NGA O TE UPOKO O °

e 8 V ICTORIA
UNIVERSITY OF WELLINGTON

b

%chool of Economlcs and Fina

I'e Kura Ohaoha Puteas

}:

SEF Working paper: 02/2011
January 2011

On loss-avoiding lump-sum pension
optimization with contingent targets

Jeffrey Azzato, Jacek Krawczyk and
Christopher Sissons



The Working Paper series is published by the School of Economics and Finance to provide staff
and research students the opportunity to expose their research to a wider audience. The opinions
and views expressed in these papers are not necessarily reflective of views held by the school.
Comments and feedback from readers would be welcomed by the author(s).

Further copies may be obtained from:

The Administrator

School of Economics and Finance
Victoria University of Wellington

P O Box 600

Wellington 6140

New Zealand

Phone: +64 4 463 5353
Email: alice.fong@vuw.ac.nz

Working Paper 01/2011
ISSN 2230-259X (Print)
ISSN 2230-2603 (Online)


mailto:alice.fong@vuw.ac.nz

A 2008-2011 research project report

On loss-avoiding lump-sum pension
optimisation with contingent targets

Jetfrey Azzato, Jacek B. Krawczyk*and Christopher Sissons
Victoria University of Wellington, Wellington,
New Zealand

Abstract

Consider a lump-sum pension fund problem, in which an agent deposits an
amount with a fund manager up front and is later repaid a lump sum x(T) af-
ter time T. The fund manager may be both cautious in seeking a payoff x(T)
meeting a certain target, but relaxed toward the possibility of exceeding this tar-
get. We use a computational method in stochastic optimal control (“sOCSol”)
to find approximately-optimal decision rules for such “cautious-relaxed” fund
managers. In particular, we examine fund optimisation problems in which the
target is contingent upon market conditions such as inflation.

Keywords: Computational economics; pension funds; cautious-relaxed policies;
approximating Markov decision chains; SOCSol.
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1 Introduction

This paper! is about lump-sum pension fund problems, which arise when an
agent pays an amount xg to a fund manager, in exchange for an uncertain lump
sum x(T) — the “pension” — at time T.

The paper’s aim is twofold. First, we discuss what such a fund manager’s ob-
jectives might be. This is because we believe that there is no criterion that man-
agers would always want to optimise in a volatile market situation. In particular,
we deem maximisation of one of the so-called “risk-averse” utility functions to
be an unlikely objective,? despite its popularity in the literature. We show that

*Corresponding author. Email: ] Krawczyk@vuw.ac.nz

IThis paper draws from the conference paper presented at the 2009 Quantitative Methods in
Finance Conference (QMF), Sydney, NSW.

2These include the HARA (Hyperbolic Absolute Risk-Aversion) utility functions.
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strategies maximising the expected present value of such a function can generate
very “risky” right-skewed payoff distributions, in which “low” returns are rela-
tively common. Accordingly, we contrast the shape of these distributions with
those of the payoff spreadings obtainable by optimising one of three related loss-
aversion (or avoidance) objectives. The payoff distribution of such a strategy can
be left-skewed, delivering “high” returns more frequently than “low” ones.

Second, we use this loss-avoidance framework to model the pension fund
problem with a target contingent on inflation or, more generally, on any observ-
able exogenous stochastic process. We solve this problem numerically and com-
ment on the applicability of the solution.

The problem of formulating an acceptable portfolio management strategy is
well recognised in the static context. Markowitz (see [ ]) is credited with
pioneering the classical mean-variance portfolio selection problem, whose solu-
tion balances a good average return against the likelihood of achieving it. Since
his seminal work [ ], many authors have worked on extensions and alter-
natives that would allow for hedging against uncertainties and/or ensure an
acceptable level of return (see, for example, [ , , , D.

On the other hand, the main stream of research in dynamic portfolio man-
agement has followed the seminal works of Samuelson (see [ 1) and Mer-
ton (see [ , ]), concentrating on solutions to HARA problems. Such
solutions typically provide an optimal strategy (either numerical or in closed
form) that maximises expected present utility. The solutions are generically risk-
sensitive (see, for example, [ , , I), but ignore the payoff and
utility distribution consideration mentioned above.

Recently, problems on hedging and/or ensuring an acceptable return have

also been investigated in the dynamic context. For example, | ] discusses
multi-period minimax hedging strategies, while [ ] applies a risk-minimising
hedging approach to dynamic strategy determination and [ ] uses mean-

variance analysis for multistage portfolio management.> Most importantly for
likelihood of payoff achievement, Value-at-Risk (VaR) and Conditional Value-
at-Risk (CvaR) have been successfully used as optimisation constraints to help
produce “certain payoff” management strategies in the dynamic context (see
[ , D In[ ], optimal strategies maximising the probability of
an agent’s wealth exceeding a target were computed, while [ ] used a target-
percentile risk measure to generate time-consistent optimal strategies.

Unfortunately, it is difficult to extend the Markowitz mean-variance approach
to dynamic settings (whether multi-period or continuous time). This is because
the payoff variance involves the inseparable (in the dynamic programming sense)
term IE[(x(T))?], which is hard to analyse (see [ , 1.4

However, ensuring high mean returns can result in high return volatility (see
[ 1), suggesting that less should be invested in risky assets in order to sat-
isfy the vaR constraint (see [ ). Consequently, achieving returns that are
both high and secure remains difficult. It seems (see [ ]) that maximising a

3The importance of dynamic one-side measures for return performance is discussed in

[ ]

“The last two citations have overcome this difficulty, albeit for linear-quadratic models only.
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“classical” risk-averse utility function subject to risk constraints reduces expo-
sure to risk but still results in right-skewed payoff distributions.

This paper uses a “new” portfolio performance measure that is significantly
asymmetric with respect to risk.” Similar measures are proposed in prospect
theory (see [ , , ] and the references therein). These measures
each set a fund return target, penalise failure to achieve this target and reward
over-achievement.

The differences between the new measures (explained in detail later) lie in the
shapes of their penalising and rewarding components. Our measure strongly pe-
nalises target shortfall, while rewarding over-achievement mildly. This makes it
locally concave, i.e. it is concave for wealth both below and above the target, re-
flecting overall risk aversion. The prospect-theoretic performance measures are
S-shaped. le., they are convex for wealth below the target and concave for
wealth above it, respectively reflecting risk seeking behaviour toward losses and
risk averse behaviour toward gains. So while all three measures are loss averse (as
they are each steeper below the target than above it), their attitudes to risk differ.

We show that optimisation of these target-based measures delivers strategies
that can generate left-skewed payoff distributions having small varR and CvaRr.
As these small values arise without imposing constraints (which may be neces-
sary when using classical performance measures), we believe that these “new”
performance measures may be good objective candidates for fund managers.

Given the complexity of portfolio problems with the non-concave utility mea-
sures, the only feasible solution method known to us was to use numerical opti-
misation. The solutions in this paper rely on a discretisation scheme inspired by
Kushner (see [ 1),® which is implemented here in a suite of MATLAB® rou-
tines called sOcCsol. See [ , , , ] for explanations and some
applications of this method.

The rest of this paper is organised as follows. In Section 2, we formulate a
pension fund problem as a stochastic optimal control problem. Then, a simple-
target problem (i.e., one not contingent on inflation) is used in Section 3 to illus-
trate the differences between the different performance measures. In Section 4,
we solve a contingent-target problem. Section 5 provides some concluding re-
marks.

2 Pension fund problems as stochastic optimal con-
trol problems

A plausible situation in financial management is one in which an agent deposits
an amount xo with a fund manager at time 0, to be repaid at time T with a lump
sum x(T), which we call the pension. The pension x(T) depends upon both the

>This paper continues the line of research on lump-sum pension investment strategies initi-
ated in [ ] and continued in [ , , ].

%See [ ] for a complete treatment of Kushner’s Markov chain approximation method for
stochastic optimal control. Also, see [ ] for a controlled diffusion approximation method
likewise motivated by [ ] but which differs from the approach used here.
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investment policy p(x(t), t) (t € [0, T|]) adopted by the fund manager and market
conditions.” The latter are deterministically unpredictable, so are usually mod-
elled via stochastic processes. Consequently, the pension is a random variable
and the pension fund problem is inherently stochastic.

In determining an acceptable initial deposit x(, the agent and manager need
to address several practical considerations. Of these, the following seem to be
the most pertinent.

(i) What lump sum ¥1 can the manager “promise” for a given initial deposit
xo?

(ii) Alternatively, what initial deposit xo should be paid in exchange for a
“promise” of the lump sum x7?

(iii) How should the “promise” be formulated: deterministically or in some
p y
probabilistic terms?

We attempt to address these considerations below in this paper.

The investment policy governing a fund depends on the fund manager’s ob-
jective function (or utility measure). Possible objectives include maximisation of
the expected fund value, maximisation of the probability of achieving a target
payoff, minimisation of shortfall, etc. Once an objective function is chosen, the
manager’s policy can be computed as the solution to a stochastic optimal con-
trol problem determined by the objective. The solution routinely provides an
optimal decision rule u(x(t),t), which is crucial for the manager’s control of the
portfolio. However, it should also provide more “practical” information about
the resulting payoff distribution, as this allows the agent to decide what they can
reasonably expect for their pension.

Knowledge of the distribution of x(T) is also helpful to the manager, as it
helps describe the risks associated with obtaining a particular realisation of the
objective. For example, the distribution may suggest that, for a given initial
deposit x¢ there is a “probable” lump sum %7, which the manager may choose
to advertise as the pension target (subject to legislative constraints).

It is customary to model a pension fund problem like that described above
using a form of Merton’s optimal portfolio selection model (see [ |; further
details are available on pp. 160-161 of [ ). As is commonly the case in the
literature, we assume that the portfolio consists of two assets, one “risky” (e.g.
shares) and the other “risk free” (e.g. cash). If the price p(t) per share of the risky
asset changes according to the equation

dp(t) = ap(t)dt + op(t)dw (1)

where a, ¢ > 0 are constants and w is a one-dimensional standard Brownian
motion, while the price g(t) per share of the risk-free asset changes according to

the equation
dq(t) = rq(t)dt,

"The policy could be multidimensional, comprising a consumption rule, administration fee
etc.
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where r € (0,«) is a constant, then the fund value x(t) at time t € [0, T| changes
according to the stochastic differential equation

dx(t) = (1 —u(t))rx(t)dt + u(t)x(t) (adt + cdw) — v(t)dt. ()

Here, u(t) and 1 — u(t) respectively denote the fractions of the fund invested in
the risky and risk-free assets at time ¢, and v(t) denotes the fund “consumption
rate.”

In [ ], the manager wishes to find a two-dimensional strategy p(x,t) =
(u(x,t),v(x,t)) maximising the total expected discounted utility

I ) = E| [ e g0

X(O) = x0:| ’ (3)

where p > 0 is a force of discount and g(v(t)) is the manager’s instantaneous
utility at time ¢, subject to the constraints

,and (4)

0<u(t)<1
v 0 %)

(£)

holding forall t € [0, T].% In [ ], no constraint is imposed on the wealth x(T)
at time T, and the amount x of the initial deposit is taken as given.
If we augment the utility measure in (3) to include a final payoff function

h(x(T)), giving

<
>

T
Jaug (xo, 1) :]E[/O e Plo(o(t))dt + e PTh(x(T))

X(O) = x0:| ’ (6)

then the problem of maximising (6) subject to (2), (4), (5) and other relevant con-
straints (e.g. x(t) > 0) serves as a model of the pension fund problem. Indeed,
setting v = 0 and maximising

J«(x0,u) = E [h*(x(T)/xT) | x(0) = xO} 7)

in u defines a problem that captures the task of a fund manager.” Note that dis-
counting in this context corresponds to multiplication of the utility measure (7)
by a constant, and thus does not alter the manager’s optimal strategy. Conse-
quently, we omit the multiplier e T from this and similar maximisation prob-
lems.

In the rest of this paper we also assume that a management fee having force
cx(t) is charged, where ¢ > 0 is a constant. Consequently wealth evolves accord-
ing to the equation

dx(t) = (1 —u(t))rx(t)dt + u(t)x(t) (adt + cdw) — cx(t)dt. 8)

8Constraint (4) means no short selling or borrowing. This restriction has been weakened in
the literature; however, it may be reasonable in some situations.
9The expectation in (7) will be well defined under the implicit integrability assumption.
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As mentioned in the Introduction, we distinguish between several manage-
rial objectives, which we define below. Some will explicitly specify a target re-
turn X1 to be achieved in time T from an initial outlay xo. The target can be fixed
(as in the problems of Section 3) or contingent on a stochastic process such as
inflation (see Section 4).

We call the fund manager who seeks a strategy u); maximising (7) with final

payoff function
i(+(T), 1) 1=~ (+(T))" ©)

subject to (4) and (8), where v € (0,1) is a constant, the Merton manager MM.
Note that the resulting utility measure Jj;(xo, u) does not explicitly depend on a
fund target xt.

The so-called cautious-relaxed manager CM (see [ , ]) seeks a strat-
egy uc maximising (7) with final payoff function

(x(T) —xp)*  ifx(T) > %r, and

—(®r —x(T))" otherwise, (10)

he(x(T), %r) = {

subject to (4) and (8), where a > 1 and x € (0,1) are constants. The resulting
utility measure Jc(xo,u) only offers the fund manager a moderate incentive to
exceed ¥7 (as 0 < x < 1), but punishes failure to reach this target substantially
(asa >1).

The prospect-theoretic manager PM considered by [ | also seeks a strategy
likely to result in funds meeting a target xr. However, this strategy up is ob-
tained by maximising (7) with final payoff function

(x(T) -
A(xr —
where x, ¢ € (0,1) and A > B > 0 are constants. Here, the resulting utility
measure Jc(xo, 1) also only moderately rewards the manager for exceeding r,
but does not severely penalise them for failing to reach the target (as 0 < ¢ < 1).

Finally, the manager considered by [ I, whom we call the loss-averse

manager LM, also works toward a target. However, their strategy up is obtained
by maximising (7) with final payoff function

xr)©  ifx(T) > %1, and

XT
11
x(T))¢ otherwise, 1)

hp(x(T), %r) := {

w if x(T) > %r, and
DI = Ay + By -
-, /

where v € (0,1) and A > B > 0 are constants. The resulting utility measure
J1(x0, 1) has the same shape as Jp, but does not penalise small losses.

The final payoff functions for those managers aiming toward a target are
shown in Figure 1 for the target ¥7 = $100000 and a set of parameters ex-
plained and utilised in Section 3. We see that the CM manager behaves more
conservatively than the other target-motivated managers, as the CM manager is
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risk-averse in the “loss domain” below the target, as well as in the “profit do-
main” above it. The parameter values for PM, LM and CM utility measures
are taken from the existing papers [ ] and [ , ], respectively.
They are claimed (in [ ]) to reflect investors” behaviour and proved (in
[ , ]) to generate left skewed payoff distributions. The power of the
MM utility function was calibrated to guarantee an interior solution for u(t) (see

(4))-

x 10° Utility measures with target fund value $100,000
T T T T T T T

Utility h,(x(T), 100000)
o

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Terminal Fund Value x(T) X 10°

Figure 1: Risk-averse and target-seeking utility measures.

The key difference between the loss-aversion approach and the classical ap-
proach of Merton seems to lie in the setting of a distinguished point (the target)
about which behaviour differs. For example, the MM utility measure hy(x7) =
20(x7)%%° assumed in Section 3 generates a smooth, almost flat line in Figure 1
at the given scale.

While each manager’s objective determines a stochastic optimal control prob-
lem, analytic solutions to these problems are frequently unavailable. Aside from
the MM problem, no easily-interpretable feedback forms have been obtained
for the optimal strategies. In particular, the expressions given in [ ] for
the optimal wealth distributions and investment strategies for the PM and LM
problems are based on a state price density, which may be a challenging choice of
variable upon which to build a useable feedback solution. In contrast, current
fund value and inflation (see Section 4) are observable state variables upon which
it is sensible to base a feedback solution.

Moreover, we are unaware of a transparent procedure providing a closed
form for the CM manager’s optimal strategy. As we wished to compare all four
managers’ strategies and payoff distributions, and (perhaps more importantly)
sought feedback strategies based on fund value, we solved the four problems us-
ing the same method. This is the numerical optimisation approach called sOCsol
(see [ , , , ]) that was mentioned in the Introduction.
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3 A simple pension fund problem and its solutions

In this section we aim to explain the basic features of solutions obtained for the
managerial objectives outlined in Section 2.

3.1 Model parameters

Our interest lies in a link between the formulation of a manager’s objective and
the shape of resulting payoff distribution. As stated above, we generate the pay-
off distributions numerically for all four managers” problems to ensure consis-
tency. The parameters used are given in Tables I-V.

‘ r 114 o c ‘
5% | 8.5% | 20% | 0.5% |

Table I: Parameters for fund value dynamics (Equation (8)).

0.05

Table II: Parameters for MM final payoff function (Equation (9)).

a | x
1.5109

Table III: Parameters for CM final payoff function (Equation (10)).

We observe that our managers have access to “bonds” that grow at the fixed
rate ¥ = 5%, and that the risk premium is perceived to be 3.5% (so & = r 4 3.5%).
The volatility of the uncertain asset is 20%. The managers charge a relatively
small fee of 0.5%, as their policies do not entail “chasing the winners.” Each
manager receives an initial outlay of xy = $40, 000, which they are to administer
for T = 10 years. The target-seeking managers assume that the target is static,
being set at ¥19 = $100, 000 from the outset.

The MM manager is quite risk averse (as y = 0.05). This attitude is shared
by the CM manager, who strongly wishes to avoid payoffs less than xr (as a =
1.5 > 1). The CM manager also has no strong incentive to overshoot the target
(sincex = 0.9 < 1).

The other managers also feel the effect of a loss more strongly than that of an
equivalent gain (as A > B). This property of “losses looming larger than gains”
has behavioural foundations; see [ ]. Moreover, Tversky and Kahneman
find in [ ] that an agent’s utility function is approximately a power function
with an exponent of less than 1. The choices of ¢, x, v, A and B used here are
based on their empirical estimates.
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| A |B] ¢ | x|
12.25[1]0.88|0.88 |

Table IV: Parameters for PM final payoff function (Equation (11)).

| A [B| v |
12.25]10.88 |

Table V: Parameters for LM final payoff function (Equation (12)).

3.2 Management of the portfolios

Assume that the fund value process is described by Equation (8). Subject to
these dynamics and the constraints given in Equation (4), the MM manager seeks
a strategy u); maximising Jy; (see Equations (7) and (9)). Simiarly, the other
managers CM, PM and LM seek strategies uc, up and u; maximising Jc, Jp and
J1 respectively (see Equations (10)—(12)).

We solved each manager’s portfolio administration problem, determining
optimal'” strategies u); and approximately optimal strategies uc, up and uj in
the feedback form i.e., as functions of observed fund value and time. The appli-
cation of a strategy to x( generates a final fund return for each given realisation
of the Brownian motion w.

Figure 2 shows the managerial strategies 1, uc, up and up; the correspond-
ing fund value and strategy profiles are displayed in Figure 3. The final fund
value realisations are those points in the upper subplots corresponding to time
t = 10. Distributions of these final fund values are given in Figure 4.

Unfortunately, some of these strategies generate unacceptable final fund value
distributions; see Figure 4. We comment on the features of the distributions in
Section 3.3; here we observe that few fund managers would be happy to pay 40%
of their clients below $66, 000 when investing solely in the secure asset would
have yielded

xs(t) = $40,000 exp(t(r — “management fee”)) = |,_, = $62,732. (14)

However, this is the case for the payoff distributions resulting from the MM, PM
and LM managers’ strategies (see Table VI).

All three loss-avoiding policies are dynamic, advocating that share holdings
be inversely proportional to fund value for a variety of fund values. However,
the CM policy differs markedly from the other two, as it distinguishes between
two investment zones.

1. Fund values x(t) € (0,xs(t)), from which the target can only be reached

19The MM manager’s problem has an easy analytical solution, namely

w7 0.085—0.05 35
_ - — 22— 09211 (4sf. 13
o2(1—~)  022(1—0.05) 38 (4s.L) (13

up(t)
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Control rules for MM manager Control rulesfor CM manager
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Fund value x(t) x10° Fund value x(t) x 10"
Control rules for PM manager Control rulesfor LM manager
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0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Fund value x(t) X 10° Fund value x(t) x 10"

Figure 2: Portfolio management strategies for times 0 and 4.

by investing in the risky asset. Here, the manager must gamble to evade
heavy penalties for falling short of the target.

2. Fund values x(t) > xs(t), from which the target can be reached by invest-
ing solely in the secure asset. In this zone, the manager maximises their
reward for exceeding the target.

We call a CM manager whose fund value is in the first zone cautious (for
they strive to avoid the consequences of underperforming), and one whose fund
value lies in the second zone relaxed (for they enjoy the rewards of surpassing
the target). We note that the second zone becomes unimportant in the continuous
state-time setting, for the CM manager will set uc(xs(T — t)) = 0, thus with-
drawing from the share market. This withdrawal from the share market results
in the fund value never reaching the second zone as described above, but rather
growing deterministically until it reaches the target at time T.
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Fund value and control profiles for CM manager
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Fund value distribution for MM manager
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Figure 4: Fund value distributions.
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3.3 The effect of problem formulation on final return distribu-
tion

As is the case in computational economics, the results presented here (also see
Section 4) are parameter-specific. The comments in this section should be in-
terpreted in this light, with a view to further analysis of the final fund value
distribution’s sensitivity to the choice of utility measure. Nonetheless, the re-
sults appear to be sufficient to guide fund managers to choose a particular utility
measure.

There is a vast difference between the concave (risk-averse) utility maximi-
sation solutions of the MM manager and the target-dependent strategies of the
other managers. The latter are “dynamic” in the sense that they propose actions
depending on both the observed fund value and the time-to-go i.e., the remaining
time before pension payment.

The MM, PM and CM managers’ strategies each generate a right-skewed
payoff distribution, while the CM manager’s strategy yields a left-skewed payoff
distribution. Table VI quantifies these facts. Note that the state bounds used for
computing the PM and LM strategies mean that some of the tabulated values
can strictly be taken only as lower bounds on the actual values; this is indicated
in the table when applicable.

Manager MM CM PM LM
Mean of x(10) $86,546 | $75,018 | > $85,791 | > $86,024
Median of x(10) $73,514 | $83,272 | $82,290 $80,161
40-th percentile of x(10) | $63,610 | $77,648 | $65,592 $64,479
Std. dev. of x(10) $53,994 | $21,649 | > $51,419 | > $53,980
Coeff. of skew. of x(10) | 2.0426 | —1.0014 | > 1.7560 | > 1.8558
P(x(10) > $100,000) | 0.2944 0 03205 | 0.1948
P(x(10) > $62,732) 0.6081 | 0.7451 | 06216 | 0.6181
P(x(10) < $40,000) 0.1451 | 0.1082 | 0.1640 | 0.1692
P(x(10) < $20,000) 0.0135 | 0.0107 | 0.0207 | 0.0183

Table VI: Final fund return distribution statistics.

In addition the final four rows of the table give probabilities relative to the
nominal target ($100,000), earnings if investing solely in the secure asset ($62,732),
the initial deposit ($40,000) and an arbitrary value below the initial deposit ($20,000).

We note that with the exception of the CM policy, there is a probability of
about 0.4 of earning less than the “secure” revenue x5(T) that could be earned
by investing solely in the risk-free asset (see (14)). Under the CM policy, this
probability is about 0.25.

The final payoff falls short of the initial deposit xo = $40,000 with a proba-
bility of about 0.15 for the non-CM policies and about 0.1 for the CM policy. So,
while a strategy maximising expected return (MM) is a very risky means of fund
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management, the loss averse policies PM and LM are not much safer. We con-
clude that it is the cautious-relaxed policy CM that will best uphold the fund’s
yields in an acceptable range.

4 A contingent-target cautious-relaxed policy

4.1 A realistic target

We have seen that target-seeking portfolio management formulations are closer
to what the mangers want to achieve. Notwithstanding the good features of the
prospect-theoretic policies (P and B) we believe that the cautious-relaxed strat-
egy (C) delivers the final yield distributions, which should suit the pension fund
managers best. We will now consider an extension to manager C’s target seeking
problem that makes it more realistic.

An alternative portfolio optimisation problem, with respect to those discussed
in Section 3, could be one that allows for the target to be contingent on an exoge-
nous stochastic process. We propose the following generalisation of problem Jc,
(10):

J(x(0), p(0);u") = s%pl]lE(S(xu(T)/H(T)) x(0) = x0, p(0) = po) (15)

W(T) — H(T))* if x,(T) > Hr,
s(xu(T),H(T)) = { ?f}}}(éy._,§u8%>)a oéiegw%se !
O<xk<l,a>1.

(16)

The above formulation is motivated by an observation that the amount xr
aimed at in problem Jc, (10) does not have to be a fixed value. If the investor’s
objective is to hedge a certain liability H(T') at a given future time T, then X1 may
be identified as the final value H(T) of a “liability” process H(t); compare [ ]
for an optimisation model that computes risk-minimizing hedging strategies.

We can find in [ ] an attempt at dynamic updating of the fund’s target
H(T). Their assumption is that the target may be driven by the same Brownian
motion as the risky asset price (and wealth) is. In “real life”, a contingent X7 =
H(T) may be measurable with respect to the c—algebra generated by a stochastic
process, largely unrelated to the wealth dynamics (8). For example, the overall
price index (like CPI) 7r(¢) fed in by inflation could be that process. Assuming
that the price index process is a geometric Brownian motion!! we get

dr(t) = pre(t)dt + er(t)dw,, t€10,T|, mn(0)=1 (17)

where B is inflation (assume!? B = 2.14%) and ¢ is the inflation “volatility”
(assume ¢ = 0.7%). Allowing for (17) will enable us to “index” the final liability

Mnflation might have a seasonal component corresponding to the economic cycle. We ignore
it in our GBM model that could though be extended to allow for the cycle.

2This and the next number come from the Reserve Bank of New Zealand data set for the
period between 1996 and 2005.
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by making it contingent on 71(T). Notice that w is a one-dimensional Brownian
motion different from w.

Allowing for inflation in the process of striving to meet the target is a realistic
teature of the model, which should help adjust the investment strategy u* to
different market situations. We propose the following model for the contingent
target

H(T) = tn(T) (18)

where T > 0 is the nominal target (assume'® T = 80735). We know that price
realisation of a geometric Brownian motion for a particular value of t € [0, T]
is a random variable distributed log-normally. Thus H(T) is a random variable
distributed log-normally, contingent upon the inflation process.

In| ] an analysis of a shortfall risk minimisation problem was conducted
where the goal to not fall short of was contingent on the risky asset price process.
The resulting portfolio management policies were obtained as time and state
dependent, looking similar to those of Figure 2 albeit the time dependence was
“inverted” (i.e., the policy advice was to invest more in earlier times than in Fig-
ure 2, for the same level of wealth'#). Here, we solve several pension fund prob-
lems maximising the cautious-relaxed manager’s utility measure (15)-(16) for dif-
ferent assumptions on the degree of correlation between inflation and the risky
asset price.

4.2 Contingent-target policies

Suppose w and w; are two one-dimensional independent Brownian motions.
Then, assuming that the risky asset price can be influenced by inflation, the share
price process will follow

dp(t) = ap(t)dt + /1 — p? op(t)dw + pop(t)dwy, (19)

where p is correlation coefficient —1 < p < 1, rather than process (1). Conse-
quently, the wealth equation will be modified to

dx(t) = (1 —u(t))rx(t)dt + u(t)x(t) (adt + 04/ 1 — p? dw + opdwy) — cx(t)dt .
(20)
Below, we will compute cautious-relaxed strategies u* i.e., such that max-
imise (15)-(16) subject to (20), (17) and (4) for three situations:

e when there is no correlation between inflation and the risky asset price,
p = 0 (e.g., u* is investment in an overseas asset);

e when there is a negative correlation p < 0 and

1380735 exp(10B8) = 100000 that is this target would match %7 if there were no inflation
volatility.

“However, the results cannot be directly compared because the volatility in [ ] is higher
than in this paper.
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e when there is a positive correlation p > 0

No correlation. So, the portfolio manager maximises (15)—(16) subject to (20)
(practically, (8)), (17), (4).

Figure 5 shows the approximately optimal policy u#* whose realisations are
presented in Figure 7 (third panel) together with the two state variables” time
profiles (top panels).

We notice that, in principle, the same kind of the manager’s strategic ap-
proach to obtain H(T), as was observed in the case of a non stochastic target
shown in Figure 2 (included here as the thinner lines) is evident in Figure 5.

That is, the policy advice is that the further the current wealth x(¢) is from
the target, the more aggressive its pursuit should be. The lines drawn in the
upper panel are for 7t = 1; the lines drawn in the bottom panel concern wealth
x = $40000.

-
LN — Timet =0
0.9 % R = = mTimet=4
L S Y Timet = 0 (from Figure 2)
0.8 : “‘ “ = = = Timet = 4 (from Figure 2)

0.7+

0.6

0.4r

0.3

0.2

0.1-

0.9
t=4
08 P

0.7 :
x=40000

0.6

i i i i i i
0.8 0.9 1 1.1 1.2 1.3 1.4

Figure 5: Market-dependent cautious-relaxed policies for p = 0.

The markable difference is in that the manager is never certain of achiev-
ing target H(T), because it is driven by the stochastic (inflation) process. This
causes the absence of u* = 0, which was a feature of the policy advice for a
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fixed target. Correspondingly, the wealth level for which the investor starts to
be more “relaxed" about meeting the target and maximises the gains from ex-
ceeding it, is higher (about $83 000 as opposed to $64 000 for the fixed target). If
there is less time to reach the target, the investment into the risky asset increases
up to the “relaxation” point. We can also see that when inflation increases (for
wealth=$40 000), the manager buys more shares.

We have a full picture of the impact of inflation on the investment strategy
in Figure 6 (for times 0 and 4). We can see that as the price level increases, the
manager’s “aggressiveness" of pursuing the target diminishes. This is inferred
from the lower gradient (in wealth) of the strategy for higher price levels. The
same pattern prevails for a later time, see the right panel, albeit the commitment
to buying shares increases.

t=4

price level

08 3 4 5 x 10 price level 0.8

wealth wealth

Figure 6: Market-dependent cautious-relaxed policies for different wealth and
price levels (t = 0, andt = 4; p = 0).

Figure 7 presents a sample of 40 time profiles of the state variables (top two
panels) and of the control (bottom). We can see that the wealth trajectories con-
gregate at the top of the figure; however, the final value of wealth tends to be
lower than in Figure 3. The goal however was contingent on inflation, so these
lower absolute values cannot speak about goodness or badness of manager’s
strategies.
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ST
U\\\‘n; LR ;

Figure 7: Time profiles for the market-dependent cautious-relaxed policy (o =
0).

We can see the histogram of the final payoff distribution in Figure 8 together
with the distribution of the contingent target. We can appreciate that the man-
ager’s task can be interpreted as seeking an investment strategy that could gen-
erate a payoff that should match a target distributed log-normally.

x(T)
7T
target satisfaction. It documents that meeting it is a difficult task, as only about
10% of the portfolio management cases end up with a final payoff exceeding the
target. However, about 62% of cases exceed payoffs that are between 75% and
110% of the target. This is on par with the CM policy performance when the
target is fixed, see Figure 4 (top right panel). A fixed-interest investment would
generate x5(10) = 62732.50, short of the target by any measure.

that tells us about the

Finally, figure 9 is the distribution of the ratio
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relative frequency

Figure 8: Final payoff distribution and the target distribution.
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Figure 9: Distribution of target satisfaction.
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We have also assessed the impact of the inflation volatility, measured by the
parameter ¢, on the investment strategy. Figure 10 shows the approximately op-
timal strategies for § = 0 i.e., as if the price level depended entirely on inflation
volatility ¢. We see in the figure that if the price process followed just a random
walk, the manger would have “gambled" less and have bought fewer shares
(about 20% less relative to when the price process were a geometric Brownian
motion.) The target satisfaction (not shown here) is not dissimilar to the previ-
ous cases.

Figure 10: Market-dependent cautious-relaxed policies for p = 0 and g = 0.
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A negative correlation. Here, the portfolio manager maximises (15)—(16) subject
to (20), (17), (4) and when p = —0.25.

Figure 11 shows the approximately optimal policies u* for p = —0.25 (dash-
dotted lines); also for p = 0.25 (dashed lines) and p = 0 (solid thin lines, same
as in Figure 5). The left panels are for t = 0; the right ones for t = 4. The
policy realisations for the case of negative correlation are presented in Figure 12
(bottom panel), along with the state variables’ time profiles (top panels).

We notice that, in principle, the same kind of the manager’s strategic ap-
proach to obtain H(T), as was observed in the case of no correlation (see the thin
lines), is evident in Figure 11. That is, the further the current wealth level x(t) is
from the target, the more aggressive its pursuit.

Control uC(O)
o
o
Control uC(4)

—_— =0
- - p=0.25
== =p=-0.25

o
©
T

e
3

x=40000

Control uC(O)
Control uc(4)

o
>

0.8 0.9 1 11 1.2 1.3 1.4 1.5 0.8 0.9 1 1.1 1.2 13 1.4 15
Price level TI(0) Price level Ti(4)

Figure 11: Market dependent cautious-relaxed policies for p = 0, £0.25.

The difference between the policies obtained for the negative correlation be-
tween the shocks affecting inflation and the risky asset price and those, which
allow for no correlation, is that now the manager buys more shares of the risky
asset. This is not necessarily an intuitively obvious policy. Its explanation is that,
in the zone where the target cannot be achieved through the sole investment in
the secure asset, the negative correlation between the asset price and inflation
(which drives the target level) pushes the manager to “gamble" more, than when
there were no correlation.

With more funds and some certainty of achieving the target i.e., the other
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zone, the manager simply seeks to maximise the payoff about the target. In plain

language, the manager gambles in the first zone out of necessity and because
they are greedy in the second.

X 104

=
o
T

Fund value x(t)

-

Control u

Figure 12: Time profiles for the market-dependent cautious-relaxed policy (p =
—0.25).

The sample time-profiles shown in Figure 12 suggest that a correlation (neg-
ative in this case) between the risky asset price and inflation reduces the spread
of the final yield, in comparison to the uncorrelated situation (see Figure 7).

We can see this in the histogram of the final payoff distribution in Figure 13,
plotted together with the distribution of the contingent target. The modal bar
reaches higher in this figure than in Figure 8 and the probability of receiving a
payoff between $63 000 and $105 000 increases; the probability of receiving less
than $30 000 is negligible.

We can appreciate that the strategies that allow for this negative correlation

. . x(T
help the manager’s task to match the target, see Figure 14 where the ratio 775 ( 12)
is displayed. We see that, under this correlation, the target satisfaction distribu-
tion is more left-skewed than was in Figure 9.




4 A CONTINGENT-TARGET CAUTIOUS-RELAXED POLICY 23

0.4
—xm
[ m— S
03
g
&
=]
3
2 02r
B
T
01F
0 [ | L
0 25 5 75 10

terminal fund value/target value «10°

Figure 13: Final payoff distribution and the target distribution for p = —0.25.
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Figure 14: Distribution of target satisfaction for p = —0.25.
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A positive correlation. Finally, the portfolio manager maximises (15)—(16)
subject to (20), (17), (4) and when p = 0.25.

The dash-dotted lines in Figure 11 show the approximately optimal policy
u* whose realisations are presented in Figure 15, (third panel) together with the
state variables’ time profiles (the top panels).

We notice (in the policy figure) that the strategies for both correlated cases
(negatively and positively) are similar and analogous to those obtained for the
uncorrelated case, see thin lines, copied from Figure 5 for p = 0. The general
prescription: the further the current wealth x(t) is from the target, the more ag-
gressive its pursuit is true for all cases. However, the difference between the
“positively correlated" policy and the other ones is that now the manager buys
less shares of the risky asset. This is a reflection of the manager’s greater confi-
dence that with this positive correlation between the risky asset price and infla-
tion, which modulates the target, chances or reaching it are better than before.
Hence, less “gambling" is required to achieve the objective.

Fund value x(t)

Control u C(t)

Figure 15: Time profiles for the market-dependent cautious-relaxed policy (p =
0.25).
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However, the sample time-profiles shown in Figure 15 suggest that this pos-
itive correlation will increase the spread of the final yield, in comparison to the
uncorrelated and negatively correlated cases. Consequently, this positive corre-
lation case appears difficult to handle.

The final payoff distribution that results from the application of u* policies
from Figure 11 (dash-dotted lines) is presented in Figure 16 (together with the
distribution of the contingent target, as before). We can appreciate that the prob-
ability of receiving a payoff between $95 000 and $105 000 has increased. How-
ever, so has the probability of a payoff below $50 000 and, markedly, of one below
$30000. The reported probability increase and decrease apply to both the uncor-
related and negatively correlated cases (qualitatively, the numerical probability
values differ).

x(T)

—~_ that tells us about the
(T

target satisfaction. It confirms the above findings. About 25% of the final payoff
realisations are within £5% of the target, which is a better result than for the
other cases. However, the computed policy also delivers some low yields that
were avoided in the other cases. About 75% of fund yields are above the fixed-
interest investment payoff.

Finally, figure 17 is the distribution of the ratio

05 T

04 -]
[ m— R
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S
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0 25 5 75 10
terminal fund value/target value «10°

Figure 16: Final payoff distribution and the target distribution for p = —0.25.
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Figure 17: Distribution of target satisfaction for p = —0.25.

5 Conclusion

A numerical optimisation method was used for the solutions to continuous-time
stochastic optimal-control problems, reflecting several pension fund problems.
A “common-sense” policy bet aggqressively if you are far from the target has been
quantified as an approximately optimal solution to problems of cautious-relaxed
fund managers. The policy was shown to generate encouragingly hight propor-
tions of fund yields that meet a savings’ target in %80 or better. A model feature
that helps to produce the above investment strategies with a client-friendly yield
distribution appears to be an asymmetric utility function, which captures the in-
vestor’s strong loss avoidance attitude and a mild enjoyment from exceeding a
target. We have also provided an analysis of other models showing advantages
and disadvantages of their use.

As to the bullet point questions asked in Section 2 (p. 4), the following an-
swers may be formulated.

(i) and (ii) A relationship between X1 and x, static or contingent on inflation,
can be read from the fund yield histograms. The manager can advertise Xt
such that its realisation is 90% probable.

(iii) Any “promised” Xt is stochastic in nature. However, it could be formu-
lated deterministically if the manager strongly believed that the “promised"
X is very close to the mode of the payoff distribution.
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