastic in

their own prices:

"Stone-Geary function is used in estimating the demand for tap water in the water literature; see Gaudin,
Griffin, and Sickles [[]

13



(I = prw, — pyf)

€w = <1,
PP (1= m)wy pr+m( - prw, — prf)
mo(I — prwy — pyf)
€f7pf = S 1'
(L —ma) [ py + m2(I — prwy — prf)

In addition to the preferences, I assume the following cost function for supplying water:

O(WD) =6, WD?; 6, >0 and 6, > 1

I assume the parameter x equals one for the remainder of the paper to simplify the
computations and the notation. In this way, the demand for food equals the demand for
irrigation water, and the price of food equals the price of irrigation water. The per-period

utility function simplifies to:

U(wi, w, y) =m log (w1 — wy) + 72 log (wa — w,) + (1 — m1 — m) log () ,
wla MQ Z 07

71, mo € [0, 1].

First, the parameters of the model {I,w,, w,, 7,7, k, T, 601,02} must be determined.
There are also parameters for the state and control variables: {N,,,w,w}, where N, is the
number of grids for water stock, w and w are the lower and upper bounds for water stock,
respectively. Although I do not use real data to determine these parameters, I believe the
values for the parameters are reasonable for this analysis. I display the parameter values in
table [I.

Parameters w; w, T T2 1 61 62 Ny w w

Values 10 50 0.2 0.2 100 0.5 1 500 63 200

Table 1: Parameter Values

The fixed cost 7 takes 16 equally-spaced values from 6 to 20. I set the marginal budget
shares of food and tap water the same at 0.2, but the tap water has a lower subsistence level
than food. This assumption makes the demand for tap water relatively more elastic with
respect to its own price than that of the agricultural demand for water, at the same prices.

This results from the first component in the denominator in the elasticity equations below:

14
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Figure 2: Static Problem with Revenue and Resource Constraints

7T1(I —Piwy — pzwg)

(I—prw; —paw,) |’
p1

€w, p1 T

P1 [(1 — Wl)wl -+ T
7T2(I — P1w, —pzwg)

o [(1 — mauy + mp 2]

D2

€wa,pp =

On figures B and B, I illustrate the case when the government has both revenue and
resource constraints. The two water prices, and the marginal cost of water (MC) are plotted
for various values of available water supply and fixed cost. The three regions (R1, R2, and
R3) are also displayed on figure B. The tap price is decreasing in water stock. In region 1,
where there is no water scarcity, the resource constraint does not play any significant role,
and the tap price is increasing in fixed cost. In region 2, where water scarcity is severe, the
revenue constraint is slack, and the tap price is constant in fixed cost. However, the fixed
cost affects the lower and upper bounds of region 3: higher fixed cost will increase water
price(s) and decrease total water withdrawals, so the upper bound goes down. Also, the
lower bound decreases as profits go to zero more quickly. In region 3, the tap price decreases
in fixed cost, as higher fixed cost increases the irrigation price and the tap price is reduced to
allow more withdrawals. However, the irrigation price is not necessarily decreasing in water

stock: in region 2, for low water stock, the irrigation price is decreasing in water stock, while
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Figure 3: Static Problem with Revenue and Resource Constraints

in region 3, it rises as the effect of the revenue constraint increases.

I plotted the water prices and quantities (withdrawals) over water stock on figure B. I set
the fixed cost at ten. When there is no water scarcity (R1); i.e., the water stock is reasonably
abundant, the resource constraint does not play any significant role, and the water stock in
the reservoir is sufficient to meet the demand by both sectors. In this case, the revenue
constraint binds; the solution is the unique and the same for any such levels of water supply.
Moreover, the inverse-elasticity rule applies, so the price of irrigation water exceeds that of
tap water. Note, too, that the price of tap water is less than the marginal cost of water, so
the government makes losses from supplying water to households and profits from providing
irrigation. The profits made from agricultural sector compensates these losses as well as the
fixed cost.

When water scarcity is severe enough (R2), the revenue constraint becomes slack. In
this case, withdrawals equal the water supply, which is below the volume of withdrawals the
government would like to supply should there be no resource constraint. In other words,
WD is strictly less than (I — 7 — y) in this region. As water gets increasingly scarce, the
price of tap water exceeds that of irrigation water. Another interesting result is that since
there is water scarcity, both water prices are higher than the marginal cost of water. The
government generates profits from supplying water to both sectors, which exceeds the fixed

cost. Nonetheless, I assume that these profits do not return to the economy in this partial-
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equilibrium setup®.

These results are important because they show that the price of a public good for a
sector does not necessarily exceed that for another sector even though the demand by the
first sector is more elastic than the other. In fact, with the introduction of a binding resource
constraint, the problem may be independent of the revenue constraint altogether if the two
demand functions are inelastic in their own prices. As a result, the prices may optimally
deviate from the inverse-elasticity rule, which is the solution of a static Ramsey problem

with no resource constraint.

4 Conclusion

In this paper, I have attempted to explain the price-discrimination problem of a local
government in supplying water to multiple user-groups. To analyze the pricing scheme deci-
sion of the government, I constructed a dynamic partial-equilibrium model, but considered
its static version, since the goal of my paper is to analyze whether prices are optimally dif-
ferent from each other. When the water supply in the reservoir is abundant enough, the
government’s budget constraint plays a more significant role in the determination of the wa-
ter prices, as the reservoir has enough water stock for both user groups. Thus, one expects
the inverse elasticity rule to apply: after accounting for the cross-price elasticities, more is
charged for irrigation water, which has relatively less elastic demand than tap water. How-
ever, when the water supply is scarce enough, the stock of water in the reservoir becomes
crucial, as there is not enough water for both user groups anymore. For this reason, the
government increases the price of tap water, and households end up paying a higher price
for water than the agricultural sector. This conclusion results from the fact that the costs
involved in increasing the tap water price are less those involved in increasing the irrigation
water price. As a result, the local government aims to collect as little revenue as possible from
households so that the households can allocate more of their income for other commodities.
Consequently, agricultural sector pays a lower price for water than households.

As simple as my model is, results may have interesting implications concerning govern-
ment aid to agriculture in supplying water. The general understanding is that as water
scarcity gets more severe, the price of irrigation water has to be raised substantially to de-
crease the volume of irrigation water. This idea stems from the fact that the demand for

irrigation water is quite inelastic, as without water, there is no crop production. For this

8In many countries, the law states that the government cannot make any profits from supplying water
to the different sectors. Thus, I did not model how profits are being used in this model. However, one may
consider cases where part or all of the profits is being rebated to the households.
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reason, governments may choose to subsidize agriculture through lower irrigation prices.
However, as I have shown in this paper, this may not necessarily be the case. In fact, as
water gets more scarce, the increase in the price of tap water may be more than that of the
price of irrigation water. Consequently, the necessity of government aid to agriculture may

be questionable.
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