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Abstract

In this work, we examine the polynomial invariants of the special Euclidean

group in three dimensions, SE(3), in its action on multiple screw systems. We

look at the problem of finding generating sets for these invariant subalgebras,

and also briefly describe the invariants for the standard actions on Rn of

both SE(3) and SO(3). The problem of the screw system action is then

approached using SAGBI basis techniques, which are used to find invariants

for the translational subaction of SE(3), including a full basis in the one and

two-screw cases. These are then compared to the known invariants of the

rotational subaction. In the one and two-screw cases, we successfully derive

a full basis for the SE(3) invariants, while in the three-screw case, we suggest

some possible lines of approach.
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Chapter 1

Introduction

The Special Euclidean group SE(3) is the set of all three-dimensional transla-

tions and rotations; that is, rigid body transformations in three-dimensional

space. These transformations can be used to describe motions in many dif-

ferent problems in physics and engineering. For example, these motions may

be made by a mechanism such as a robotic arm, something which is found

in many different industries. We assume that a simple arm can be modelled

as a series of joints, each capable of rotation, translation, or a combination

of the two, linked together by rigid elements. Usually there is some sort of

manipulator at the tip, called the end-effector. In particular, these motions

depend on several variables.

The infinitesimal motion of these mechanisms can be represented by screw

systems, which are k-dimensional subspaces of the Lie algebra se(3). We are

interested in classifying different screw systems, corresponding to different

robotic arms, by looking at their behaviour under the adjoint action. This
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is the action of SE(3) on its Lie algebra se(3) that, geometrically speaking,

corresponds to a change of coordinates in the ambient space. One way to

distinguish various orbits of this action is to look at its polynomial invari-

ants (though this does not always work; for example, in a reductive group,

invariants will only distinguish between closed orbits), for which it is useful

to know a generating set for all possible invariants. Hence the aim of this

paper is to try to find generating sets for invariants of the adjoint action

of SE(3) on multi-degree screw systems, corresponding to robotic arms with

multiple joints. Unfortunately, SE(3) is not a reductive group, as the adjoint

representation is not completely reducible, and so most of the standard in-

variant theory for finite and infinite reductive groups does not directly apply,

although we do know that the invariant ring of the adjoint action is finitely

generated [4].

The approach in this paper is to divide the action of SE(3) into transla-

tional and rotational subactions, and attempt to find the invariants for each.

This approach rests on a result due to Vasconcelos [14], who gives a method

for finding generating sets for invariant subrings of many groups, including

non-reductive ones, although it does not work when applied directly to the

action of SE(3). I used this method to find the translational invariants; the

results for the rotational invariants come from the standard action of SO(3),

and may be found in [15]. The next step is to use the invariants of both

subactions in order to find the set of special Euclidean invariants, which is

the intersection of the two previous invariant rings. This is successful in the

2



case of one- and two-screw systems, where I have found a full set of gener-

ating invariants for SE(3), but not for the three-screw system, where only

the rotational and some of the translational invariants are found. Some ex-

plorations of possible ways to find the full set of special Euclidean invariants

are also included. The calculations use the notion of SAGBI bases for sub-

algebras, which are more fully explained in Section 3, but have a number of

useful properties in analogue with Gröbner bases for ideals.

The second chapter deals with SE(3) and se(3), and presents a more com-

plete setup of the problem. It also explains the connection between screw

systems and mechanical joints, and how the adjoint action affects them. The

third chapter contains a brief review of relevant algebraic notions; namely,

monomial orderings and Gröbner bases, including a construction algorithm.

The next chapter continues with a review of some classical invariant theory

for finite and reductive groups, including Hilbert’s finiteness theorem and

construction methods for finding a generating set for the invariant subring

in the finite case. This is presented by way of comparison and a general

overview on the subject; it is not directly used to find the SO(3) or SE(3)

invariants.

Chapter 5 introduces the notion of SAGBI bases, due to Robbiano and

Sweedler [10], and explains some of their properties, as well as presenting

a construction algorithm similar to the Gröbner basis one in Chapter 2.

Then Chapter 6 deals with the invariant ring of SO(n), which is needed for

finding the invariants of the rotational subaction of SE(3). It goes through
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the classical derivation of a generating set for the SO(n) invariants, due to

Weyl [15], then presents a SAGBI basis for the same invariant ring. This is

then used to find a SAGBI basis for the standard action of SE(3) on Rn.

Finally, a Gröbner basis is given for the set of all algebraic relations amongst

the SO(3) invariants.

The last chapter presents the methods used to find the translational invari-

ants, and the generating sets I have calculated for the translational invariants

in the one and two-screw cases, as well as some invariants for the three-screw

case. The first two cases also have a derivation of the set of full special Eu-

clidean invariants, which fails for the last case, although some invariants can

still be found by inspection. Finally, there is a discussion of possible methods

for finding the full invariants in the three-screw case, although these were not

fully explored.
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Chapter 2

Introduction to SE(3)

2.1 The special Euclidean group

The special orthogonal group SO(3) is the group of rotations about the origin

in three dimensions. Since rotations preserve both lengths and angles, the

elements of SO(3) preserve the positive definite bilinear form xTx = x · x in

three-dimensional Euclidean space. This means that they can be written as

3× 3 orthogonal matrices. Furthemore, they must also preserve orientation,

so the matrices must have determinant 1.

The special Euclidean group, SE(3), is the semi-direct product of SO(3)

and the group of translations in three dimensions, R3. This is sometimes

called the set of rigid-body transformations, as it consists of all possible

transformations that can be made by an actual physical rigid object in three-

dimensional space, which can rotate and translate, but cannot change either

its size or its orientation.
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This product is a 6-dimensional Lie group, which is defined as a smooth

manifold G with a group structure, such that the group operations:

. : G×G −→ G

−1 : G −→ G
(2.1)

are continuous differentiable mappings with respect to the manifold structure.

In the case of SE(3), the group product is given by:

(R1, r1) · (R2, r2) = (R1R2, r1 +Rr2) (2.2)

and it has an affine action on R3 given by:

(R, r)x = Rx + r (2.3)

This can also be expressed in terms of a linear matrix representation:(
R r
0 1

)(
x
1

)
=

(
Rx + r

1

)
(2.4)

acting on the subset of R4 with last coordinate 1, isomorphic to R3.

Then, for a moving rigid body (such as the end-effector of a robotic arm),

we can specify two different coordinate frames: a home, or base, frame of

reference that is fixed in the ambient space around the mechanism; and a

coordinate system embedded in the body itself. If a point has coordinates

p in the reference frame, and coordinates p′ in the body frame, then these

are linked by p = Ap′ for some A ∈ SE(3). Now we change the ambient
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coordinates by a transformation T ∈ SE(3), so that a point p in the old

frame of reference has coordinates p1 = T−1p in the new one.

So if A is the transformation taking p′ to p, then in the new frame of refer-

ence:

Ap′ = p

A(Tp′1) = Tp1

(T−1AT )p′1 = p1

So the change of coordinates takes A 7→ T−1AT , which is the conjugation

mapping in SE(3).

2.2 Representation of joints

Chasles’s Theorem states that every element of SE(3) is equivalent to some

finite screw form; that is, a rotation about an axis combined with a transla-

tion along it. If the axis passes through the origin, then the screw form can

be written as: (
R(θ, v̂),

θ

2π
pv̂

)
(2.5)

where v̂ is a unit vector parallel to the axis, θ is the angle of rotation, and

p is the pitch of the screw, defined as the distance travelled along the axis

for one complete revolution around it. If the axis does not pass through the
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origin, take u to be the position vector of an arbitrary point on the axis.

Then the screw form can be written as:

(I3,u)

(
R(θ, v̂),

θ

2π
pv̂

)
(I3,−u) =

(
R,

θ

2π
pv̂ + (I3 −R)u

)
(2.6)

by translating the axis to the origin, finding the screw form, and translating

it back.

A common form for a mechanical joint is a pair of identically-shaped surfaces,

placed in contact with each other at all points, and free to move relative

to each other while maintaining that contact. Some examples are a pair of

nested spheres, which can form a ball-and-socket joint; two contacting planes;

nested surfaces of revolution or translation; or nested helicoidal surfaces.

These are called Reuleaux lower pairs [8]. They consist of surfaces in R3

that are invariant under a Lie subgroup of SE(3), with the dimension of the

subgroup being the same as the number of degrees of freedom of the joint.

Of particular interest are those with only one degree of freedom: revolute,

prismatic (translational) and helical joints, formed from surfaces of rotation,

translation, and helicoidal surfaces respectively. These all correspond to 1-

dimensional subgroups of SE(3) generated by a single element of SE(3).

Hence all these joints can be represented by screw forms.

2.3 Lie algebras

Given a Lie group, we can construct its Lie algebra by taking the space of

all possible tangent vectors at the identity to paths in the group passing
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through it (up to a natural equivalence). This space is an algebra with an

anticommutative multiplication operator, called the Lie bracket and usually

denoted by [·, ·]. (More on the theory of Lie groups and their algebras can

be found in [6]). The Lie algebra of SO(3) is denoted so(3), and consists of

all 3× 3 antisymmetric matrices. Geometrically, it is the set of infinitesimal

rotations, and its Lie bracket is just the commutator [X, Y ] = XY − Y X.

Likewise, the Lie algebra of SE(3) is se(3), the product of so(3) and the set

of infinitesimal translations, t(3), which is isomorphic to R3. Every element

of se(3), called a twist, is associated with a left-invariant vector field on

SE(3), generated by using left-multiplication to map the tangent space at

the identity to a tangent space at any other point of SE(3). Hence for

the infinitesimal motion of a rigid body, there is an element of se(3) that

generates the vector field that contains that motion, which can be found by

mapping it back to the identity.

Now we consider a way of writing the elements of se(3). The derivation here

follows that in [11]. Let p = (x, y, z) be a point on a rigid body that is moving

along a path in space, so that its position at time t is p(t) = (R(t), r(t))p(0),

with (R(0), r(0)) being the identity in SE(3).

Let s = (Ṙ(0), ṙ(0)) = (Ω,v) be the Lie algebra element corresponding to

this motion in se(3). Then the instantaneous velocity of p at time 0 is:

ṗ(0) = (ẋ(0), ẏ(0), ż(0))T

= Ṙ(0)(x(0), y(0), z(0)) + ṙ(0)

= Ωp(0) + v

(2.7)
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Since Ω is a 3× 3 antisymmetric matrix, it can be written as:

Ω =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (2.8)

for some ω ∈ R, giving Ωp = ω × p.

So (2.7) can be written as:

ṗ = ω × p + v (2.9)

The ω×p part of this is purely rotational motion, as Ω ∈ so(3), and the last

part is purely translational motion in the direction of v.

The 6-dimensional coordinates (ω,v), called Plücker coordinates, give one

way of writing the elements of se(3). For a zero-pitch twist, ω is parallel to

the axis of rotation, and v is the normal to the plane containing both u and

ω, i.e. the plane containing the origin and the axis of rotation. For a screw

with non-zero pitch, v has a component parallel to the axis of rotation as

well.

As with any Lie group, SE(3) has a group action on its Lie algebra by

means of the adjoint representation, SE(3) : se(3) → se(3), s 7→ AsA−1,

where A ∈ SE(3). Using the Plücker coordinates, this can be written as:(
R 0
TR R

)(
ω
v

)
=

(
Rω

TRω +Rv

)
(2.10)

where R ∈ SO(3), and

T =

 0 −tz ty
tz 0 −tx
−ty tx 0


10



represents a translation t = (tx, ty, tz) ∈ R3. This contains subactions of just

the translations (taking R = I3):(
I 0
TR I

)(
ω
v

)
=

(
ω

Tω + v

)
(2.11)

and just the rotations (taking T = 0):(
R 0
0 R

)(
ω
v

)
=

(
Rω
Rv

)
(2.12)

The latter is isomorphic to a double action of SO(3) on its Lie algebra so(3).

As mentioned before, an element of se(3) is associated with a left-invariant

vector field. Taking the path along this vector field that passes through

the identity then gives a 1-parameter subgroup of SE(3) associated with

that twist. The mapping from twist to subgroup is called the exponential

mapping. This means that a mechanical joint with a one degree of freedom

can be described in terms of a twist that generates its associated subgroup.

Given a twist, the subspace in se(3) that it generates can be represented

by a point in the projective space of se(3), called a screw. Any multiple of

the twist will give the same point in projective space, and furthermore, it

will generate the same 1-parameter subgroup in SE(3), by tracing out the

same path at a different rate, under the exponential mapping. This means

that it is more sensible to associate the 1-parameter subgroup, and the joint

it represents, with the screw rather than the twist. This is called a screw

system. A mechanism with multiple joints is described by a screw system of
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degree k, which is a (k − 1)-dimensional subspace of the projective space of

se(3), corresponding to a k-dimensional subspace in se(3), spanned by the

twists of each joint. This screw system describes the infinitesimal motion of

the end-effector of the mechanism.

We can consider two screw systems to be the same if there is a change of

coordinates taking one into the other; i.e., the adjoint action of SE(3) takes

the set of twists for one screw system to a set that generates the second. In

fact, the choice of twists to represent a screw system is not unique, so there

are many more actions, such as a change of basis, that will give the same

screw system, but the focus of this paper is the adjoint action.

So we want to be able to distinguish between different orbits of SE(3) in its

Lie algebra in order to help classify different screw systems. One way to do

this is by looking at the polynomial invariants in the coordinates of se(3).

For example, in the single screw case, the different orbits are distinguished

by looking at the pitch, which is equal to ω·v
ω·ω . This is the ratio of two

polynomial invariants, and it separates all orbits, except those for where

ω · ω = 0. On this subspace, however, v · v becomes an invariant, and can

be used to separate the remaining orbits.

12



Chapter 3

Gröbner Bases

A single-variable polynomial ring has some advantages over the multi-variate

case when it comes to finding generating sets for ideals. Any ideal in k[x]

is generated by a single polynomial, and dividing by that polynomial gives

a unique remainder, a property that can be used to test other polynomials

for membership in that ideal. However, these properties are in general not

true for ideals in multi-variable polynomial rings, though some of them can

be recovered by using particular bases, known as Gröbner bases. In order to

define these, though, we first need to have a standard way of writing each

polynomial; that is, an unequivocal order for its terms.

3.1 Monomial orderings

A monomial in multiple variables can be written as xα := xα1
1 . . . xαnn , for

some α ∈ Zn
≥0, which is the set of non-negative integers. The total degree
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of this monomial is then |α| := α1 + . . . + αn. In the single-variable case,

there is an obvious and unique way to order these monomials: namely, by

their degrees. With multiple variables it is much less clear, and there may

be several suitable ways. However, we can choose a few basic properties that

these orderings should have. If k[x1, . . . , xn] is the set of all polynomials in

x1, . . . , xn with coefficients drawn from the field k, then:

Definition 3.1.1 A monomial ordering on k[x1, . . . , xn] is a relation > on

the set of monomials {xα : α ∈ Zn
≥0} in k[x1, . . . , xn], such that:

1. > is a total ordering.

2. If xα > xβ and γ ∈ Zn
≥0, then xαxγ > xβxγ.

3. Every non-empty set of monomials in k[x1, . . . , xn] has a least element

under >.

Equivalently, this ordering can be defined on Zn
≥0, with similar properties.

Some examples of common monomial orderings are:

1. Lexicographic Order Let α = (α1, . . . , αn) and β = (β1, . . . , βn) be

in Zn
≥0, and suppose that k ∈ {1, . . . , n} is the smallest number such that

αk 6= βk. Then

α >lex β, or xα >lex xβ, if αk − βk > 0
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e.g. in k[x1, x2, x3], x
6
1 > x5

1 > x1x
6
2 > x9

2.

This is based on the ordering x1 > x2 > . . . > xn. A reordering of the

variables will give a different lexicographic ordering on the set of monomials

in k[x1, . . . , xn].

2. Graded Lexicographic Order Let α, β ∈ Zn
≥0. Then α >grlex β, or

xα >grlex xβ, if |α| > |β| or |α| = |β| and α >lex β.

e.g x6
2 > x5

1 > x4
1x2.

3. Graded Reverse Lexicographic Order Let α, β ∈ Zn
≥0, and let

k ∈ {1, . . . , n} be the greatest number such that αk 6= βk. Then α >grevlex β,

or xα >grevlex xβ,

if |α| > |β| or |α| = |β| and αk − βk < 0

e.g. x6
2 > x5

1 > x4
1x3 > x3

1x
2
3 > x3

2x
2
3.

Again, this is based on the ordering x1 > . . . > xn.

A monomial ordering is called an elimination ordering if the variables can be

divided into two sets: {x1, . . . , xn} ∪ {y1, . . . , ym}, for which any monomial

containing any one of x1, . . . , xn is greater than all monomials in k[y1, . . . , ym].

Lexicographic ordering is an example of this, as is a product order, where

two separate orderings are used on k[x1, . . . , xn] and k[y1, . . . , ym]. In this

15



case, monomials in k[x1, . . . , xn, y1, . . . , ym] are sorted by their ordering with

respect to x1, . . . , xn, with ties being broken by the ordering with respect to

y1, . . . , ym.

Once a monomial ordering is chosen, we can sort all the terms of a given poly-

nomial f , and find the leading term LT (f) (which includes the coefficient).

Then the leading term of f without its coefficient is the leading monomial,

LM(f), and, taking this to be xα for some α ∈ Zn
≥0, we define the multi-

degree of f to be α, denoted deg f . Finally, for a subset I ⊂ k[x1, . . . , xn],

LT (I) := {LT (f) : f ∈ I} is the set of all its leading terms, and the ideal

they generate is denoted 〈LT (I)〉.

3.2 Gröbner bases

The concept of a Gröbner basis can now be defined:

Definition 3.2.1 Let I ⊂ k[x1, . . . , xn] be an ideal, and choose some mono-

mial ordering. A finite subset G = {g1, . . . , gs} of I is a Gröbner basis if

〈LT (g1), . . . , LT (gs)〉 = 〈LT (I)〉 (3.1)

This means that the leading term of any element of I is divisible by some

LT (gi). IfG has this property, then it is also a basis for I, justifying the name.

Another property of Gröbner bases is that for any given f ∈ k[x1, . . . , xn],
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there is a unique r ∈ k[x1, . . . xn] such that LT (gi) does not divide LT (r) for

any i, and

f = q1g1 + . . .+ qsgs + r

although the qi’s may not be unique. This is the remainder of f on division

by G, f̄G. It is also sometimes called the normal form of f with respect

to I, and gives a unique way of writing f under the projection mapping

π : k[x1, . . . , xn]→ k[x1, . . . , xn]/I. This also means that a Gröbner basis for

an ideal can be used to test membership in that ideal, by checking f̄G = 0.

There are many other uses for Gröbner bases as well, some of which are

described in the next section.

Theorem 3.2.2 (The Hilbert Basis Theorem) Every ideal I ⊂ k[x1, . . . , xn]

has a finite generating set.

This theorem is proved on pg 74 of [1]. It can be extended to show that

every ideal has a finite Gröbner basis. Furthermore, there is an algorithm

for constructing a Gröbner basis from a given generating set for I, called

Buchberger’s algorithm (see Chapter 2 of [1]), as described below.

Let f and g be non-zero polynomials in k[x1, . . . , xn]; choose a monomial

ordering on {x1, . . . , xn}, and take α = deg(f), and β = deg(g). Let γ =

(γ1, . . . , γn) ∈ Zn
≥0 be such that γi = max(αi, βi) for 1 ≤ i ≤ n. Then the

least common multiple of LM(f) and LM(g) is xγ.

17



Definition 3.2.3 The S-polynomial of f and g is:

S(f, g) =
xγ

LT (f)
· f − xγ

LT (g)
· g (3.2)

where xγ is the least common multiple of LM(f) and LM(g).

Note that by construction, either this is zero, or the leading term of S(f, g) is

less than both LT (f) and LT (g). These S-pairs can then be used to construct

the following algorithm for finding a Gröbner basis for I = 〈f1, . . . , fr〉.

3.2.1 Buchberger’s algorithm

1. Let G0 := {f1, . . . , fr}.

2. Given some Gk: for all fi, fj ∈ Gk with i 6= j, find s := S(fi, fj), and

take the remainder on dividing by Gk, s
′ := s̄Gk . Let S be the set of

all such nonzero s′.

3. If S = ∅, then finish. Otherwise, set Gk+1 := Gk ∪ S and repeat from

Step 2.

4. Let G∞ :=
⋃
Gk.

Theorem 3.2.4 This algorithm will always terminate after a finite number

of steps. The result is G∞, a Gröbner basis for I.

As the algorithm terminates in a finite number of steps, the Gröbner basis

produced is finite. However, it is not necessarily minimal, in the sense that
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it may contain unnecessary elements. Also, the result will depend on the

monomial ordering used.
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Chapter 4

Finite Group Actions

4.1 Invariant polynomials

The results for invariants of finite groups are well established, with many of

the founding results in the field being due to Hilbert, and the theory is more

complete than in the general case. In particular, there are algorithms that

always allow us to find a finite basis for the invariant subring.

For this chapter, we assume that the field k is of characteristic 0. Let G ⊂

GL(n, k), the general linear group of invertible linear transformations of kn

for a field k, be a finite group with a matrix representation. Then the elements

of G act on polynomials in k[x1, . . . , xn] as shown:

A : f(x1, . . . , xn) 7−→ f(A · (x1, . . . , xn)) for A ∈ G (4.1)

The polynomial f is invariant under G if f(x1, . . . , xn) = f(A · (x1, . . . , xn))

for all A ∈ G, and the set of all such invariants is denoted k[x1, . . . , xn]G.

This is a subring of k[x1, . . . , xn].
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Theorem 4.1.1 Hilbert’s Finiteness Theorem Let G be a finite group acting

on k[x1, . . . , xn]. Then k[x1, . . . , xn]G is finitely generated.

4.2 Syzygies

Suppose {f1, . . . , fr} is a set of generators for an invariant subring k[x1, . . . , xn]G,

and consider the ring k[y1, . . . , yr]. Algebraic relations between f1, . . . , fr are

called syzygies. The set of all such relations in k[y1, . . . , yr] gives rise to an

ideal, called the syzygy ideal, or the ideal of relations:

IF = {h ∈ k[y1, . . . , yr] : h(f1, . . . , fr) = 0} (4.2)

where F = {f1, . . . , fr}.

Given F , this can be calculated directly using Gröbner basis methods:

Theorem 4.2.1 Let F := {f1, . . . , fr}, and JF := 〈f1 − y1, . . . , fr − yr〉.

Then

1. IF = JF ∩ k[y1, . . . , yr]

2. Choose an elimination ordering in k[x1, . . . , xn, y1, . . . , yr] where xi > yj

for 1 ≤ i ≤ n, 1 ≤ j ≤ r. Let G be a Gröbner basis for JF . Then

G ∩ k[y1, . . . , yr] is a Gröbner basis for IF in the monomial ordering

induced on k[y1, . . . , yr].
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This is proved on pg 340 of [1]. If IF 6= {0}, then invariants cannot be

expressed uniquely in terms of the generating set {f1, . . . , fr}. Instead, they

are isomorphic to a factor ring:

Lemma 4.2.2 If k[x1, . . . , xn]G = k[f1, . . . , fr], then

k[y1, . . . , yr]/IF ∼= k[x1, . . . , xn]G (4.3)

Given a known generating set {f1, . . . , fm} for an invariant ring k[x1, . . . , xn]G,

and a general polynomial f ∈ k[x1, . . . , xn], there is a test to determine if f

is a G-invariant:

Lemma 4.2.3 Choose an elimination ordering with xi > yj for all 1 ≤ i ≤

n, 1 ≤ j ≤ m. Let B be a Gröbner basis for the ideal 〈f1−y1, . . . , fm−ym〉 ⊂

k[x1, . . . , xn, y1, . . . , ym], and let g be the remainder of f on division by B,

f̄B. Then:

1. f ∈ k[f1, . . . , fm] iff g ∈ k[y1, . . . , ym]

2. If f ∈ k[f1, . . . , fm], then f = g(f1, . . . , fm)

The second part of this can be used to write invariants in terms of the known

generating set. However, this representation need not be unique, depending

on the syzygies between the generators.
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4.3 Finding generators

For any given f ∈ k[x1, . . . , xn], we can ‘average out’ the effects of G:

Definition 4.3.1 Let G be a finite matrix group. The Reynolds operator of

G is the mapping

RG : k[x1, . . . , xn] −→ k[x1, . . . , xn]

such that RG(f)(x1, . . . , xn) =
1

|G|
∑
A∈G

f(A · (x1, . . . , xn))

Lemma 4.3.2 RG has the properties that

1. RG is k-linear in f

2. For all f ∈ k[x1, . . . , xn], then RG(f) ∈ k[x1, . . . , xn]G

3. f ∈ k[x1, . . . , xn]G iff RG(f) = f

So RG gives a way of finding invariants from arbitrary polynomials. Fur-

thermore, RG(f) acting on monomials produces homogenous polynomials of

the same total degree as the original, since the group action does not change

the degree, and so RG(f) will have the same multi-degree as f . In fact, RG

can be used to find a full generating set for the invariant subalgebra. (The

following theorem is due to Emmy Noether):
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Theorem 4.3.3 For a finite matrix group G,

k[x1, . . . , xn]G = k[RG(xβ) : |β| ≤ |G|] (4.4)

A proof of this is given in [1], pg 331. This proves the Hilbert Finiteness

Theorem for finite groups (4.1.1). It means that we only need to consider RG

as applied to a finite number of monomials in order to find a full generating

set for k[x1, . . . , xn]G. However, the number of calculations needed may be

very large, and many will be unnecessary, in that the result is zero, or an

invariant already obtained. One way to reduce the number of calculations

necessary is by knowing the number of invariants expected at each degree;

that is, the dimension of k[x1, . . . , xn]Gd , the set of all homogenous invariants

of degree d. This information is encoded in the Hilbert series for G:

Definition 4.3.4 The Hilbert series of k[x1, . . . , xn]G is defined as:

ΦG(z) =
∞∑
d=0

dim(k[x1, . . . , xn]Gd )zd (4.5)

For the rest of this section, we assume that k is algebraically closed as

well. The following theorem may be found in [13] as Theorem 2.2.1, where

it is given for k = C:

Theorem 4.3.5 (Molien’s Theorem) The Hilbert series of k[x1, . . . , xn] is

given by

ΦG(z) =
1

|G|
∑
A∈G

1

det(In − zA)
(4.6)
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For an example of its application, taken from Chapter 2 of [13], let G be the

dihedral group D6 = {ι, δ, . . . , δ5, σδ, . . . , σδ5} acting on C[x, y, z], where:

ι =

1 0 0
0 1 0
0 0 1

 , σ =

1 0 0
0 −1 0
0 0 −1

 , δ =

 1
2

−
√

3
2

0√
3

2
1
2

0
0 0 1


Using Molien’s Theorem, the Hilbert series is

ΦG(z) = 1 + 2z2 + 3z4 + 5z6 + . . . (4.7)

So there are two algebraically independent invariants of degree 2, say f1 and

f2, which generate three invariants of degree 4: f 2
1 , f1f2, f

2
2 , and four of degree

6: f 3
1 , f

2
1 f2, f1f

2
2 , f

3
2 . But since dim(C[x, y, z]G6 ) = 5, there must be another

invariant f3 of degree 6, algebraically independent of f1 and f2, which we

can find by applying RG to the monomials of degree 6. Hence this simplifies

calculations with the Reynolds operator.

The Hilbert series can also be used to test if a set of invariants {f1, . . . , fr}

generates k[x1, . . . , xn]G, by calculating ΦG(z) and comparing it to the Hilbert

series of k[f1, . . . , fr]. The fi’s will be a generating set if and only if these

two series are equal. If they are not equal then, taking the least degree d at

which they differ, there must be some invariants of degree d that are not in

k[f1, . . . , fr]. The Reynolds operator can then be applied to monomials of

degree d to find more invariants of that degree, and these can be added to

{f1, . . . , fr}.

The Hilbert series of k[f1, . . . , fr] is found using the following lemma:
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Lemma 4.3.6 Let f1, . . . , fr be algebraically independent homogenous ele-

ments of k[x1, . . . , xn] with degrees d1, . . . , dr respectively. Then the Hilbert

series of R := k[f1, . . . , fr] is

H(R, z) =
∞∑
n=0

(dimRd)z
d =

1

(1− zd1) . . . (1− zdr)
(4.8)

This is proved as Lemma 2.2.3 in [13], for k = C. For example of its appli-

cation (also taken from Chapter 2 of Sturmfels):

Example 1 Let G :=

{
±
(

1 0
0 1

)
,±
(

0 −1
1 0

)}
. We want to show that

its invariant ring C[x1, x2]
G is generated by the invariants I1 := x2

1 +x2
2, I2 :=

x2
1x

2
2, I3 := x1x

3
2 − x3

1x2.

Using Molien’s theorem, the Hilbert series of the invariant subalgebra C[x1, x2]
G

is:

ΦG(z) =
1

4

(
1

(1− z)2
+

1

(1 + z)2
+

2

1 + z2

)
=

1 + z4

(1− z2)(1− z4)
(4.9)

We can use the Gröbner basis method of Theorem 4.2.1 to determine that the

syzygies of {I1, I2, I3} are generated by I2
3 − I2I2

1 + 4I2
2 ; i.e. I2

3 = I2
1I2 − 4I2

2 .

So every polynomial in C[I1, I2, I3] can be written in the form q(I1, I2) +

I3r(I1, I2), and C[I1, I2, I3] can be written as C[I1, I2]⊕ I3C[I1, I2].

Since I1 and I2 are algebraically independent homogenous polynomials, from

the syzygy calculation, Lemma 4.3.6 gives the Hilbert series of C[I1, I2] as:

H(R, z) =
1

(1− zd1)(1− zd2)

=
1

(1− z2)(1− z4)

(4.10)
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As the degree of I3 is 4, each element of degree d in C[I1, I2] corresponds to an

element of degree d+4 in I3C[I1, I2]. Hence dim(C[I1, I2])d = dim(I3C[I1, I2])d+4,

and so the Hilbert series of I3C[I1, I2] is:

H(R, z) =
z4

(1− z2)(1− z4)
(4.11)

So the Hilbert series of C[I1, I2, I3] is:

H(R, z) =
1 + z4

(1− z2)(1− z4)
(4.12)

which is exactly ΦG(z), meaning that the two subspaces are equal, and the

set {I1, I2, I3} generates the invariant subalgebra.

4.4 Hironaka decompositions

Again, we assume that k is algebraically closed.

Definition 4.4.1 Let R = ⊕∞d=0Rd be a graded algebra over a field k = R0,

and let F := {f1, . . . , fr} be a set of homogenous elements in R. Then F is

a homogenous system of parameters if

1. f1, . . . , fr are algebraically independent.

2. R is finitely generated as a module over k[f1, . . . , fr].

Lemma 4.4.2 An invariant ring always has a homogenous system of pa-

rameters.
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In fact, for a finite groupG, R is freely generated as a module over k[f1, . . . , fr].

This is due to the fact that the invariant ring is Cohen-Macaulay (see Sec-

tion 2.3 of [13] for a more complete discussion).This means that an invariant

ring R := k[x1, . . . , xn]G can be written as R = ⊕ti=1gik[f1, . . . , fr] for a set

{g1, . . . , gt} of homogenous invariants, and a set {f1, . . . , fr} of algebraically

independent homogenous invariants.

This is called the Hironaka decomposition of R. The fi’s are primary invari-

ants, and the gj’s are secondary invariants ; together, they form a generating

set for R. The decomposition also means that for any secondary invariant gj,

there is always a syzygy of the form g2
j = h(f1, . . . , fr), for some polynomial

h.

This decomposition is not unique, and various decompositions may differ

from each other in terms of the degrees of the primary and secondary invari-

ants. However, once a set of primary invariants with degrees d1, . . . , dr has

been found, this gives some information about the secondary invariants (see

Proposition 2.3.6 of [13]):

Lemma 4.4.3 If the primary invariants of R in a particular Hironaka de-

composition have degrees d1, . . . , dr, then:

1. The number of secondary invariants is
d1 . . . dr
|G|

.
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2. The degrees (including multiplicity) of the secondary invariants are the

exponents of

(ΦG(z))

(
r∏
i=1

(1− zdi)

)
= ze1 + . . .+ zes (4.13)

Once a Hironaka decomposition has been found for R, then the Hilbert series

can be calculated immediately:

Lemma 4.4.4 For an invariant subalgebra with Hironaka decomposition as

above, the Hilbert series is

H(R, z) =

(∑s
j=1 z

deg gj

)
∏r

i=1 (1− zdeg fi)
(4.14)

See pg 40 of [13] for a proof. In the case of Example 1, the primary invariants

are I1 and I2, and the secondary invariant is I3, with the Hilbert series

obtained matching that the above lemma.

4.5 Reductive groups

Although finite groups have a well-established invariant theory, it only ex-

tends to infinite groups in some cases. Groups for which it does are called

reductive groups. For cases where the base field is of characteristic 0, this

may be defined as:

Definition 4.5.1 A group G is linearly reductive if every rational linear

representation of G is completely reducible.
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Examples of reductive groups include the general linear group, and any

semisimple group such as SO(3). However, SE(3) is not reductive, as the

subspace of infinitesimal translations in se(3) is invariant in the adjoint rep-

resentation, but has no invariant complement.

For reductive groups, Hilbert’s finiteness theorem (4.1.1) still applies. Fur-

thermore, we can find a unique Reynolds operator for each group action (by

integrating over G with respect to Haar measure) with the following proper-

ties:

Lemma 4.5.2 Let G be a linear algebraic group acting on {x1, . . . , xn}.

Then there exists a linear mapping RG : k[x1, . . . , xn] → k[x1, . . . , xn]G such

that

1. RG(f) = (f) for all f ∈ k[x1, . . . , xn]G.

2. RG(Af) = RG(f) for all f ∈ k[x1, . . . , xn] and all A ∈ G.

A mapping of this sort will have the same properties as in Lemma 4.3.2, and

the averaging operator defined for finite groups is an example of one of these

mappings.

Theorem 4.3.3 does not generalise, but there is an algorithm for finding the

generators of the invariant ring of a reductive group, which may be found

in [3]. Furthermore, we can define the Hilbert series of a reductive group as

before, and there is a form of Molien’s theorem that applies in some cases:
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Theorem 4.5.3 (Molien-Weyl Theorem)

1. Let G be a compact Lie group, k = R or C, and dµ be normalised Haar

measure on G. Then for |z| < 1,

H(k[x1, . . . , xn]G, z) =

∫
G

dµ

det(1− zg)
(4.15)

2. Let G be semi-simple, and T be a maximal torus of a maximal compact

subgroup of G. Take α1, . . . , αd to be roots of G and W its Weyl group.

Then, if dµ is normalised Haar measure on T and |z| < 1:

H(k[x1, . . . , xn]G, z) =
1

|W |

∫
T

(1− α1(g)) . . . (1− αd(g))

det(1− zg)
dµ (4.16)

For SO(3), we can take T to be the subgroup of rotations around the z-

axis [4]. Applying the second part of Theorem 4.5.3 gives the Hilbert series

of SO(3) as:

H(R[x1, x2, x3]
SO(3)) =

1

1− z2
(4.17)

Finally, the invariant ring of a reductive group still has a Hironaka decom-

position, and hence its Hilbert series can be written in the form of Lemma

4.4.4.
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Chapter 5

SAGBI Bases

5.1 Introduction

When SO(3) or SE(3) is acting on se(3), the resulting set of invariants

is a subalgebra, rather than an ideal, so Gröbner bases cannot be used.

Instead, we can use SAGBI bases (Subalgebra Analogues to Gröbner Bases

for Ideals), first defined by Robbiano and Sweedler [10], which have similarly

useful properties. For example, they can be used to test for membership in

the subalgebra for which they form a basis, as with Gröbner bases and ideals.

Furthermore, as with Gröbner bases, a SAGBI basis for a subalgebra gen-

erates that subalgebra. However, SAGBI bases are not always finite, as a

subalgebra of a polynomial ring, unlike an ideal, does not need to be finitely

generated. It is also possible for finitely-generated subalgebras to have a fi-

nite SAGBI basis with respect to one term ordering, but not with respect to

another, or to have no finite SAGBI basis for any term ordering at all.
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There is a SAGBI basis test, given in [10], analogous to the Gröbner basis

test, which determines if a given set is a SAGBI basis. This then leads into a

method for constructing a SAGBI basis from a given generating set, similar

to the one in Buchbager theory, as in Section 1. For a finite generating set,

and a subalgebra that has a finite SAGBI basis, the method will terminate

after a finite number of steps. However, in general it need not do so.

If R is a commutative ring, and E : R −→ N is any function, the support of

E is supp E = {r ∈ R : E(r) 6= 0}. An exponent function of R is one that

has finite support. In this case, let RE :=
∏

t∈T tE(t), where T is any finite

set containing suppE. If E is the constant function 0, with the empty set as

its support, then RE is defined as 1.

For a subset S of R containing supp E, SE can be defined similarly. Let

R = k[x1, . . . , xn]. Then SE is called an S power product, and the set of all

such power products is denoted by PP (S).

Choose some monomial ordering and find the leading monomial LM(b) of

b ∈ k[x1, . . . , xn]. Then LM(PP (S)) = PP (LM(S)).

Definition 5.1.1 Let B be a subalgebra of k[x1, . . . , xn] and S ⊂ B. S

is a SAGBI basis for B if the lead term of every element of B lies in

PP (LM(S)) = LM(PP (S).

This means that for every non-constant b ∈ B, LM(b) is a finite product of

terms of the form LM(s), where s ∈ S. Equivalently, LM(b) is the leading
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monomial of a finite product of elements of S. Note that a SAGBI basis for

an ideal is a Gröbner basis as well.

The process of SAGBI reduction, or subduction , of an element b ∈ k[x1, . . . , xn]

over a subset S ⊂ k[x1, . . . , xn] is as follows:

1. Initialise: Set b0 = b

2. If bi ∈ k, stop

3. If LM(bi) 6∈ PP (LM(S)), stop

4. Otherwise, there is an exponent function Ei on S with LM(bi) =

LM(SEi), since LM(bi) ∈ LM(PP (S)). Let γi be such that the leading

monomials of bi and γiS
Ei are the same, and let bi+1 = bi − γiSEi .

5. Then either bi+1 = 0 or LM(bi+1) < LM(bi).

6. Repeat from Step 2.

The output of this algorithm is called the final subductum of b over S. It

will terminate after a finite number of steps, as the degree of bi is strictly

decreasing.

Lemma 5.1.2 If S ⊂ B, where B is a subalgebra of k[x1, . . . , xn], then b ∈ B

iff the final subductum c of b is also in B.
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Proof. By construction, b = c +
∑M−1

i=0 γiS
Ei , for some M ∈ N . As all

s ∈ S are in B, and B is a subalgebra, SEi ∈ B for all i. Hence b ∈ B iff

c ∈ B. �

5.2 Constructing a SAGBI basis

Definition 5.2.1 Let A be a subset of k[x1, . . . , xn], containing the support

of the exponent functions E and F . The pair {E,F} is an A tête-a-tête if

LM(AE) = LM(AF ).

These are analogous to the S-polynomials in Gröbner basis theory.

Hence LT (AE) = ρLT (AF ) for some nonzero ρ ∈ k. Let T (E,F ) := AE −

ρAF , so that LM(T (E,F )) < LM(AE).

Let A be a subset {f1, . . . , fm} of k[x1, . . . , xn]. Then a homomorphism φ :

k[y1, . . . , ym] −→ k[x1, . . . , xn] can be constructed by mapping yi 7→ LT (fi)

for each i. The tête-a-têtes of A are represented by the elements of the kernel

of φ. More precisely, each element of the kernel, on making the substitution

yi 7→ fi, is T (E,F ) for some tête-a-tête {E,F} of A.

Definition 5.2.2 A set T generates the S tête-a-têtes if T is a set of S

tête-a-têtes, and for any S tête-a-tête (E,F ) there are S tête-a-têtes {Li, Ri}

and mi ∈ N such that:
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for each i, {Li, Ri} ∈ T

and E =
∑
i

miLi, F =
∑
i

miRi

(5.1)

In the previous example, a generating set for the tête-a-têtes would be rep-

resented by a generating set for the kernel of φ.

5.2.1 SAGBI basis construction algorithm

Let G be a subset of k[x1, . . . , xn].

1. Initialise: Set G0 = G

2. Induction on Gj:

(a) Let Tj ⊂ k[x1, . . . , xn] generate the Gj tête-a-têtes

(b) For each (L,R) ∈ Tj, let f(L,R) be any final subductum of

T (L,R) over Gj

(c) Let Fj be the set of all f(L,R) 6∈ k

(d) Set Gj+1 = Gj ∪ Fj

3. Set G∞ =
⋃
Gj
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Theorem 5.2.3 Let G be as above, and B be the subalgebra of k[x1, . . . , xn]

that it generates. Then:

1. G∞ is a SAGBI basis for B

2. Gj is a SAGBI basis for B iff Gj = Gj+1

The proof is given as Theorem 3.5 in [10].
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Chapter 6

SO(n) invariants

In order to understand the invariants of SE(3), it is helpful to know those

of the subaction corresponding to SO(3), as described in Section 1. This

subaction is isomorphic to an action of SO(3) on R3 × R3, as the adjoint

action of SO(3) is isomorphic to its standard action on R3, although this is

only true in the three-dimensional case. The result for the invariants of the

standard action of SO(3) is well-established, and the derivation here due to

Chapter 2 of Weyl [15].

Let O(n) be the group of all orthogonal n × n matrices, which can be split

into two connected components: O−(n), containing all elements of O(n) with

determinant −1, and SO(n), which could be written in an equivalent manner

as O+(n).

Hence we can define even and odd invariants for the action of O(n) on multi-

ple vectors in Rn. The first sort are standard O(n) invariants, but the second
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have the property:

f(A(x1, . . . ,xm)) = det(A)f(x1, . . . ,xm) (6.1)

Both of these are invariants for SO(n), though only the even invariants are

true invariants for O(n).

6.1 The action on two vectors

Lemma 6.1.1 The invariants of O(n) acting on two vectors x and y are

generated by the scalar products x · x, x · y, and y · y.

Proof. Let f(x,y) be an invariant of O(n). Choose any two fixed x and y,

and construct a Cartesian coordinate system {e1, . . . , en} in Rn such that:

x = αe1 (6.2)

y = βe1 + γe2 (6.3)

The transformation between the original coordinate system and the new one

is an orthogonal one, and so f should be invariant under it:

f(x,y) = f(x′,y′) (6.4)

where

x′ = (α, 0, . . . , 0) (6.5)

y′ = (β, γ, 0, . . . , 0) (6.6)
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So f ∈ k[α, β, γ]. By construction, α2 = x′ · x′ = x · x (as the scalar product

is invariant under O(n)). Likewise, αβ = x′ ·y′ = x ·y, and β2 +γ2 = y′ ·y′ =

y · y. This means that:

α =
√

x · x (6.7)

β =
x · y√
x · x

(6.8)

γ =

√
(x · x)(y · y)

(x · y)2
(6.9)

Now two further orthogonal transformations can be applied by changing the

direction of either e1 or e2. The first corresponds to α 7→ −α and β 7→

−β, and the second to γ 7→ −γ. Since f is invariant under both these

transformations, this means that if it is written as a sum of monomials of

the form M := αaβbγc, then c must be even for each monomial, as must the

sum of a and b.

If a and b are both even, then

M = (α2)m(αβ)2n(β2)p(γ2)r

∈ k[x · x,x · y,y · y, (x · y)2

x · x
]

(6.10)

On the other hand, if a and b are both odd, then

M = (α2)m(αβ)2n+1(β2)p(γ2)r

∈ k[x · x,x · y,y · y, (x · y)2

x · x
]

(6.11)

Hence f := F (x ·x,x ·y,y ·y, x·y
x·x), for some F . Similarly, by taking y := αe1

and x := βe1+γe2, it is possible to write f in the form f := G(x·x,x·y, x·y
y·y).
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These can be rewritten as:

f =
F (x · x,x · y,y · y)

(x · x)l
(6.12)

f =
G(x · x,x · y,y · y)

(y · y)m
(6.13)

for some l,m ∈ N≥0.

Now let h(ξ, ν, λ) := λmF (ξ, ν, λ)− ξlG(ξ, ν, λ). Then by construction, h(x ·

x,x · y,y · y) = 0.

Since {x · x,x · y,y · y} are algebraically independent (which can be checked

by a syzygy calculation as in Section 4), this means that h(ξ, ν, λ) = 0.

Hence λmF (ξ, ν, λ) = ξlG(ξ, ν, λ), so F is divisible by ξl. Therefore:

f =
F (x · x,x · y,y · y)

(x · x)l

= F1(x · x,x · y,y · y)

(6.14)

for some F1 ∈ k[x1, x2, x3]. �

When n > 2, there are no odd invariants for the action of O(n) on two

vectors, and so this is a basis for the SO(n) invariants as well. However, in

the case n = 2, an extra invariant must be added: the determinant

|xy| =
∣∣∣∣x1 y1

x2 y2

∣∣∣∣ (6.15)

which is an odd invariant. This gives a complete basis for the set of SO(n)

invariants. The n = 2 case then forms the base case for the action of SO(n)

on m vectors, for a general m, which proceeds by induction.
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6.2 The action on m vectors

If the vectors are {x1, . . . ,xm} ⊂ Rn, with the jth coordinate of xi being

denoted by xij, then the result is:

Theorem 6.2.1 For SO(n) acting on m vectors in Rn,

1. Every even invariant can be written as a polynomial in the scalar prod-

ucts xi · xj.

2. Every odd invariant is a sum of terms of the form

[xi1 . . .xin ]g(x1, . . . ,xm) (6.16)

where g is an even invariant, and

[xi1 . . .xin ] := |xi1 . . .xin| =

∣∣∣∣∣∣∣∣∣
xi11 . . . xin1

xi12 . . . xin2
...

. . .
...

xi1n . . . xinn

∣∣∣∣∣∣∣∣∣ (6.17)

is the bracket factor.

Let this theorem be denoted by Tmn . The first stage of the proof is to show

that T n−1
n−1 → T n−1

n , so that if the theorem is true for (n− 1) vectors in Rn−1,

it will be true for the same number of vectors in Rn. The next two steps,

T n−1
n → T nn → Tmn , for m > n, require the use of a construction known as

Capelli’s identity.
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The m < n case is covered in T nn ; if f = f(x1, . . . ,xm) is an invariant, then

it can be written as a function of x1, . . . ,xn for n > m, and so T nn applies.

In this case, the only invariants are even ones.

6.3 Capelli’s identity

This identity has two forms: the special and general case, which are both

defined in terms of polarizations of a polynomial f :

If f is a polynomial in the coordinates of x1, . . . ,xm, we can write it as

f(x1, . . . ,xm) = f(x11, . . . , xmn). Then by introducing a small perturbation

in x1:

f((x11, . . . , x1n, x21, . . . , xmn) + t(x′11, . . . , x
′
1n, 0, . . . , 0)

= f(x11 + tx′11, . . . , x1n + tx′1n, x21, . . . , xmn)

= f(x11, . . . , xmn) + t f1(x11, . . . , xmn, x
′
11, . . . , x

′
1n) + . . .

(6.18)

Then we can define:

Definition 6.3.1 The polarized polynomial of f is

Dx′1x1
f := f1(x11, . . . , xmn, x

′
11, . . . , x

′
1n) = f(x1, . . . ,xm,x

′
1) (6.19)

This can be written in terms of differentials:

Dx′1x1
f =

∂f

∂x11

x′11 + . . .+
∂f

∂x1n

x′1n (6.20)
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Similarly, for general 1 ≤ i, j ≤ m, Dxixjf is defined as:

Dxixjf =
∂f

∂xj1
xi1 + . . .+

∂f

∂xjn
xin (6.21)

If f is an (even or odd) invariant of O(n), then Dxixjf is likewise.

Theorem 6.3.2 (Capelli’s Identity) If {x1, . . . ,xm} are independent vectors

in an n-dimensional vector space, and m ≥ n, then∣∣∣∣∣∣∣∣∣
Dmm + (m− 1) . . . Dm2 Dm1

...
. . .

...
...

D2m . . . D22 + 1 D21

D1m . . . D12 D11

∣∣∣∣∣∣∣∣∣ f =

{
0 if m > n

|x1 . . .xn|Ωf if m = n

(6.22)

where

Ω :=

∣∣∣∣∣∣∣∣∣∣

∂

∂x11

. . .
∂

∂x1n
...

. . .
...

∂

∂xm1

. . .
∂

∂xmn

∣∣∣∣∣∣∣∣∣∣
where xij is the jth coordinate of xi, and Dij := Dxixj .

The case m = n is Capelli’s special identity, while m > n is the general

identity. The proof for both cases can be found in Chapter 2, Section 4 of

[15].

We now return to the proof of Theorem 6.2.1:
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Proof. For a set of vectors {x1, . . . ,xn−1} in Rn, let f(x1, . . . ,xn−1) =

f(x11, . . . , x(n−1)n) be a SO(n) invariant depending upon them, and set:

f0

x11 . . . x(n−1)1
...

. . .
...

x1n . . . x(n−1)n

 = f


x11 . . . x(n−1)1
...

. . .
...

x1(n−1) . . . x(n−1)(n−1)

0 . . . 0

 (6.23)

For any given x1, . . . ,xn−1, it is possible to construct a vector z 6= 0 perpen-

dicular to all xi. Then a Cartesian coordinate system can be chosen such

that the last basis vector en has direction z.

In the new coordinate system, xi can be written as x̄i = x̄i1e1 + . . . +

x̄i(n−1)en−1, by construction, and so the last coordinate vanishes. This change

of coordinate system can be represented by an orthogonal transformation

τ ∈ O(n), and if det τ 6= 1, we can reverse the direction of one of the basis

vectors to get det τ = 1. Hence τ is an element of SO(n) with x̄i = τ(xi),

and so f is invariant under the change:

f(x1, . . . ,xn−1) = f(x̄1, . . . , x̄n−1) = f0(x̄1, . . . , x̄n−1) (6.24)

Since the new coordinates x̄i are zero in the last coordinate, the function f

is equal to f0 in these coordinates.

If f is an odd invariant, then f 7→ −f under the transformation
1 0 . . . 0

0
. . .

...
... 1 0
0 . . . 0 −1

 ∈ O−(n)
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Clearly f0 is not changed when this transformation is applied to f , but since

f 7→ −f , this means that f0 = −f0, and so f0 = 0. Hence, from (6.24),

f = 0, and so T n−1
n is satisfied.

On the other hand, if f is an even invariant, then so is f0, and by T n−1
n−1 it

can be written in terms of the scalar products x̄i · x̄j:

f0(x̄1, . . . , x̄n−1) = F

 x̄1 · x̄1 . . . x̄1 · x̄n−1
...

. . .
...

x̄n−1 · x̄1 . . . x̄n−1 · x̄n−1

 (6.25)

Since the scalar products are SO(n) invariants, xi · xj = x̄i · x̄j, and so by

(6.24):

f(x1, . . . ,xn−1) = F

 x1 · x1 . . . x1 · x(n− 1)
...

. . .
...

xn−1 · x1 . . . xn−1 · xn−1

 (6.26)

and hence T n−1
n is satisfied.

Now we apply Capelli’s identity to f . The process of polarization Dij turns

an (even or odd) invariant f into another (even or odd) invariant. So for

m = n, Capelli’s special identity shows that if f is a relative invariant: i.e.

A· f = λf for some constant factor λ, then Ωf is also.

Let f(x1, . . . ,xm) be a form with degree ri in each of its arguments xi. Its

total degree is r := r1 + . . .+ rm, and we can use this to impose graded lexi-

cographic ordering on the set of all forms in x1, . . . ,xm. With this ordering,

Ωf is of lower order than f , due to the differentiation process.
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As for the left hand side of (6.22), the term in the polarization determinant

due to the leading diagonal is:

(Dmm +m− 1) . . . (D22 + 1)D11 (6.27)

From the expression for Dij in (6.20), we get:

Diif =
∂f

∂xi1
xi1 + . . .+

∂f

∂xin
xin = rif (6.28)

for a constant factor ri, as f is a polynomial in the x′ijs. Hence the action of

(Dmm +m− 1) . . . D11 on f takes it to (rm +m− 1) . . . (r2 + 1)r1f = ρf for

some constant ρ, which is nonzero as long as r1 6= 0; that is, when f actually

depends on x1.

For any other term in the expansion of the polarization determinant, any

(Dii + i − 1) terms it contains from the leading diagonal will only have the

effect of multiplying f by a constant factor, and so the action on f of this

term is:

ρ∗Dβrαr . . . Dβ1α1 (6.29)

where ρ∗ is a constant factor, αr > . . . > α1, and (β1, . . . , βr) is a permutation

of (α1, . . . , αr) with αi 6= βi. By construction, Dβ1α1f has degree one less in

xα1 than f , but degree one greater in xβ1 , so their total degrees are the same.

The conditions on α1, . . . , αr and β1, . . . , βr mean that α1 < β1, and hence

Dβ1α1f is of lower order than f in the ordering chosen.
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Let f ∗ := −ρ∗Dβ1α1f and P = Dβrαr . . . Dβ2α2 . Then Capelli’s identity can

be rewritten as:

ρf =

{∑
Pf ∗ for m > n∑
Pf ∗ + [x1 . . .xn]Ωf for m = n

(6.30)

where both Ωf and the f ∗’s are of lower order than f , and are invariants if

f is an invariant.

Now supposem > n and choose a finite set of invariants ϕ1, . . . , ϕ`, depending

on x1, . . . ,xm, and assume that the subring they generate is closed under

polarization: i.e., that every Dβαϕi can be expressed in terms of the set of

ϕj’s. So it is closed under the P operators. Hence, if the invariants f ∗ can be

expressed in terms of the ϕi’s then by Capelli’s identity, ρf can be as well.

So if ρ 6= 0, f can be expressed in terms of the ϕi’s also.

The process can then be repeated inductively by applying it to each f ∗,

and decomposing it using Capelli’s identity. At each step, the rank of the

invariants (with respect to the ordering chosen) decreases. The process will

continue until the invariant being considered is independent of x1, as then

ρ = 0 in (6.30).

The conclusion is that if every invariant that depends on the (m− 1) vectors

x2, . . . ,xm can be expressed in terms of the ϕi’s that are independent of x1,

then all invariants depending on x1, . . . ,xm can be expressed in terms of the

ϕi’s.
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Furthermore, we can extend this to the m = n case using Capelli’s special

identity. This requires another assumption: that the bracket factor [x1 . . .xn]

can be expressed in terms of the ϕi’s. If this is the case, then we have

established:

Theorem 6.3.3 Let ϕ1, . . . , ϕ` be a finite set of invariants of a linear group

of degree n, under the conditions stated above. Then:

1. The set {ϕ1, . . . , ϕ`} will be a generating set for the invariants of the

action on m vectors x1, . . . ,xm if the restricted set of ϕi’s that depend

on x1, . . . ,xn is a generating set for the action on those vectors.

2. Futhermore, if the bracket factor [x1 . . .xn] can be expressed in terms

of the ϕi’s, then the same is true for the (n− 1) vectors x1, . . . ,xn−1.

This means that the problem of finding generating invariants for the action

on m > n vectors can be reduced to finding them for the action on n vectors.

In the case of the SO(n) action we are looking at, it means that T n−1
n implies

T nn , by Capelli’s special identity, and T nn implies Tmn by the general identity.

Here we are taking the set of φi’s to be the scalar products and the bracket

factor. The only condition that needs to be checked is that [x1 . . .xn]Ωf can

be written in terms of the scalar products xi · xj. This is true because Ωf

is an odd invariant of lower rank than f , and so by the induction hypothesis

can be written as the product of [x1 . . .xn] and a polynomial in the scalar
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products. Then

[x1 . . .xn]2 =

∣∣∣∣∣∣∣
x1 · x1 . . . x1 · xn

...
. . .

...
xn · x1 . . . xn · xn

∣∣∣∣∣∣∣
and so [x1 . . .xn]Ωf can be written entirely in terms of the scalar products.

Hence Theorem 6.2.1 is true for all m. �

6.4 A SAGBI basis

The generating set from Theorem 6.2.1 can be extended to a SAGBI basis,

as in Section 4, which has more useful properties. One possible way of doing

this is given in Dalbec [2], taken from Richman [9]:

Let Xm×n be the matrix with (i, j)th entry xij. Then Xm×nX
T
m×n is the

matrix of scalar products with (i, j)th entry xi · xj.

We can denote its minors by:

f i1,...,ikj1,...,jk
:=

∣∣∣∣∣∣∣
xi1 · xj1 . . . xi1 · xjk

...
. . .

...
xik · xj1 . . . xik · xjk

∣∣∣∣∣∣∣ (6.31)

Theorem 6.4.1 The set of elements f i1,...,imj1,...,jm
for 1 ≤ k ≤ n − 1, together

with the determinants |xi1 . . .xin| for all 1 ≤ i1 < . . . < in ≤ m, form

a SAGBI basis for the invariants of SO(n), under lexicographic ordering

x11 > . . . > x1n > x21 > . . . > xmn.
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The proof can be found in [9]. Although only the scalar products and the

determinants are needed to give a basis for the set of invariants, the k × k

minors must be added to form a SAGBI basis, despite the fact that they can

be generated from the scalar products. This is because cancellation occurs

with the leading terms of the scalar products involved, and so the leading

term of f i1,...,imj1,...,jm
cannot be generated from the leading terms of the scalar

products alone.

6.5 The standard action of SE(n)

The SAGBI basis above can be used to find a SAGBI basis for the standard

affine action of SE(3) on m+ 1 vectors. Although this is not the action that

we are interested in, it demonstrates some of the useful properties of SAGBI

bases, as well as a method for using a known set of SO(n) invariants to find

the SE(n) ones. The derivation here is taken from [2], though there it is

done for O(n) and E(n).

If SO(n) is acting on the vectors x1, . . . ,xm in Rn, and SE(n) is acting on

v1, . . . ,vm+1, also in Rn, then let φ be the algebra mapping:

φ : R[x11, . . . , xmn]→ R[v11, . . . , v(m+1)n] (6.32)

induced by the mapping xij 7→ vij − v(m+1)j.

The translational group gives a subaction of SE(n), as described in Section
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1, and φ(xij) is an invariant of that action, since for r ∈ Rn:

(0, r) · (vij − v(m+1)j) = (vij + rj)− (v(m+1)j + rj) = vij − v(m+1)j (6.33)

It follows that φ(f) is a translational invariant for any f ∈ R[x11, . . . , xmn].

Furthermore, φ is injective, since if φ(f)(v11, . . . , v(m+1)n) = 0, then

φ(f)(v11, . . . , vmn, 0, . . . , 0) = 0 also. But this means f(x11, . . . , xmn) = 0,

since they are the same under the substitution xij 7→ vij.

Lemma 6.5.1 Let the vij’s have a monomial ordering in which vij > v(m+1)j

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then B := {vij − v(m+1)j : 1 ≤ i ≤ m, 1 ≤ j ≤

n} is a SAGBI basis for the translational invariants.

See Lemma 2.1 of [2] for a proof. This then gives the result:

Lemma 6.5.2 φ is surjective as a mapping from the invariants of SO(n) to

the SE(n) invariants.

Proof. Let f ∈ R[x11, . . . , xmn] be an SO(n) invariant. Then for any (R, r) ∈

SE(n):

(R, r) · φ(f) = (R, 0) · φ(f) (6.34)

as φ(f) is a translational invariant. Furthermore:

(R, 0) · φ(f) = φ(R · f) = φ(f) (6.35)
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as φ is an algebra map, and f is an SO(n) invariant. So φ(f) is an SE(3)

invariant.

Now, let h ∈ R[v11, . . . , v(m+1)n] be an SE(n) invariant. By Lemma 6.5.2,

it can be written in terms of some φ(xij)s, as it is a translational invariant.

Furthermore, as φ is an algebra map, this means that h = φ(f) for some

f ∈ R[x11, . . . , xmn]. Then:

φ(R · f) = (R, 0) · φ(f) = (R, 0)h = h = φ(f) (6.36)

as h is a Euclidean invariant. Since φ is injective, this means that R · f = f

∀R ∈ SO(3), and so f is an SO(n) invariant. �

We can define some basic invariants for SE(3), called the squared distances:

D(i, j) := (vi1 − vj1)2 + . . .+ (vin − vjn)2 (6.37)

The scalar products xi ·xj are mapped under φ to expressions in these D(i, j)

’s:

2φ(xi · xj) = D(i,m+ 1) +D(j,m+ 1)−D(i, j) (6.38)

φ(xi · xi + xj · xj2xi · xj) = D(i, j) (6.39)

φ(xi · xi) = D(i,m+ 1) (6.40)
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e.g. 2φ(xi · xj) =2(vi1 − v(m+1)1)(vj1 − v(m+1)1) + . . .

+ 2(vin − v(m+1)n)(vjn − v(m+1)n)

=2(v2
(m+1)1 + . . .+ v2

(m+1)n)− 2(vi1v(m+1)1−

+ vj1v(m+1)1) + . . .+ vinv(m+1)n + vjnv(m+1)n)

+ 2(vi1vj1 + . . .+ vinvjn)
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=(v2
i1 − 2vi1v(m+1)1 + v2

(m+1)1 + . . .

+ v2
in − 2vinv(m+1)n + v2

(m+1)n)

+ (v2
j1 − 2vj1v(m+1)1 + v2

(m+1)1 + . . .

+ v2
jn − 2vjnv(m+1)n + v2

(m+1)n)

− v2
i1 − v2

j1 − . . .− v2
in − v2

jn + 2vi1vj1 + . . .

+ 2vinvjn

=(vi1 − v(m+1)1)
2 + . . .+ (vin − v(m+1)n)2

+ (vj1 − v(m+1)1)
2 + . . .+ (vjn − v(m+1)n)2

− (vi1 − vj1)2 − . . .− (vin − vjn)2

=D(i,m+ 1) +D(j,m+ 1)−D(i, j)

Then the functions f i1,...,ikj1,...,jk
are mapped under φ to:

φ(f i1,...,ikj1,...,jk
) = 2

(−1

2

)k
∣∣∣∣∣∣∣∣∣∣∣

0 1 1 · · · 1
1 D(i1, j1) D(i1, j2) · · · D(i1, jk)
1 D(i2, j1) D(i2, j2) · · · D(i2, jk)
...

...
...

. . .
...

1 D(ik, j1) D(ik, j2) · · · D(ik, jk)

∣∣∣∣∣∣∣∣∣∣∣
(6.41)

These are called the Cayley-Menger bideterminants.

Finally, the matrix Xm×n transforms under φ to Vm×n−Vm+1, where Vm×n is

the matrix with (i, j)th entry vij, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, and Vm+1 is

the matrix of the same size, with (i, j)th entry v(m+1)j. The k × k minors of
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Xm×n, which are the determinants |xi1 , . . . ,xik |, are mapped to the minors

of Vm×n − Vm+1.

The last step of the argument is to check that the SAGBI basis for the

SO(n) invariants given in Theorem 6.4.1 will remain a SAGBI basis under

the mapping φ.

Lemma 6.5.3 Let the vij’s have the pure lexographic order with v11 > v12 >

. . . > v(m+ 1)n. Let A be a subalgebra of R[x11, . . . , xmn] and let B be a

SAGBI basis of A. Then φ(B) is a SAGBI basis of φ(A).

Proof. Fix f ∈ A. Then LT (f) = LT (
∏
bi) for some bi ∈ B. Note that

LT (φ(xij)) = vij, by the monomial ordering chosen. Hence if LT (f) <

LT (g), then

LT (φ(f)) = LT (f(v11, v12, . . . , vmn)) < LT (g(v11, v12, . . . , vmn)) = LT (φ(g))

(6.42)

Thus the map f 7→ LT (φ(f)) is order-preserving and injective on monomials.

If p is any monomial of f except for LT (f), then LT (f) > p, so

LT (φ(LT (f))) > LT (φ(p)), since the mapping is order-preserving. Hence
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LT (φ(f)) = LT (φ(LT (f))), so

LT (φ(f)) = LT (φ(LT (f)))

= LT (φ(LT (
∏

bi)))

= LT (φ(
∏

bi))

= LT (
∏

φ(bi))

Hence {φ(b) : b ∈ B} forms a SAGBI basis for φ(A). �

Theorem 6.5.4 With this ordering on the vij’s, the k × k Cayley-Menger

bideterminants for 3 ≤ k ≤ n+ 2 and the n×n minors of Vm×n−Vm+1 form

a SAGBI basis for the algebra of SE(n) invariants.

Proof. By applying the previous lemma to the SAGBI basis for the algebra

of SO(n) invariants. �

6.6 Syzygies of SO(n)

It is also helpful to know the algebraic relations between these invariants, in

order to better understand the structure of the invariant ring. Let SO(n)

have its standard action on x1, . . . ,xm ∈ Rn. Then for the invariant scalar

products xi · xj, there is only one type of syzygy possible [15]. This is the

equation:

f i1,...,ikj1,...,jk
= 0, for k ≥ n+ 1 (6.43)
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The ideal of syzygies is generated by all those f ’s with k = n+ 1. Since the

O(n) invariants are generated solely by the scalar products, these are the only

syzygies possible in this case. However, for the SO(n) invariants there are

two other types of syzygies involving the extra bracket factor invariant [5]:

gi1,...,inj1,...,jn
:= [xi1 . . .xin ][xj1 . . .xjn ]−

∣∣∣∣∣∣∣
xi1 · xj1 . . . xi1 · xjn

...
. . .

...
xin · xj1 . . . xin · xjn

∣∣∣∣∣∣∣ = 0 (6.44)

ki1,...,inj :=
n∑
λ=1

(−1)λ−1[xi1 . . .xiλ−1
xiλ+1

, . . . ,xin ]xiλ · xj = 0 (6.45)

where 1 ≤ i1 < . . . < iλ < . . . < in ≤ m in (6.45).

Theorem 6.6.1 The set of all relations of the form f
i1,...,in+1

j1,...,jn+1
, gi1,...,inj1,...,jn

, and

ki1,...,inj , generates the syzygy ideal for the invariants of the standard action

of SO(n).

This is the second fundamental theorem for vector invariants, as applied to

SO(n): namely, that the invariant subring can be expressed as a polynomial

ring modulo a finitely generated ideal, as in Lemma 4.2.2. Domokos and

Dresky [5] take this further by finding a Gröbner basis for the same ideal.

Let H be the set of strictly increasing sequences with entries in {1, . . . ,m},

and give it the following partial ordering:

a := (a1, . . . , as) ≤ (b1, . . . , bt) =: b, if t ≤ s and a1 ≤ b1, . . . , at ≤ bt (6.46)
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Let a, b, c ∈ H be three sequences such that a has length n, b and c have

length t ≤ n, and:

a ≤ (b1, . . . , bt−1), at > bt and b ≤ c (6.47)

Now let Stn+1 be the set of all permutations in Sn+1 that take both {b1, . . . , bt}

and {at, . . . , an} to strictly increasing sequences; that is, monotone increasing

permutations. Then we can define another type of syzygy:

ha,b,c :=
∑

σ∈Stn+1

sgn(σ)[xa1 . . .xat−1xσ(at) . . .xσ(an)]

·

∣∣∣∣∣∣∣
xσ(b1) · xc1 . . . xσ(b1) · xct

...
. . .

...
xσ(bt) · xc1 . . . xσ(bt) · xct

∣∣∣∣∣∣∣ = 0 (6.48)

The syzygy ki1,...,inj is a special case of this, with t = 1.

Theorem 6.6.2 The syzygy ideal for the invariants of SO(n) has a Gröbner

basis given by the set of all possible f
i1,...,in+1

j1,...,jn+1
, gi1,...,inj1,...,jn

, and ha,b,c, where a, b, c ∈

H satisfy (6.47).

The proof can be found in [5], where it is Theorem 2.1.

For example, when SO(3) is acting on four vectors in R3, n = 3 and m = 4.

Hence there is one syzygy of the first type, being the 4× 4 matrix f 1,2,3,4
1,2,3,4 .∣∣∣∣∣∣∣∣

x1 · x1 x1 · x2 x1 · x3 x1 · x4

x2 · x1 x2 · x2 x2 · x3 x2 · x4

x3 · x1 x3 · x2 x3 · x3 x3 · x4

x4 · x1 x4 · x2 x4 · x3 x4 · x4

∣∣∣∣∣∣∣∣ = 0
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For syzygies of type gi1,...,inj1,...,jn
, there are ten possibilities:

g1,2,3
1,2,3 g1,2,3

1,2,4 g1,2,3
1,3,4 g1,2,3

2,3,4

g1,2,4
1,2,4 g1,2,4

1,3,4 g1,2,4
2,3,4

g1,3,4
1,3,4 g1,3,4

2,3,4

g2,3,4
2,3,4

e.g. g1,2,3
1,2,4 = |x1 x2 x3||x1 x2 x4| −

∣∣∣∣∣∣
x1 · x1 x1 · x2 x1 · x4

x2 · x1 x2 · x2 x2 · x4

x3 · x1 x3 · x2 x3 · x4

∣∣∣∣∣∣ = 0

Finally, for the last type of syzygy, the number of possible a, b, c that meet

the necessary conditions of (6.47) is 14:

t = 1 a = (2, 3, 4), b = (1)

c = (1), (2), (3), or (4)

t = 2 a = (1, 3, 4), b = (1, 2)

c = (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), or (3, 4)

t = 3 a = (1, 2, 4), b = (1, 2, 3)

c = (1, 2, 3), (1, 2, 4), (1, 3, 4), or (2, 3, 4)

For example, if t = 2, a = (1, 3, 4), b = (1, 2), and c = (1, 2):
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then the possible permutations in S2
4 are:

(1, 2, 3, 4) 7−→ (1, 2, 3, 4), (1, 3, 2, 4), (1, 4, 2, 3),

(2, 3, 1, 4), (2, 4, 1, 3), (3, 4, 1, 2)

So the syzygy is:

ha,b,c =
∑
σ∈S2

4

sgn(σ)|x1 xσ(3) xσ(4)|
∣∣∣∣xσ(1) · x1 xσ(1) · x2

xσ(2) · x1 xσ(2) · x2

∣∣∣∣
= |x1 x3 x4|

∣∣∣∣x1 · x1 x1 · x2

x2 · x1 x2 · x2

∣∣∣∣− |x1 x2 x4|
∣∣∣∣x1 · x1 x1 · x2

x3 · x1 x3 · x2

∣∣∣∣
+ |x1 x2 x3|

∣∣∣∣x1 · x1 x1 · x2

x4 · x1 x4 · x2

∣∣∣∣ = 0

The rest of the terms are zero, as they feature a repeated vector in the bracket

factor.

Now, by Theorem 6.6.2, these invariants form a Gröbner basis for the syzygy

ideal.
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Chapter 7

The SE(3) Invariants

Returning to the adjoint action of SE(3), there is a result in [12] that lets us

use SAGBI bases to find generating sets for invariant subalgebras, even for

non-reductive groups.

7.1 A basis for invariants

Let G be an affine algebraic group acting algebraically on an affine variety

X, with an action ψ.

ψ : G×X → X (g, x) 7→ gx (7.1)

Suppose the elements of G have coordinates a1, . . . , am, and the elements of

X have coordinates x1, . . . , xn. The ideals of algebraic relations between the

coordinates are I(G) and I(X) respectively.
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The function ψ∗ is defined as follows: If f(x1, . . . , xn) is a function on X,

then ψ∗(f) = f ◦ ψ. Hence ψ∗(xi) is the ith coordinate of the group action

on X, ψ(x).

The following theorem is from [14], although the form in which it is presented

is taken from [12]:

Theorem 7.1.1 The ring of invariants of the action ψ is

k[x1, . . . , xn]G = k[ψ∗(x1), . . . , ψ
∗(xn)] ∩ k[x1, . . . , xn]

I(X)

⊂ k[a1, . . . , am, x1, . . . , xn]

I(G) + I(X)

(7.2)

Using SAGBI bases, this becomes:

Lemma 7.1.2 If {f1, . . . , fr} is a SAGBI basis for k[ψ∗(x1), . . . , ψ
∗(xn)]

with respect to an elimination order, where ai > xj for all 1 ≤ i ≤ m, 1 ≤

j ≤ n, then {f1, . . . , fr} ∩ k[x1, . . . , xn]/I(X) is a SAGBI basis for k[X]G,

and hence a generating set.

Proof. Let g ∈ k[ψ∗(x1), . . . , ψ
∗(xn)]∩ k[x1, . . . , xn]. Then g ∈ k[f1, . . . , fn],

as {f1, . . . , fn} generates k[ψ∗(x1), . . . , ψ
∗(xn)].

By the definition of a SAGBI basis:

LT (g) =
r∏
i=1

(LT (fi))
ni for some ni ∈ N ∪ {0}
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Hence, for all non-zero ni, LT (fi) ∈ k[x1, . . . , xn], as LT (g) ∈ k[x1, . . . , xn].

Since we are using an elimination order, this means that every term in fi is

in k[x1, . . . , xn]. So g is generated by fi’s that are in k[x1, . . . , xn].

Furthermore, LT (g) ∈ PP (LT (fi)), so {f1, . . . , fn}∩k[x1, . . . , xn] is a SAGBI

basis as required. �

When this is combined with the algorithm from Chapter 5 for finding a

SAGBI basis, it gives an algorithm for finding a generating set for the invari-

ants of the action ψ.

As outlined in Chapter 5, the tête-a-têtes in the SAGBI basis algorithm are

found by determining the kernel of the mapping

φ : k[y1, . . . , ys]→
k[a1, . . . , am, x1, . . . , xn]

〈LT (I(G))〉+ 〈LT (I(X))〉

yi 7→ LT (fi) for i = 1, . . . , s

(7.3)

This can be done by means of an algorithm, which is given in [10], but in

simple cases, such as those considered here, it can be done by inspection.

Another option, if I(G) and I(X) are trivial, is to treat it as the problem

of finding all algebraic relations between the LT (fi) ’s. This amounts to

finding the syzygy ideal, which can be done using Gröbner basis methods as

in Theorem 4.2.1.
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7.2 Application to SO(n)

Since the action of SO(3) is a subaction of SE(3), with a known SAGBI basis,

it is useful to test the method of Lemma 7.1.2 on it. However, the SAGBI

basis calculation fails to converge in this case. This can be demonstrated by

looking at the calculations for SO(2).

The action ψ of A ∈ SO(2) on (u,v) ∈ R2 × R2 is given by:(
a b
c d

)
(u,v) =

((
au1 + bu2

cu1 + du2

)
,

(
av1 + bv2

cv1 + dv2

))
(7.4)

From Section 6, we know that the invariant subalgebra of this action has a

SAGBI basis {u · u,u · v,v · v, |u v|}.

The action ψ∗ is given by:

ψ∗(u1) = au1 + bu2

ψ∗(u2) = cu1 + du2

ψ∗(v1) = av1 + bv2

ψ∗(v2) = cv1 + dv2

(7.5)

Furthermore, there is an ideal I(SO(2)) of algebraic relations between

{a, b, c, d}, generated by ATA = In and detA = 1. Using lexicographic

ordering with a > b > c > d, and calculating in Maple, the set G :=

{a − d, b + c, c2 + d2 − 1} is a Gröbner basis for this ideal, and hence the

ideal 〈LT (I(G))〉 in (7.3) generated by the leading terms of I(G) has as

basis the set {a, b, c2}.
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Now for the first step of the SAGBI basis calculation for R[ψ∗(u1), . . . , ψ
∗(v2)],

each of the coordinate functions ψ∗(u1), . . . , ψ
∗(v2) ∈

R[a, . . . , v2]

〈I(SO(2))〉
must be

reduced with respect to G (done using lexicographic ordering with a > b >

c > d > u1 > u2 > v1 > v2), giving:

f1 := ψ∗(u1) = −cu2 + du1

f2 := ψ∗(u2) = cu1 + du2

f3 := ψ∗(v1) = −cv2 + dv1

f4 := ψ∗(v2) = cv1 + dv2

(7.6)

So the homomorphism φ : R[y1, . . . , y4] →
R[a, b, c, d, u1, u2, v1, v2]

LT (I(SO(2)))
is deter-

mined by:

y1 7−→ −cu2

y2 7−→ cu1

y3 7−→ −cv2

y4 7−→ cv1

(7.7)

As 〈LT (I(SO2))〉 is generated by {a, b, c2}, this means that the product of

any two yi’s is in the kernel of φ. So the kernel is generated by the set of all

such possible products yiyj, each of which gives a polynomial hij on making

the substitution yi 7→ LT (fi). Furthermore, on doing the calculations in

Maple, the leading term has a factor of cd, since any c2 terms are reduced

to (1 − d2) by the algebraic relations in G. As none of f1, f2, f3, f4 have a

factor of d in their leading terms, this cannot be reduced further by SAGBI
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subduction. So the new polynomials hij are added to the set of fi’s for the

next iteration.

So on the next iteration, φ maps yi 7→ LT (fi) and zk` 7→ LT (hk`) ∈

cd·R[u1, u2, v1, v2], meaning that any product of two variables in {y1, . . . , z44}

is in the kernel of φ as before. Then the same argument as above shows that

all new polynomials generated have a factor of cd2 in their leading terms,

which cannot be subducted further.

Hence it is clear that the algorithm will not converge, as at every step it

generates polynomials with increasing powers of d in the leading term. So

the method of Lemma 7.1.2 fails for SO(2), and similarly for the general case

of SO(n).

This means that it cannot be applied directly to the invariants of SE(3). For

example, in the case of SE(3) acting on a single screw (ω,v) ∈ se(3), when

the rotation matrix is R, there is a subaction ω 7→ Rω of SO(3) on ω. So

a SAGBI basis calculation for this action includes a calculation of a SAGBI

basis for the SO(3) subaction, which causes the algorithm to fail.

Instead, we split the action of SE(3) up into its two component parts: the

rotations and translations. The reason for doing this is that the set of SE(3)

invariants in se(3) is precisely the intersection of the sets of rotational and

translational invariants. The rotational subaction has a known SAGBI basis,

from Chapter6, and so we only need to find generators for the subring of

translational invariants.
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7.3 Single-screw case

When the translation t = (t1, t2, t3)
T is acting on a single screw, (ω,v), the

action ψ∗ is given by:

f1 := ψ∗(ω1) = ω1

f2 := ψ∗(ω2) = ω2

f3 := ψ∗(ω3) = ω3

f4 := ψ∗(v1) = t2ω3 − t3ω2 + v1

f5 := ψ∗(v2) = −t1ω3 + t3ω1 + v2

f6 := ψ∗(v3) = t1ω2 − t2ω1 + v3

(7.8)

(using lexicographic ordering with t1 > t2 > t3 > w1 > w2 > . . . > v2 > v3).

This is the initial set of equations G0 in the SAGBI basis algorithm. The set

of tête-a-têtes of these equations is then the kernel of φ : yi 7→ LT (fi), which

in this case is the homomorphism:

y1 7→ ω1

y2 7→ ω2

y3 7→ ω3

y4 7→ t2ω3

y5 7→ −t1ω3

y6 7→ t1ω2

(7.9)

The kernel of this mapping is generated by the single element {y2y5 + y3y6}.

Substituting for the yi’s gives −t1ω1ω3 + t3ω1ω2 + ω2v2 + ω3v3. This has the
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same leading term as ψ∗(ω1)ψ
∗(v1), so subtracting this gives: ω1v1 + ω2v2 +

ω3v3 = ω ·v. This cannot be subducted any further, so this iteration finishes.

The generating set of equations for R[ψ∗(ω1), . . . , ψ
∗(v3)] is now:

ψ∗(ω1) = ω1

ψ∗(ω2) = ω2

ψ∗(ω3) = ω3

ψ∗(v1) = t2ω3 − t3ω2 + v1

ψ∗(v2) = −t1ω3 + t3ω1 + v2

ψ∗(v3) = t1ω2 − t2ω1 + v3

f1 = ω1v1 + ω2v2 + ω3v3

(7.10)

and φ takes:

y1 7→ ω1

y2 7→ ω2

y3 7→ ω3

y4 7→ t2ω3

y5 7→ −t1ω3

y6 7→ t1ω2

z1 7→ ω1v1

(7.11)

On the next iteration, there are no new elements in the kernel of φ, and so

the algorithm finishes. Hence the set of translational invariants has a SAGBI

basis given by {ψ∗(ω1), . . . , ψ
∗(v3),ω ·v}∩R[ω1, . . . , v3] = {ω1, ω2, ω3,ω ·v}.
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Theorem 7.3.1 The invariant subring R[ω1, . . . , v3] for the adjoint action

of SE(3) on a single screw has a basis given by S := {ω · ω,ω · v}.

Proof. Let f be an SE(3) invariant for the action on a single screw. Then

it can be written as:

f =
∑
b∈N

gb(ω1, ω2, ω3)(ω · v)b where g ∈ R[x1, x2, x3] (7.12)

as it is a translational invariant. Let A =

(
R 0
0 R

)
∈ SO(3). f must also be

a rotational invariant:

Af =
∑
b∈N

Agb(ω1, ω2, ω3)(ω · v)b

= f

(7.13)

This means that Agb = gb for all b ∈ N. Hence gb is an invariant of SO(3)

acting on ω, for which the SAGBI basis is {ω · ω}, from Section 5.

So gb ∈ R[ω ·ω]. Hence the SE(3) invariants are generated by {ω ·ω,ω ·v}.

�

This result can also be found as Theorem 3.1 of [4], although the proof there

is different.

7.4 Double and triple screw cases

Using the same method, generating sets can be found for the translational

invariants in double and triple screw cases, and potentially higher.
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For a pair of screws, {(ω1,v1), (ω2,v2)}, let ωij and vij be the jth coordinates

of ωi and vi respectively. Then a SAGBI basis for the translational invariants

is given by:

ωij for 1 ≤ i ≤ 2, 1 ≤ j ≤ 3

ωi · vi for 1 ≤ i ≤ 2

ω1 · v2 + ω2 · v1

(7.14)

Since ωi · vi and ω1 · v2 + ω2 · v1 are both rotational invariants as well, the

same argument as in Theorem 7.3.1 gives:

Theorem 7.4.1 The invariant ring of SE(3) acting on two screws is gen-

erated by {ωi · ωj ,ωi · vi,ω1 · v2 + ω2 · v1} (for 1 ≤ i, j ≤ 2).

In the case of the translational invariants of a set of three screws,

{(ω1,v1), (ω2,v2), (ω3,v3)}, the algorithm was only taken to the point where

all new polynomials generated were in k[ω11, . . . , v33]. On inspection, every

element in this set could be generated by the following polynomials:

ωij for 1 ≤ i, j ≤ 3

ωi · vi for 1 ≤ i ≤ 3

ωi · vj + ωj · vi for 1 ≤ i < j ≤ 3

z123, z231, z312

z121 − z323, z232 − z131, z313 − z212

(7.15)

where zijk =

∣∣∣∣∣∣
ω1i ω2i ω3i

ω1j ω2j ω3j

v1k v2k v3k

∣∣∣∣∣∣
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These are all translationally invariant, and it is likely that they form a gen-

erating set for the translational invariants. As far as I know, the zijk invari-

ants have not been identified before. Note that in the case of ziji − zkjk,

neither ziji or zkjk alone is a translational invariant. Furthermore, none of

the final six invariants is a rotational invariant, and so the method used

for the previous cases to determine SE(3) invariants (assuming that we

have a full listing of translational invariants) does not work. By compar-

ison with the known set of SO(3) invariants, however, the SE(3) invariant

z123 + z231 + z312 can be found. This is a previously known invariant, equal

to the sum |ω1ω2v3|+ |ω2ω3v1|+ |ω3ω1v2| of SO(3) invariants.

One possible alternative method for finding the SE(3) invariants is given

in [12], which states that:

Lemma 7.4.2 The intersection of two subalgebras A = k[f1, . . . , fr] and

B = k[g1, . . . , gs] in a polynomial ring k[x1, . . . , xn] can be found by calculat-

ing a SAGBI basis for

k[f1, . . . , fr] ⊂
k[x1, . . . , xn, y1, . . . , ys]

〈y1 − g1, . . . , ys − gs〉
(7.16)

This could potentially be used to find the intersection of the subalgebras of ro-

tational and translational invariants, although the algorithm may not termi-

nate. There is also the problem of finding 〈LT (I)〉 for I = 〈y1−g1, . . . , ys−gs〉,

which requires a Gröbner basis computation that becomes very difficult as s

increases.
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Another possible method is to consider the rotations acting on the space of

the translational invariants. Taking R ∈ SO(3) to be a general rotation:

R =

a b c
d e f
g h k


The action of R on the translational invariants that have been found is:

ωi1 7−→ aωi1 + bωi2 + cωi3

ωi2 7−→ dωi1 + eωi2 + fωi3

ωi3 7−→ gωi1 + hωi2 + kωi3

z123 7−→ g2z231 + h2z312 + k2z123 + gk(z121 − z323)

+ hk(z313 − z212) + gh(z232 − z131)

z231 7−→ a2z231 + b2z312 + c2z123 + ab(z232 − z131)

+ bc(z313 − z212) + ac(z121 − z323)

z312 7−→ d2z231 + e2z312 + f 2z123 + de(z232 − z131)

+ df(z121 − z323) + ef(z313 − z212)
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z121 − z323 7−→ 2agz231 + 2bhz312 + 2ckz123 + (ak + cg)(z121 − z323)

+ (ah+ bg)(z232 − z131) + (bk + ch)(z313 − z212)

z232 − z131 7−→ 2cfz123 + 2bez312 + 2adz231 + (af + cd)(z121 − z323)

+ (bf + ce)(z313 − z212) + (ae+ bd)(z232 − z131)

z313 − z212 7−→ 2fkz123 + 2ehz312 + 2dgz231 + (dk + gf)(z121 − z323)

+ (dh+ eg)(z232 − z131) + (ek + fh)(z313 − z212)

So the set of translational invariants is closed under this action, and hence

we can apply Theorem 7.1.1 to it. The main problem with this approach is

that it includes a subaction of R on (ω1,ω2,ω3), which as described earlier,

causes the SAGBI basis algorithm to fail. However, given that we already

know the SAGBI basis for this action, it may be possible to use it to avoid

this problem.
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