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Chapter 1

Introduction.

The aim of this paper is to compare the performance of different pricing models

in valuing bonds with callable and convertible features. Additionally, we wish to

provide a theoretical foundation and derivations of the models as we move through

the paper. Much of the foundations for our approach to convertible bonds pricing,

including optimal conditions for call and conversion, can be attributed to Ingersoll

(1976) and Brennan and Schwartz (1977). These fundamental pricing conditions

can then be built upon to arrive at more elaborate and numerically sophisticated

models with the objective of more accurately pricing derivative securities.

The Black-Scholes (BS) model is the most commonly used model in valuing short

term derivative instruments, such as equity derivatives, for example. As for longer

term securities, such as convertible bonds, movements in volatility and interest rates

are likely to have a compounding effect. Consequently, we conjecture that that al-

lowing for stochastic volatility and stochastic interest rates within the pricing of

these longer term instruments is preferable. Additionally, given the much larger

size of the fixed income derivatives markets when compared to other derivatives, it

seems that the answer as to which pricing model is preferable carries significance.

As to the findings with regard to equity derivatives, Bakshi, Cao, and Chen (1997)
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conclude that “taking stochastic volatility into account is of the first order impor-

tance in improving on the BS formula”, but “going from the SV to the SVSI does

not necessarily improve the fit much further.” Firstly we shall look at pricing equity

derivatives and convertible bonds using a more basic BS framework, then compar-

ing this to the more complex SV and SVSI models later on in the paper. As for

numerical pricing procedures, we concentrate on the use of the ADI finite difference

method in order to estimate derivative values. Given the multiple variables that

we wish to model, including firm value, volatility, and interest rates, we want a

pricing procedure that is both accurate and computationally efficient. Whilst the

ADI method is ideal for this situation, monte-carlo simulation is also an attractive

approach to pricing convertible bonds. Indeed, in the case where the value of the op-

tion is path dependant, monte-carlo simulation is the ideal choice. To see examples

of finite difference techniques used in the context of convertible bonds pricing, see

Andersen and Buffum (2002). Alternatively, for a look into monte-carlo simulation,

see Lvov, Yigitbasioglu, and Bachir (2004).



Chapter 2

Basic options pricing and practical

application.

A European option gives the holder a right, but not an obligation, to purchase the

underlying asset at a specified price upon maturity. American options, however,

differ only in that they can be exercised at any time up to and including maturity.

Additionally, these options could either be puts or calls. More specifically, put op-

tions give the option holder a right to sell the underlying asset whilst call options

give the holder a right to buy. Note that the vast majority of exchange traded op-

tions are American in nature. In fact, all exchange traded stock and futures options

in the US are American. Keep in mind that the name ‘American’ holds no geograph-

ical meaning; it is merely a name for options with these characteristics [Natenberg

(1994)]. Closed form options pricing formulas are appropriate in the case of Euro-

pean style options, but pricing American options and dealing with the possibility

of early exercise requires the use of numerical techniques: examples being binomial

tree models, monte carlo simulation or a finite difference technique.

Note that, in the case of a stock option, the underlying stock may pay dividends at

some point during the life of the option. In the case of fixed income derivatives, we

not only need to concern ourselves with dividend payments, we also need to account
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for any coupons that are paid. One way to handle dividends is to suppose that

the stock value consists of two components: the present value of dividends over the

option’s life plus some additional value. This additional value is the component that

is assumed to follow a geometric Brownian motion (GBM). In undertaking a finite

difference approach, for example, we can implement the maturity value condition

by stating that a call option’s value is equal to max(St − K, 0) and a put option’s

value is max(K −ST , 0), where ST is the stock price at maturity and K is the strike

price. Note that the present value of future dividends over the option’s life will be

zero at maturity. As we move backwards iteratively through each time step in the

finite difference mesh, we need to ascertain whether early exercise is going to take

place; to do so we take that part of the stock price that is following GBM and add

the present value of future dividends, giving us the total stock value. The next step

is then to compare the value of the option if exercised to its value if unexercised,

and the larger of the two will be the option’s value at that point. This process of

backwards induction is continued iteratively for each step in the grid until we arrive

at the option’s value today.

A minor, yet still important, issue is how to go about measuring the option’s time to

maturity. For practical purposes, we can consider the option’s life as being equal to

the amount of days that the exchange is open from the present day until maturity.

Therefore, weekends and public holidays during which the exchange is closed do not

count towards the option’s life. Note that the holiday schedule is identical on the

NYSE and AMEX exchanges, and they are listed on the exchange’s website. The

2009 holiday schedule, for example, is as follows:

• Jan 1 - New Year’s Day.

• Jan 19 - Martin Luther King Jr’s Birthday (Observed).

• Feb 16 - President’s day.

• Apr 10 - Good Friday.

• May 25 - Memorial Day.

• Jul 2 - Early market close.
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• Jul 3 - Independence day.

• Sep 7 -Labor day.

• Nov 26 - Thanksgiving day.

• Nov 27 - Early market close.

• Dec 24 - Early market close.

• Dec 25 - Christmas Day.

In total, there are approximately 252 trading days in the year such that

T ≃ number of days in the options life
252

. However, when it comes to the discounting of

dividends we use a full 365 day year, weekends and public holidays inclusive. This is

done because, regardless of whether the exchange is open or not, interest will accrue

on deposits, and our discounting must reflect this opportunity cost.

Finally, lets turn our attention to some of the assumptions of the Black-Scholes

PDE. Some of the main assumptions can be listed as:

• Constant Volatility.

• Constant and known interest rates.

• No commissions or transactions costs.

• The ability to adjust hedge positions continuously.

• Lognormally distributed returns.

• Efficient markets

Of course, we can specify processes for volatility and interest rates such that the

first two of these assumptions are relaxed. This introduces it’s own difficulties, as

the PDE will get bigger and more complex to solve. Our main objective will be to

deal with the incorporation of stochastic volatility and interest rates into the model.
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When applying the basic Black-Scholes model in the real world, practitioners will

often calculate implied volatilities and graph these across different maturities to

create a volatility surface. Given that asset returns are not lognormally distributed,

we often see that implied volatilities tend to ‘smile’. In other words, asset returns

are typically more peaked and have fatter tails than a lognormal distribution would

suggest, meaning that the probability of large price movements, either up or down,

are likely to be larger than implied by our pricing model. Hence, options that are

either significantly ITM or OTM are likely to be underpriced with the use of a

lognormal distribution to model asset returns. Traders will be conscious of this fact

and should adjust their pricing of options as a result. Consequently, this larger

price will be reflected in a higher implied volatility. As an example, consider the

graphs of implied volatilities for Microsoft options displayed in figure 2.1. Since

implied volatility varies with strike price, it is clear that the assumption of constant

volatility is a simplifying one. However, this basic pricing framework is considered

to be good enough for the purposes of pricing relatively short maturity instruments.

For an in depth discussion on how to price options using a basic Black Scholes

framework, please see appendix A.
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Figure 2.1: Graphs A and B plot the implied volatilities for Microsoft stock options

as at Mar 11 5:14 PM EDT. The stock price at this time was $29.28 per share.

Graph A deals with the call options, whilst graph B works with put options.



Chapter 3

Foundations. The basic case.

Convertible bonds are significantly more complicated than stock options, for ex-

ample; this is the case for a number of reasons. Firstly, stock options (ignoring

LEAPS) typically have an expiration date spanning 9 months into the future or

less. Convertible bonds, on the other hand, tend to involve maturity dates running

far further into the future. Given the longer maturity of Convertible bonds, dis-

counting becomes a far more significant consideration, and allowing for some means

of modelling the evolution of interest rates is preferable.

Secondly, all stock options on the NYSE and AMEX exchanges are American in

nature, meaning that they can be exercised at any time up to and including the

maturity date; this option to purchase the underlying stock, however, only involves

one potential claim (belonging to the option holder). As for convertible bonds, there

is quite often a dual option scenario. Essentially, the holder of the convertible bond

has the option to convert the bond into common stock, and the issuer may also

have the option to call the bond at some point in the future. By definition, the call

feature is simply a right, belonging to the bond issuer, to repurchase the bond at

some percentage of par prior to maturity. Should the issuer decide to call the bond,

then the holder has the right to either redeem the bond at the call price or convert.

8
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Finally, the value of all derivatives is contingent on the value of some underlying

asset. Consider the case of a stock option. Since the value of the underlying stock

should fall by approximately the amount of the dividend upon the ex-dividend date,

our numerical procedures designed to value such stock options need to take this into

account. However, not only do we need to account for dividend payments when valu-

ing fixed income derivatives, we also need to take account of when bond coupons are

paid and incorporate the dual option scenario into our numerical procedures. The

reason we need to concern ourselves with dividends and coupons is because they af-

fect the value of the underlying asset, which in turn affects the value of the derivative.

The firm’s right to call the bond is quite often restricted in some manner. For ex-

ample, the bond may not be callable for a specified number of years, after which

the call price may vary during certain time periods. As shown by Brennan and

Schwartz (1977), the issuer of the convertible bond will want to undertake a call

strategy so as to minimise the value of the bonds; after all, in doing so the issuer

will be minimising their liabilities. The optimal call strategy for the issuer is then

to call the bonds when the uncalled value of such bonds is equal to the call price. If

the uncalled value of such bonds were below the call price, then calling the bonds

would essentially amount to buying back something for more than it is worth. On

the other hand, failing to call the bonds when their uncalled value is above the call

price isn’t consistent with the firm’s objective to minimise the value of such bonds.

As for convertibility, the holders of convertible bonds will only convert their bonds if

such an approach will maximise their value. Note that this objective of value max-

imisation for the bond holder is diametrically opposite to the intention of the issuer.

Again, Brennan and Schwartz (1977) show that it is never optimal to convert an

uncalled bond except at maturity or under circumstances immediately prior to the

ex-dividend date or an unfavourable (from the bondholder’s perspective) change in

conversion terms. To see why this is the case, keep in mind that the bond can always

be converted, suggesting that its value must be at least as high as the conversion

value in order to satisfy no-arbitrage conditions.
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Consider a firm whose capital structure consists entirely of common stock and one

class of convertible securities. Similar to Brennan and Schwarz, we use the following

definitions:

• S(t)= aggregate market value at time t of the firm’s outstanding securities

including the convertible bonds.

• f(S, t)= the market value at time t of one convertible bond with par value of

$1000.

• l= the number of convertible bonds outstanding.

• n(t)= the number of shares of common stock into which each bond is convert-

ible at time t.

• m= the number of shares of common stock outstanding before conversion takes

place.

• I= the aggregate coupon payment on the outstanding convertible bonds at

each periodic coupon date.

• i= I/l= the periodic coupon payment per bond.

• CP (t)= the price at which the bonds may be called for redemption at time t,

including any accrued interest.

• B(S, t)= the straight debt value of the bond; that is, the value of an otherwise

identical bond with no conversion privilege.

• D(S, t)= the aggregate dividend payment on the common stock at each divi-

dend date.

• V IC(S, t)= the value of the bond if it is called.

Should the bonds be converted, then the entire capital structure of the firm will

consist of common stock. The Modigliani and Miller theorem would suggest that
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firm value will be the same both before and after conversion. Noting that S(t)/(m+

n(t)l) is the value per share after conversion, we can write an expression for the

conversion value per bond as:

C(S, t) = n(t)[S(t)/(m + n(t)l)]

≡ z(t) · S(t)

(3.1)

By no-arbitrage arguments, the market value of the bond must be greater than or

equal to the conversion value:

f(S, t) ≥ C(S, t)

(3.2)

The VIC is the greater of the convertible and the callable value, given that the holder

of the bond wants to maximise its value and gets to choose whether to redeem the

bond at the call price or convert:

V IC(S, t) = max[CP (t), C(S, t)]

(3.3)

All issuers of bonds will desire to minimise the value of their liabilities. Hence, the

issuer will call the bond if such an action provides less value to the bond holder.

Consequently, the market value of the bond can never be greater than the call price:

f(S, t) ≤ CP (t)

(3.4)

The value of total bonds outstanding cannot exceed the firm value:

l · f(S, t) ≤ S(t)

(3.5)
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The bonds are worthless if the firm goes bankrupt:

f(0, t) = 0

(3.6)

We now turn our attention to the value of these convertible bonds at maturity.

Should the conversion value of these bonds be greater than the par value at ma-

turity, then the bond holders will seek to maximise their gains by converting. If,

however, the par value is greater than the conversion value and the firm is not

bankrupt (ie. S(T ) ≥ l · 1000), then the bondholders will choose to receive the

$1000 face value. Finally, if the firm is bankrupt at maturity, meaning that the

aggregate par value of bonds outstanding is greater than the firm value, then the

value of the firm will be divided amongst the bondholders; given that there are l

bonds outstanding, a holder of one convertible bond would receive S/l in this final

case. These maturity value conditions can be summarised as:

f(S, t) =















z(T ) · S if z(T ) · S > 1000

1000 if 1000 ≤ S ≤ 1000/z(T )

S/l if S < 1000 · l

Note, however, that the bond may either be converted or called at some time prior

to maturity. If the bond is currently callable, recall that the call price constraint is:

f(S, t) ≤ CP (t)

If the bond is not currently callable, then the condition becomes:

lim
S→∞

fs(S, t) = z(t)

(3.7)

This arises due to the fact that as firm value becomes exceptionally large, then it is

virtually certain that the bonds are going to be converted into stock. Hence, each
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bond could be considered as the right to buy a portion z(t) of the firm, and the

change in bond value for a small change in firm value is approximately equal to

z(t) · δS.

Finally, we need to consider what happens on dividend and coupon payment dates.

Immediately after the ex-dividend date, the stock price will fall by approximately

the amount of the dividend, thus resulting in a reduction in the conversion value

of the bond. The bond holder is then faced with the choice of whether to convert

before this happens or to simply hold on to the bond. Letting D be the aggregate

dividend payment by the firm, we get:

f(S, t−) = max[f(S − D, t+), z(t−) · S]

(3.8)

As for when coupons occur, let I be the aggregate amount of coupons paid by the

firm and i be the amount of the coupon paid for each bond. Arbitrage conditions

would dictate that, in the case where the bond is not currently callable, the pre-

coupon bond value must be equal to the post-coupon bond value plus the amount

of the coupon:

f(S, t−) = f(S − I, t+) + i

(3.9)

If the bond is currently callable, then the issuing firm will seek to minimise the

aggregate value of the bonds:

f(S, t−) = min[f(S − I, t+) + i, CP (t−)]

(3.10)
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3.1 Solving the basic PDE:

Assume that the underlying firm value follows Geometric Brownian Motion (GBM)

such that:

dS = µSdt + σSdzt

Applying Ito’s Lemma we arrive at:

df =

[

∂f

∂t
+ µS

∂f

∂S
+

1

2
σ2S2 ∂2f

∂S2

]

dt + σS
∂f

∂S
dzt

Now create a portfolio by combining this bond with a portion −∆ = − ∂f
∂S

of the

firm:

Π = f − ∂f

∂S
S

dΠ =

[

∂f

∂t
+ µS

∂f

∂S
+

1

2
σ2S2 ∂2f

∂S2

]

dt + σS
∂f

∂S
dzt −

∂f

∂S
[µSdt + σSdzt]

dΠ =

[

∂f

∂t
+

1

2
σ2S2 ∂2f

∂S2

]

dt

Given that this portfolio is riskless, then it should yield the risk-free rate of interest:

dΠ = rΠdt = r

[

f − ∂f

∂S
S

]

dt =

[

∂f

∂t
+

1

2
σ2S2 ∂2f

∂S2

]

dt

rf − rS
∂f

∂S
=

∂f

∂t
+

1

2
σ2S2 ∂2f

∂S2

0 =
1

2
σ2S2 ∂2f

∂S2
+ rS

∂f

∂S
− rf +

∂f

∂t

Instead of working with t, we’ll work with τ , the time to to maturity. Note that

τ = (T − t). Differentiating, we get: ft = fτ · τt = −fτ . Finally, we can apply this

to the PDE such that:

0 =
1

2
σ2S2 ∂2f

∂S2
+ rS

∂f

∂S
− rf − ∂f

∂τ

This PDE can then be solved using standard numerical procedures. Since we are in-

terested in solving the more complex PDE involving stochastic volatility and interest

rates, the next section shall be dedicated to deriving the SVSI PDE.



Chapter 4

Adding more dimensions into the

model.

Much of the derivation here can be found in Hull (2006). We include it here for

completeness.

Firstly, let’s look at Ito’s lemma for a function of several variables. Suppose that

dxi = aidt + bidzi, where dzi is a Wiener process. This can be discretised as

∆xi = ai∆t + biǫi

√
∆t

Where ǫ is a standard normal random variable. Additionally, assume that dzidzj =

ρijdt

We can then write Ito’s Lemma for -

• One state variable as:

∆f =
∂f

∂x1

(∆x1)+
∂f

∂t
(∆t)+

1

2

∂2f

∂x2
1

(∆x1)
2+

1

2

∂2f

∂t2
(∆t)2+

∂2f

∂x1∂t
(∆x1∆t)+ . . .

df =
∂f

∂x1

(dx1) +
∂f

∂t
(dt) +

1

2

∂2f

∂x2
1

(dx1)
2

15
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• Two state variables as:

∆f =
∂f

∂x1

(∆x1)+
∂f

∂x2

(∆x2)+
∂f

∂t
(∆t)+

1

2

∂2f

∂x2
1

(∆x1)
2+

1

2

∂2f

∂x2
2

(∆x2)
2+

1

2

∂2f

∂t2
(∆t)2

+
∂2f

∂x1∂x2

(∆x1∆x2) +
∂2f

∂x1∂t
(∆x1∆t) +

∂2f

∂x2∂t
(∆x2∆t) + · · ·

df =
∂f

∂x1

(dx1)+
∂f

∂x2

(dx2)+
∂f

∂t
(dt)+

1

2

∂2f

∂x2
1

(dx1)
2+

1

2

∂2f

∂x2
2

(dx2)
2+

∂2f

∂x1∂x2

(dx1dx2)

• In general as:

df =
n

∑

i=1

∂f

∂xi

(dxi) +
∂f

∂t
(dt) +

1

2

n
∑

i=1

n
∑

j=1

∂2f

∂xi∂xj

(dxidxj)

Note that:

dxi = aidt + bidzi

Therefore, we can write

dxidxj = (aidt + bidzi) · (ajdt + bjdzj)

= bibj(dzidzj)

Recalling that dzidzj = ρijdt, then we can substitute:

dxidxj = bibjρijdt.

Now substitute this into the general form of Ito’s Lemma:

df =
n

∑

i=1

∂f

∂xi

(dxi) +
∂f

∂t
(dt) +

1

2

n
∑

i=1

n
∑

j=1

∂2f

∂xi∂xj

bibjρijdt

Finally, substitute for dxi = aidt + bidzi:

df =
n

∑

i=1

∂f

∂xi

(aidt + bidzi) +
∂f

∂t
(dt) +

1

2

n
∑

i=1

n
∑

j=1

∂2f

∂xi∂xj

bibjρijdt
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Now group all terms involving dt:

df =

[

n
∑

i=1

∂f

∂xi

ai +
∂f

∂t
+

1

2

n
∑

i=1

n
∑

j=1

∂2f

∂xi∂xj

bibjρij

]

dt +
n

∑

i=1

∂f

∂xi

bidzi

4.1 Multiple state variables.

Theorem 4.1.1 Suppose that we have several state variables θ1, θ2, ..., θn such that:

dθi = miθidt + siθidzi.

Where dzi is a Weiner process. Suppose that there are n derivatives, each of whose

price is fj, and that their values follow:

dfj = ηjfjdt +
n

∑

i=1

σijfjdzi

Given this information, we can then write:

ηj − r =
n

∑

i=1

λiσij

Proof Define kj as the amount of security j in some portfolio of derivatives such

that:

Π =
n

∑

j=1

kjfj

dΠ =
n

∑

j=1

kj

[

ηjfjdt +
n

∑

i=1

σijfjdzi

]

Now choose the kjs so as to eliminate the stochastic component in the above equa-

tion. To achieve this, set
∑n

j=1 kjσijfj = 0 for all i = 1 . . . n. We are then left
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with:

dΠ =
n

∑

j=1

kjηjfjdt

The cost of setting up this portfolio is
∑n

j=1 kjfj. This portfolio is riskless, so, by

no-arbitrage arguments, it should yield the risk-free interest rate. Therefore:

dΠ = rΠdt

n
∑

j=1

kjηjfjdt = r
n

∑

j=1

kjfjdt

n
∑

j=1

kjηjfj = r

n
∑

j=1

kjfj

n
∑

j=1

kjfj(ηj − r) = 0

Note that
∑n

j=1 kjσijfj = 0 for i = 1 . . . n and
∑n

j=1 kjfj(ηj − r) = 0. These n + 1

equations in kjfj can only be consistent if the last equation is a linear combination

of the others: ηj − r =
∑n

i=1 λiσij.

4.2 Application to options pricing with stochastic

volatility.

Proposition 1 Suppose that:

dS = µSdt +
√

V Sdz1

dV = (θv − κvV )dt + σv

√
V dz2

E [dz1 · dz2] = ρdt

Then the price of any derivative whose payoff depends on S and V obeys the PDE:



19

rf = rS
∂f

∂S
+

∂f

∂V
(θv−κvV −λ2σv

√
V )+

∂f

∂t
+

1

2

∂2f

∂S2
V S2+

1

2

∂2f

∂V 2
V σ2

v +
∂2f

∂S∂V
Sσvρsv

Where λ2 is a function of S, V and t.

Proof Applying Ito’s lemma, we get:

df =

[

∂f

∂S
µS +

∂f

∂V
(θv − κV V ) +

∂f

∂t
+

1

2

∂2f

∂S2
V S2 +

1

2

∂2f

∂V 2
V σ2

V +
∂2f

∂S∂V
SσvV ρsv

]

dt

+
∂f

∂S

√
V Sdz1 +

∂f

∂V
σv

√
V dz2

From Theorem 4.1.1:

• df = ηfdt +
∑n

i=1 σifdzi

• η − r =
∑n

i=1 λiσi

In this particular case with stochastic volatility:

ηf =

[

∂f

∂S
µS +

∂f

∂V
(θv − κvV ) +

∂f

∂t
+

1

2

∂2f

∂S2
V S2 +

1

2

∂2f

∂V 2
V σ2

v +
∂2f

∂S∂V
SσvV ρsv

]

= rf +
n

∑

i=1

λiσif

= rf + λ1
∂f

∂S

√
V S + λ2

∂f

∂V
σv

√
V

Consider the process followed by the stock price:

dS = µSdt +
√

V Sdz1 + 0 · dz2

Therefore, µ = r + λ1

√
V , such that µ − r = λ1

√
V . With this in mind, we can

write:

rf + λ1
∂f

∂S

√
V S + λ2

∂f

∂V
σv

√
V
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= rf +
∂f

∂S
S(µ − r) + λ2

∂f

∂V
σv

√
V

=

[

∂f

∂S
µS +

∂f

∂V
(θv − κvV ) +

∂f

∂t
+

1

2

∂2f

∂S2
V S2 +

1

2

∂2f

∂V 2
V σ2

v +
∂2f

∂S∂V
Sσvρsv

]

Therefore:

rf + λ2
∂f

∂V
σv

√
V

=

[

rS
∂f

∂S
+

∂f

∂V
(θv − κvV ) +

∂f

∂t
+

1

2

∂2f

∂S2
V S2 +

1

2

∂2f

∂V 2
V σ2

v +
∂2f

∂S∂V
Sσvρsv

]

Now rearrange terms such that only rf is on the left hand side of the equation:

rf = rS
∂f

∂S
+

∂f

∂V
(θv−κvV −λ2σv

√
V )+

∂f

∂t
+

1

2

∂2f

∂S2
V S2+

1

2

∂2f

∂V 2
V σ2

v+
∂2f

∂S∂V
Sσvρsv

Corollary 1 Suppose that the conditions of proposition 1 hold in addition to λ2σv

√
V ≡

λ3V . Additionally, define κv2 ≡ κv + λ3. The PDE will then become:

rf = rS
∂f

∂S
+

∂f

∂V
(θv−κv2V )+

∂f

∂t
+

1

2

∂2f

∂S2
V S2+

1

2

∂2f

∂V 2
V σ2

v+
1

2

∂2f

∂V 2
V σ2

v+
∂2f

∂S∂V
Sσvρsv.

Proof Assume that λ2σv

√
V ≡ λ3V , where λ3 is a constant. Therefore, θv −κvV −

λ2σv

√
V = θv − κvV − λ3V = θv − (κv + λ3)V ≡ θv − κv2V . Note that we have

defined κv2 ≡ κv + λ3. Finally, the PDE becomes:

rf = rS
∂f

∂S
+

∂f

∂V
(θv−κv2V )+

∂f

∂t
+

1

2

∂2f

∂S2
V S2+

1

2

∂2f

∂V 2
V σ2

v+
1

2

∂2f

∂V 2
V σ2

v+
∂2f

∂S∂V
Sσvρsv.
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4.3 Application to options pricing with stochastic

volatility and stochastic interest rates.

Proposition 2 Consistent with Bakshi, Cao and Chen (1997), suppose that the

stock price, volatility and interest rate follow the following processes:

dS = µSdt +
√

V Sdz1

dV = [θv − κvV ] dt + σv

√
V dz2

dr = [θr − κrr] dt + σr

√
rdz3

E(dz1dz2) = ρdt

E(dz1dz3) = E(dz2dz3) = 0

This will then result in the following PDE:

rf = rS
∂f

∂S
+

∂f

∂V
[(θv − κvV ) − λ2σv

√
V ] +

∂f

∂r
[(θr − κrr) − λ3σr

√
r]

+
1

2

∂2f

∂S2
V S2 +

1

2

∂2f

∂V 2
σ2

vV +
∂2f

∂r2
σ2

rr +
∂2f

∂S∂V
V Sσvρsv

Where λ2 and λ3 are functions of S, V and t. This PDE will be satisfied by any

derivative price.

Proof Firstly, note that interest rates are uncorrelated with volatility and the stock

price. Additionally, suppose that f(S, V, r, t) is a derivative price. Applying Ito’s

lemma, we then arrive at:
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df =

[

∂f

∂S
µS +

∂f

∂V
[θv − κvV ] +

∂f

∂r
[θr − κrr] +

∂f

∂t
+

1

2

∂2f

∂S2
V S2 +

1

2

∂2f

∂V 2
σ2

vV

+
1

2

∂2f

∂r2
σ2

rr +
∂2f

∂S∂V
ρV σvS

]

dt

+
∂f

∂S

√
V Sdz1 +

∂f

∂V
σv

√
V dz2 +

∂f

∂r
σr

√
rdz3.

Again, from Theorem 4.1.1:

• df = ηfdt +
∑n

i=1 σifdzi

• η − r =
∑n

i=1 λiσi

In this particular case:

ηf =

[

∂f

∂S
µS +

∂f

∂V
[θv − κvV ] +

∂f

∂r
[θr − κrr] +

∂f

∂t
+

1

2

∂2f

∂S2
V S2 +

1

2

∂2f

∂V 2
σ2

vV

+
1

2

∂2f

∂r2
σ2

rr +
∂2f

∂S∂V
ρV σvS

]

= rf +
n

∑

i=1

λiσif

= rf + λ1

[

∂f

∂S

√
V S

]

+ λ2

[

∂f

∂V
σv

√
V

]

+ λ3

[

∂f

∂r
σr

√
r

]

The process followed by the stock price is:

dS = µSdt +
√

V Sdz1 + 0 · dz2 + 0 · dz3.

Therefore, µ = r + λ1

√
V , such that µ − r = λ1

√
V . Consequently, we can write:
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rf + λ1

[

∂f

∂S

√
V S

]

+ λ2

[

∂f

∂V
σv

√
V

]

+ λ3

[

∂f

∂r
σr

√
r

]

=rf + (µ − r)
∂f

∂S
S + λ2

[

∂f

∂V
σv

√
V

]

+ λ3

[

∂f

∂r
σr

√
r

]

=

[

∂f

∂S
µS +

∂f

∂V
[θv − κvV ] +

∂f

∂r
[θr − κrr] +

∂f

∂t
+

1

2

∂2f

∂S2
V S2 +

1

2

∂2f

∂V 2
σ2

vV

+
1

2

∂2f

∂r2
σ2

rr +
∂2f

∂S∂V
ρV σvS

]

Therefore:

rf − rS
∂f

∂S
+ λ2

[

∂f

∂V
σv

√
V

]

+ λ3

[

∂f

∂r
σr

√
r

]

=

[

∂f

∂V
[θv − κvV ] +

∂f

∂r
[θr − κrr] +

∂f

∂t
+

1

2

∂2f

∂S2
V S2 +

1

2

∂2f

∂V 2
σ2

vV

+
1

2

∂2f

∂r2
σ2

rr +
∂2f

∂S∂V
ρV σvS

]

Now rearrange this equation such that rf is on the left hand side:

rf = rS
∂f

∂S
+

∂f

∂V
[(θv − κvV ) − λ2σv

√
V ] +

∂f

∂r
[(θr − κrr) − λ3σr

√
r]

+
1

2

∂2f

∂S2
V S2 +

1

2

∂2f

∂V 2
σ2

vV +
1

2

∂2f

∂r2
σ2

rr +
∂2f

∂S∂V
V Sσvρsv

Corollary 2 Suppose that the conditions of proposition 2 hold in addition to:

• λ2σv

√
V ≡ λ4V

• λ3σr

√
r ≡ λ5r
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Where λ4 and λ5 are constants.

Additionally, we shall make these definitions:

• κv3 ≡ κv + λ4.

• κr3 ≡ κr + λ5.

The PDE will then become:

rf = rS
∂f

∂S
+

∂f

∂V
[θv − κv3V ] +

∂f

∂r
[θr − κr3r] −

∂f

∂τ

+
1

2

∂2f

∂S2
V S2 +

1

2

∂2f

∂V 2
σ2

vV +
1

2

∂2f

∂r2
σ2

rr +
∂2f

∂S∂V
ρV σvS

Proof Assume that λ2σv

√
v ≡ λ4V , such that (θv −κvV )−λ2σv

√
v = (θv −κvV )−

λ4V ≡ (θv − κv3V ), where κv3 ≡ (κv + λ4).

Additionally, assume that λ3σr

√
r ≡ λ5r. Therefore, (θr − κrr) − λ3σr

√
r =

(θr − κrr) − λ5r ≡ (θr − κr3r), where κr3 ≡ (κr + λ5).

The PDE will then become:

rf = rS
∂f

∂S
+

∂f

∂V
[θv − κv3V ] +

∂f

∂r
[θr − κr3r] +

∂f

∂t

+
1

2

∂2f

∂S2
V S2 +

1

2

∂2f

∂V 2
σ2

vV +
1

2

∂2f

∂r2
σ2

rr +
∂2f

∂S∂V
ρV σvS

Recalling that ∂f
∂t

= −∂f
∂τ

, we finally arrive at:

rf = rS
∂f

∂S
+

∂f

∂V
[θv − κv3V ] +

∂f

∂r
[θr − κr3r] −

∂f

∂τ

+
1

2

∂2f

∂S2
V S2 +

1

2

∂2f

∂V 2
σ2

vV +
1

2

∂2f

∂r2
σ2

rr +
∂2f

∂S∂V
ρV σvS
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When we come to the task of estimation, keep in mind that we shall be assuming

κv3 = κv. In other words, λ4 = 0. Additionally, we shall be supposing that λ5 = 0

such that κr3 = κr. Essentially, we shall be taking the common practice approach

of treating the real-world and risk-neutral probabilities as though they were equal.



Chapter 5

Using the ADI method.

Now that we have relaxed the assumption of constant volatility and obtained an ap-

propriate PDE, we are still faced with the task of solving this PDE. Fortunately, the

Alternating Direction Implicit (ADI) method can be a useful tool for this purpose.

For a basic example of applying the ADI method in solving the heat equation see

Brandimarte (2006). At its core, the ADI method introduces an intermediary time

step into the solution, thus reducing a potential multi-dimensional problem into a

series of one dimensional problems. To see how this works, perhaps it is best to see

an example1. Keeping in mind that we are dealing with an intermediary time step,

we can use the ADI method to solve the PDE derived for stochastic volatility in the

previous section.

Our PDE is as follows:

rf = rS
∂f

∂S
+ (θv − κv2V )

∂f

∂V
+

∂f

∂t
+

1

2
V S2 ∂2f

∂S2
+

1

2

∂2f

∂V 2
V σ2

v +
∂2f

∂S∂V
V Sσvρsv

Note that, in the case of a stock option or callable/convertible bond, we know the

value at maturity. Hence we can calculate the value at maturity of our instrument

1For an explanation of how to solve similar problems using Monte-Carlo simulation, see Bakshi

et al. (1997) or Hull and White (1987)

26
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and work backwards in time until we obtain the theoretical value today. With this

in mind, and with the purpose of avoiding confusion, we shall work with time to

maturity (τ) instead of the current period t. Recalling that τ = (T − t), we can then

state ∂f
∂t

= ∂f
∂τ

· ∂τ
∂t

= ∂f
∂τ

· −1 = −∂f
∂τ

. Finally, our new PDE when working with τ is:

rf = rS
∂f

∂S
+ (θv − κv2V )

∂f

∂V
− ∂f

∂τ
+

1

2
V S2 ∂2f

∂S2
+

1

2

∂2f

∂V 2
V σ2

v +
∂2f

∂S∂V
V Sσvρsv

5.1 The first half step

We shall use the superscript i and the subscripts j and k to denote the τ , stock price

and volatility dimensions respectively. Our finite difference approximations for the

first half step will then be:

∂f

∂τ
≃

f
i+ 1

2

j,k − f i
j,k

(∆τ)/2

∂f

∂S
≃

f
i+ 1

2

j+1,k − f
i+ 1

2

j−1,k

2∆S

∂2f

∂S2
≃

f
i+ 1

2

j+1,k − 2f
i+ 1

2

j,k + f
i+ 1

2

j−1,k

∆S2

∂f

∂V
≃

f i
j,k+1 − f i

j,k−1

2∆V
∂2f

∂V 2
≃

f i
j,k+1 − 2f i

j,k + f i
j,k−1

∆V 2

∂2f

∂S∂V
≃

f i
j+1,k+1 − f i

j+1,k−1 − f i
j−1,k+1 + f i

j−1,k−1

4∆V ∆S

Now use these as approximations to the partial derivitives in our PDE to obtain:
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rf
i+ 1

2

j,k = rSj





f
i+ 1

2

j+1,k − f
i+ 1

2

j−1,k

2∆S



 + (θv − κv2Vk)

[

f i
j,k+1 − f i

j,k−1

2∆V

]

−





f
i+ 1

2

j,k − f i
j,k

(∆τ)/2





+
1

2
VkS

2
j





f
i+ 1

2

j+1,k − 2f
i+ 1

2

j,k + f
i+ 1

2

j−1,k

∆S2



 +
1

2
Vkσ

2
v

[

f i
j,k+1 − 2f i

j,k + f i
j,k−1

∆V 2

]

+ VkSjσvρsv

[

f i
j+1,k+1 − f i

j+1,k−1 − f i
j−1,k+1 + f i

j−1,k−1

4∆V ∆S

]

Now rearrange this equation such that all the terms involving τ step i + 1
2

are on

the left hand side:

f
i+ 1

2

j−1,k

[

rSj

2(∆S)
−

VkS
2
j

2(∆S)2

]

+ f
i+ 1

2

j,k

[

r +
1

(∆τ/2)
+

VkS
2
j

(∆S)2

]

+ f
i+ 1

2

j+1,k

[ −rSj

2(∆S)
−

VkS
2
j

2(∆S)2

]

= f i
j,k−1

[−(θv − κv2Vk)

2(∆V )
+

Vkσ
2
v

2(∆V )2

]

+ f i
j,k

[

1

(∆τ/2)
− Vkσ

2
v

(∆V )2

]

+ f i
j,k+1

[

(θv − κv2Vk)

2(∆V )
+

Vkσ
2
v

2(∆V )2

]

+ VkSjσvρsv

[

f i
j+1,k+1 − f i

j+1,k−1 − f i
j−1,k+1 + f i

j−1,k−1

4(∆V )(∆S)

]

(5.1)

Notice that everything on the right hand side of the equation involves time step i,

meaning that everything is known on the right hand side. However, all the terms

on the left hand side of the equation involve time step i + 1
2
, the values which we

currently don’t know. Keep in mind that the time and volatility dimensions, being

i + 1
2

and k respectively, are fixed. Consequently, only the stock price dimension

is varying and the problem has effectively become one-dimensional. Obtaining val-

ues for the intermediary time step will essentially involve solving this equation for

each level of k. Mathematically, this will involve solving a set of J × J tri-diagonal
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matrices as we move through each level of volatility in the finite difference grid

(V0, · · · , Vk, · · · , VK). This is far more efficient than solving one JK × JK system

of equations.

5.2 The second half step

We are now faced with the task of moving from the auxiliary time step (i + 1
2
)

to time step (i + 1). Again, we need to obtain finite difference approximations to

the partial derivatives in our PDE. However, this time we shall do the stock price

approximations at time step (i + 1
2
) and the volatility approximations at time step

(i + 1). As a result, the finite difference approximations will be as follows:

∂f

∂τ
≃

f i+1
j,k − f

i+ 1

2

j,k

(∆τ)/2

∂f

∂S
≃

f
i+ 1

2

j+1,k − f
i+ 1

2

j−1,k

2∆S

∂2f

∂S2
≃

f
i+ 1

2

j+1,k − 2f
i+ 1

2

j,k + f
i+ 1

2

j−1,k

(∆S)2

∂f

∂V
≃

f i+1
j,k+1 − f i+1

j,k−1

2∆V

∂2f

∂V 2
≃

f i+1
j,k+1 − 2f i+1

j,k + f i+1
j,k−1

(∆V )2

∂2f

∂S∂V
≃

f
i+ 1

2

j+1,k+1 − f
i+ 1

2

j+1,k−1 − f
i+ 1

2

j−1,k+1 + f
i+ 1

2

j−1,k−1

4∆V ∆S

Recalling that the PDE is:

rf = rS
∂f

∂S
+ (θv − κv2V )

∂f

∂V
+

∂f

∂t
+

1

2
V S2 ∂2f

∂S2
+

1

2

∂2f

∂V 2
V σ2

v +
∂2f

∂S∂V
V Sσvρsv
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We can then input the finite difference approximations into the PDE to obtain:

rf
i+ 1

2

j,k = rSj





f
i+ 1

2

j+1,k − f
i+ 1

2

j−1,k

2∆S



 + (θv − κv2V )

[

f i+1
j,k+1 − f i+1

j,k−1

2∆V

]

−





f i+1
j,k − f

i+ 1

2

j,k

(∆τ)/2





+
1

2
VkS

2
j





f
i+ 1

2

j+1,k − 2f
i+ 1

2

j,k + f
i+ 1

2

j−1,k

(∆S)2



 +
1

2
Vkσ

2
v

[

f i+1
j,k+1 − 2f i+1

j,k + f i+1
j,k−1

(∆V )2

]

+ VkSjσvρsv





f
i+ 1

2

j+1,k+1 − f
i+ 1

2

j+1,k−1 − f
i+ 1

2

j−1,k+1 + f
i+ 1

2

j−1,k−1

4∆V ∆S





This can be rearranged such that all of the terms involving τ step (i + 1) are on the

left hand side of the equation:

f i+1
j,k+1

[−(θv − κv2Vk)

2(∆V )
− Vkσ

2
v

2(∆V )2

]

+ f i+1
j,k

[

1

(∆τ/2)
+

Vkσ
2
v

(∆V )2

]

+ f i+1
j,k−1

[

(θv − κv2Vk)

2(∆V )
− Vkσ

2
v

2(∆V )2

]

= f
i+ 1

2

j+1,k

[

rSj

2(∆S)
+

VkS
2
j

2(∆S)2

]

+ f
i+ 1

2

j,k

[

−r +
1

(∆τ/2)
−

VkS
2
j

(∆S)2

]

+ f
i+ 1

2

j−1,k

[ −rSj

2(∆S)
+

VkS
2
j

2(∆S)2

]

+ VkSjσvρsv





f
i+ 1

2

j+1,k+1 − f
i+ 1

2

j+1,k−1 − f
i+ 1

2

j−1,k+1 + f
i+ 1

2

j−1,k−1

4(∆V )(∆S)





(5.2)

Again, notice that all terms on the right hand side of the above expression are known

after the first half-step. As for the terms on the left hand side of the equation, these

terms all involve a fixed dimension for τ and the stock price, being (i + 1) and j

respectively. In other words, for the unknown components of the equation, being

the left hand side, only the volatility dimension is varying. Hence we once again see

that the problem has been made one-dimensional. Implementing this equation and

moving our solution from the intermediary time step to τ level (i + 1) in the finite

difference grid will then involve solving a set of tri-diagonal matrices for each level

of the stock price (S0, · · · , Sj, · · · , SJ).
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5.3 Boundary conditions.

We have already shown that, provided we are not on a boundary in the finite differ-

ence mesh, the equations governing the first and second half-steps are (5.1) and (5.2).

For the sake of simplicity, I shall write these equations more concisely as:

The first half-step:

f
i+ 1

2

j−1,kξ1 + f
i+ 1

2

j,k ξ2 + f
i+ 1

2

j+1,kξ3 = f i
j,k−1ξ4 + f i

j,kξ5 + f i
j,k+1ξ6 + VkSjσvρsvξ7

The second half-step:

f i+1
j,k+1ξ8 + f i+1

j,k ξ9 + f i+1
j,k−1ξ10 = f

i+ 1

2

j+1,kξ11 + f
i+ 1

2

j,k ξ12 + f
i+ 1

2

j−1,kξ13 + VkSjσvρsvξ14

Finally, consider possible boundaries for the finite difference mesh. There are sev-

eral possibilities to consider in this example. Firstly, we know what the value of a

stock option will be at maturity for a given stock and strike price, and we wish to

work through the grid so as to find the value of the derivative today (at τ = T ).

Hence the time dimension boundaries won’t have an impact on the above equations.

However, there is still the matter of the stock price and volatility dimensions. At a

given iteration in our finite difference mesh we could either be operating on a stock

price boundary, a volatility dimension boundary or a combination of both.

Volatility:

• Upper boundary (VK)

• Not on a boundary.

• Lower boundary (V0)
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Stock Price:

• Upper boundary (SJ)

• Not on a boundary.

• Lower boundary (S0)

Considering the case of a stock option, ∂f
∂S

is likely to be relatively constant for

very high and low stock prices (i.e. at the boundaries). As a result, we could safely

assume that ∂2f
∂S2 would be zero at SJ and S0. Also note that if ∂f

∂S
is relatively

constant, then we can also assume ∂2f
∂S∂V

is equal to zero. Additionally, whether we

are at the bounds of S for our finite difference mesh will influence how we define

the finite difference approximations. For example, if we are working at the upper

boundary for the stock price, being SJ , then we will have to redefine ∂f
∂S

such that

our approximation does not refer to points outside the grid (i.e. SJ+1). The same

is also true for the lower boundary where we would have to redefine ∂f
∂S

such that it

does not incorporate a point S−1 in the stock price dimension, as such a point does

not exist.

Turning our attention to the upper and lower boundaries of the volatility dimension,

as volatility gets either very large or very small, being the boundaries of the volatil-

ity dimension, we shall assume that ∂f
∂V

is relatively constant. Effectively, this will

also result in ∂2f
∂V 2 and ∂2f

∂S∂V
being zero at the volatility boundaries. This makes in-

tuitive sense, as regardless of how large or small the volatility becomes, no arbitrage

arguments allow us to set upper and lower boundaries for the option’s value. For

example, regardless of how high volatility becomes, a European call option can never

trade at a higher value than the underlying stock (c ≤ S0); conversely, the lower

price boundary for a European call option in the case of no dividends is S0−Ke−rT . 2

For a full discussion of how the numerical procedure alters at the boundaries of this

PDE, please refer to appendix B.

2For more of a discussion of option price boundaries, see Hull (2006) Chap. 9.



Chapter 6

Applying the ADI method in the

case of stochastic volatility and

stochastic interest rates (SVSI).

We have previously relaxed the assumption of constant volatility, and now we are

going to do the same for interest rates. Note that the ADI approach will be similar,

except that we now need two intermediary time steps and, of course, the equations

will be different. The PDE when dealing with stochastic volatility and stochastic

interest rates has been derived as:

rf =
1

2
V S2 ∂2f

∂S2
+ rS

∂f

∂S
+ ρσvV S

∂2f

∂S∂V
+

1

2
σ2

vV
∂2f

∂V 2
+ [θv − κv3V ]

∂f

∂V

+
1

2
σ2

rr
∂2f

∂r2
+ [θr − κr3r]

∂f

∂r
− ∂f

∂τ

Our numerical procedure using the ADI method will work through each time step

iteratively. Given that there are two intermediary time steps, there will be a total

of three iterations that will have to be made in order to progress between each

33



34

time step within the finite difference mesh. In keeping with the previous notation,

we shall express the time dimension as i, the stock dimension as j, the volatility

dimension as k and the interest rate dimension as l. Hence, we shall express the

first intermediary time step as (i + 1
3
), the second intermediary time step as (i + 2

3
)

and the final step in our grid as (i + 1).

6.1 The first third of a step.

We shall define the finite difference approximations (FDAs) as follows:

∂f

∂τ
≃

f
i+ 1

3

j,k,l − f i
j,k,l

(∆τ/3)

∂f

∂S
≃

f
i+ 1

3

j+1,k,l − f
i+ 1

3

j−1,k,l

2∆S

∂2f

∂S2
≃

f
i+ 1

3

j+1,k,l − 2f
i+ 1

3

j,k,l + f
i+ 1

3

j−1,k,l

(∆S)2

∂f

∂V
≃

f i
j,k+1,l − f i

j,k−1,l

2∆V
∂2f

∂V 2
≃

f i
j,k+1,l − 2f i

j,k,l + f i
j,k−1,l

(∆V )2

∂f

∂r
≃

f i
j,k,l+1 − f i

j,k,l−1

2∆r
∂2f

∂r2
≃

f i
j,k,l+1 − 2f i

j,k,l + f i
j,k,l−1

(∆r)2

∂2f

∂S∂V
≃

f i
j+1,k+1,l − f i

j+1,k−1,l − f i
j−1,k+1,l + f i

j−1,k−1,l

4∆V ∆S
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Plugging these approximations into our PDE we arrive at:

rlf
i+ 1

3

j,k,l =
1

2
VkS

2
j





f
i+ 1

3

j+1,k,l − 2f
i+ 1

3

j,k,l + f
i+ 1

3

j−1,k,l

(∆S)2



 + rlSj





f
i+ 1

3

j+1,k,l − f
i+ 1

3

j−1,k,l

2∆S





+ ρσvVkSj

[

f i
j+1,k+1,l − f i

j+1,k−1,l − f i
j−1,k+1,l + f i

j−1,k−1,l

4∆V ∆S

]

+
1

2
σ2

vVk

[

f i
j,k+1,l − 2f i

j,k,l + f i
j,k−1,l

(∆V )2

]

+ [θv − κv3Vk]

[

f i
j,k+1,l − f i

j,k−1,l

2∆V

]

+
1

2
σ2

rrl

[

f i
j,k,l+1 − 2f i

j,k,l + f i
j,k,l−1

(∆r)2

]

+ [θr − κr3rl]

[

f i
j,k,l+1 − f i

j,k,l−1

2∆r

]

−





f
i+ 1

3

j,k,l − f i
j,k,l

(∆τ/3)





Now rearrange this equation such that all terms involving τ step (i + 1
3
) are on the

left hand side:

f
i+ 1

3

j+1,k,l

[ −VkS
2
j

2(∆S)2
− rlSj

2∆S

]

+ f
i+ 1

3

j,k,l

[

rl +
VkS

2
j

(∆S)2
+

1

(∆τ/3)

]

+ f
i+ 1

3

j−1,k,l

[

rlSj

2∆S
−

VkS
2
j

2(∆S)2

]

= f i
j,k,l

[−σ2
vVk

(∆V )2
− σ2

rrl

(∆r)2
+

1

(∆τ/3)

]

+ f i
j,k+1,l

[

σ2
vVk

2(∆V )2
+

(θv − κv3Vk)

2∆V

]

+ f i
j,k−1,l

[

σ2
vVk

2(∆V )2
− (θv − κv3Vk)

2∆V

]

+ f i
j,k,l+1

[

σ2
rrl

2(∆r)2
+

(θr − κr3rl)

2∆r

]

+ f i
j,k,l−1

[

σ2
rrl

2(∆r)2
− (θr − κr3rl)

2∆r

]

+
ρσvVkSj

4∆V ∆S

[

f i
j+1,k+1,l − f i

j+1,k−1,l − f i
j−1,k+1,l + f i

j−1,k−1,l

]

(6.1)

We see that everything on the right hand side of the above equation is known,

whereas those terms on the left hand side, being those that involve time step (i+ 1
3
),

are unknown. However, notice that only the stock price dimension is varying on the

left hand side of the equation; in other words, all of the time, volatility and interest
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rate dimensions are fixed. This is typical of the ADI method and, as discussed before,

allows us to reduce this potentially multi-dimensional problem into one dimension.

Using the ADI method in this scenario will lead us to solve a J × J tri-diagonal

matrix for each level of volatility and interest rates within the finite difference grid.

The ADI method is computationally efficient as we only have to solve KL · J × J

systems of equations as opposed to one JKL × JKL equation system.

6.2 The second third of the step.

Once the values for the first auxillary time step have been calculated, we then need

to complete the second third of the step. This involves moving to time step (i + 2
3
)

from time step (i + 1
3
). The finite difference approximations at this point will be:

∂f

∂τ
≃

f
i+ 2

3

j,k,l − f
i+ 1

3

j,k,l

(∆τ/3)

∂f

∂S
≃

f
i+ 1

3

j+1,k,l − f
i+ 1

3

j−1,k,l

2∆S

∂2f

∂S2
≃

f
i+ 1

3

j+1,k,l − 2f
i+ 1

3

j,k,l + f
i+ 1

3

j−1,k,l

(∆S)2

∂f

∂V
≃

f
i+ 2

3

j,k+1,l − f
i+ 2

3

j,k−1,l

2∆V

∂2f

∂V 2
≃

f
i+ 2

3

j,k+1,l − 2f
i+ 2

3

j,k,l + f
i+ 2

3

j,k−1,l

(∆V )2

∂f

∂r
≃

f
i+ 1

3

j,k,l+1 − f
i+ 1

3

j,k,l−1

2∆r

∂2f

∂r2
≃

f
i+ 1

3

j,k,l+1 − 2f
i+ 1

3

j,k,l + f
i+ 1

3

j,k,l−1

(∆r)2

∂2f

∂S∂V
≃

f
i+ 1

3

j+1,k+1,l − f
i+ 1

3

j+1,k−1,l − f
i+ 1

3

j−1,k+1,l + f
i+ 1

3

j−1,k−1,l

4∆V ∆S

Recalling that the PDE is:
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rf =
1

2
V S2 ∂2f

∂S2
+ rS

∂f

∂S
+ ρσvV S

∂2f

∂S∂V
+

1

2
σ2

vV
∂2f

∂V 2
+ [θv − κv3V ]

∂f

∂V

+
1

2
σ2

rr
∂2f

∂r2
+ [θr − κr3r]

∂f

∂r
− ∂f

∂τ

We can then substitute these finite difference approximations into the PDE to obtain:

rlf
i+ 1

3

j,k,l =
1

2
VkS

2
j





f
i+ 1

3

j+1,k,l − 2f
i+ 1

3

j,k,l + f
i+ 1

3

j−1,k,l

(∆S)2



 + rlSj





f
i+ 1

3

j+1,k,l − f
i+ 1

3

j−1,k,l

2∆S





+ ρσvVkSj





f
i+ 1

3

j+1,k+1,l − f
i+ 1

3

j+1,k−1,l − f
i+ 1

3

j−1,k+1,l + f
i+ 1

3

j−1,k−1,l

4∆V ∆S





+
1

2
σ2

vVk





f
i+ 2

3

j,k+1,l − 2f
i+ 2

3

j,k,l + f
i+ 2

3

j,k−1,l

(∆V )2



 + [θv − κv3Vk]





f
i+ 2

3

j,k+1,l − f
i+ 2

3

j,k−1,l

2∆V





+
1

2
σ2

rrl





f
i+ 1

3

j,k,l+1 − 2f
i+ 1

3

j,k,l + f
i+ 1

3

j,k,l−1

(∆r)2



 + [θr − κr3rl]





f
i+ 1

3

j,k,l+1 − f
i+ 1

3

j,k,l−1

2∆r





−





f
i+ 2

3

j,k,l − f
i+ 1

3

j,k,l

(∆τ/3)





Now rearrange this equation such that all terms involving time step (i + 2
3
) are on
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the left hand side of the equation:

f
i+ 2

3

j,k+1,l

[ −σ2
vVk

2(∆V )2
− (θv − κv3Vk)

2∆V

]

+ f
i+ 2

3

j,k,l

[

1

(∆τ/3)
+

σ2
vVk

(∆V )2

]

+ f
i+ 2

3

j,k−1,l

[

(θv − κv3Vk)

2∆V
− σ2

vVk

2(∆V )2

]

= f
i+ 1

3

j,k,l

[

−rl −
VkS

2
j

(∆S)2
− σ2

rrl

(∆r)2
+

1

(∆τ/3)

]

+ f
i+ 1

3

j+1,k,l

[

rlSj

2∆S
+

VkS
2
j

2(∆S)2

]

+ f
i+ 1

3

j−1,k,l

[

VkS
2
j

2(∆S)2
− rlSj

2∆S

]

+ f
i+ 1

3

j,k,l+1

[

σ2
rrl

2(∆r)2
+

(θr − κr3rl)

2∆r

]

+ f
i+ 1

3

j,k,l−1

[

σ2
rrl

2(∆r)2
− (θr − κr3rl)

2∆r

]

+
ρσvVkSj

4∆V ∆S

[

f
i+ 1

3

j+1,k+1,l − f
i+ 1

3

j+1,k−1,l − f
i+ 1

3

j−1,k+1,l + f
i+ 1

3

j−1,k−1,l

]

(6.2)

Again, observe that all terms to the right of the equals sign are known, whereas all

those terms on the left, being those that involve time step (i + 2
3
), are unknown.

Additionally, of those terms which are unknown, only the volatility dimension is

varying.

6.3 The final third of the step.

The finite difference approximations will be much the same as before for this final

step, except that the approximations for stock price and volatility will be done at

time step (i + 2
3
), whilst the approximations for interest rates will be done at time
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step (i + 1). This results in the following set of FDAs:

∂f

∂τ
≃

f i+1
j,k,l − f

i+ 2

3

j,k,l

(∆τ/3)

∂f

∂S
≃

f
i+ 2

3

j+1,k,l − f
i+ 2

3

j−1,k,l

2∆S

∂2f

∂S2
≃

f
i+ 2

3

j+1,k,l − 2f
i+ 2

3

j,k,l + f
i+ 2

3

j−1,k,l

(∆S)2

∂f

∂V
≃

f
i+ 2

3

j,k+1,l − f
i+ 2

3

j,k−1,l

2∆V

∂2f

∂V 2
≃

f
i+ 2

3

j,k+1,l − 2f
i+ 2

3

j,k,l + f
i+ 2

3

j,k−1,l

(∆V )2

∂f

∂r
≃

f i+1
j,k,l+1 − f i+1

j,k,l−1

2∆r

∂2f

∂r2
≃

f i+1
j,k,l+1 − 2f i+1

j,k,l + f i+1
j,k,l−1

(∆r)2

∂2f

∂S∂V
≃

f
i+ 2

3

j+1,k+1,l − f
i+ 2

3

j+1,k−1,l − f
i+ 2

3

j−1,k+1,l + f
i+ 2

3

j−1,k−1,l

4∆V ∆S

Substituting into the PDE we get:

rlf
i+ 2

3

j,k,l =
1

2
VkS

2
j





f
i+ 2

3

j+1,k,l − 2f
i+ 2

3

j,k,l + f
i+ 2

3

j−1,k,l

(∆S)2



 + rlSj





f
i+ 2

3

j+1,k,l − f
i+ 2

3

j−1,k,l

2∆S





+ ρσvVkSj





f
i+ 2

3

j+1,k+1,l − f
i+ 2

3

j+1,k−1,l − f
i+ 2

3

j−1,k+1,l + f
i+ 2

3

j−1,k−1,l

4∆V ∆S





+
1

2
σ2

vVk





f
i+ 2

3

j,k+1,l − 2f
i+ 2

3

j,k,l + f
i+ 2

3

j,k−1,l

(∆V )2



 + [θv − κv3Vk]





f
i+ 2

3

j,k+1,l − f
i+ 2

3

j,k−1,l

2∆V





+
1

2
σ2

rrl

[

f i+1
j,k,l+1 − 2f i+1

j,k,l + f i+1
j,k,l−1

(∆r)2

]

+ [θr − κr3rl]

[

f i+1
j,k,l+1 − f i+1

j,k,l−1

2∆r

]

−





f i+1
j,k,l − f

i+ 2

3

j,k,l

(∆τ/3)




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Finally, rearrange this equation such that all terms involving time step (i + 1) are

on the left hand side:

f i+1
j,k,l+1

[ −σ2
rrl

2(∆r)2
− (θr − κr3rl)

2∆r

]

+ f i+1
j,k,l

[

σ2
rrl

(∆r)2
+

1

(∆τ/3)

]

+ f i+1
j,k,l−1

[ −σ2
rrl

2(∆r)2
+

(θr − κr3rl)

2(∆r)

]

= f
i+ 2

3

j,k,l

[

−rl −
VkS

2
j

(∆S)2
− σ2

vVk

(∆V )2
+

1

(∆τ/3)

]

+ f
i+ 2

3

j+1,k,l

[

VkS
2
j

2(∆S)2
+

rlSj

2∆S

]

+ f
i+ 2

3

j−1,k,l

[

VkS
2
j

2(∆S)2
− rlSj

2∆S

]

+ f
i+ 2

3

j,k+1,l

[

σ2
vVk

2(∆V )2
+

(θv − κv3Vk)

2∆V

]

+ f
i+ 2

3

j,k−1,l

[−(θv − κv3Vk)

2∆V
+

σ2
vVk

2(∆V )2

]

+
ρσvVkSj

4∆V ∆S

[

f
i+ 2

3

j+1,k+1,l − f
i+ 2

3

j+1,k−1,l − f
i+ 2

3

j−1,k+1,l + f
i+ 2

3

j−1,k−1,l

]

(6.3)

6.4 Boundary conditions.

If we are not on one of the boundaries for our finite difference grid, then the equa-

tions relating to the first, second and third parts of the step are given by (6.1), (6.2)

and (6.3). For ease of notation, we shall write the above equations more concisely as:

The first part of the step:

f
i+ 1

3

j+1,k,lξ1 + f
i+ 1

3

j,k,l ξ2 + f
i+ 1

3

j−1,k,lξ3 = f i
j,k,lξ4 + f i

j,k+1,lξ5 + f i
j,k−1,lξ6 + f i

j,k,l+1ξ7

+f i
j,k,l−1ξ8 +

[

f i
j+1,k+1,l − f i

j+1,k−1,l − f i
j−1,k+1,l + f i

j−1,k−1,l

]

ξ9

The second third of a step:

f
i+ 2

3

j,k+1,lξ10 + f
i+ 2

3

j,k,l ξ11 + f
i+ 2

3

j,k−1,lξ12 = f
i+ 1

3

j,k,l ξ13 + f
i+ 1

3

j+1,k,lξ14 + f
i+ 1

3

j−1,k,lξ15 + f
i+ 1

3

j,k,l+1ξ16

+f
i+ 1

3

j,k,l−1ξ17 +
[

f
i+ 1

3

j+1,k+1,l − f
i+ 1

3

j+1,k−1,l − f
i+ 1

3

j−1,k+1,l + f
i+ 1

3

j−1,k−1,l

]

ξ18
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The final third of a step:

f i+1
j,k,l+1ξ19 + f i+1

j,k,lξ20 + f i+1
j,k,l−1ξ21 = f

i+ 2

3

j,k,l ξ22 + f
i+ 2

3

j+1,k,lξ23 + f
i+ 2

3

j−1,k,lξ24 + f
i+ 2

3

j,k+1,lξ25

+f
i+ 2

3

j,k−1,lξ26 +
[

f
i+ 2

3

j+1,k+1,l − f
i+ 2

3

j+1,k−1,l − f
i+ 2

3

j−1,k+1,l + f
i+ 2

3

j−1,k−1,l

]

ξ27

Note that we need to consider what happens at the boundaries of our finite differ-

ence mesh. Obviously, we can’t refer to points outside the grid, as such points don’t

exist, so we need to redefine our finite difference approximations when this is an

issue. The time to maturity dimension (τ) wont pose a problem. However, there are

still the stock price (j), volatility (k) and interest rate (l) dimensions to consider.

The possibilities, put simply, will be as follows:

Stock Price:

• Upper boundary (SJ)

• Not on a boundary.

• Lower boundary (S0)

Volatility:

• Upper boundary (VK)

• Not on a boundary.

• Lower boundary (V0)

Interest rates:

• Upper boundary (rL)
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• Not on a boundary.

• Lower boundary (r0)

See the discussion in the Stochastic Volatility (SV) case as to how we deal with

the FDAs for stock price and volatility at the boundaries. However, we still have

the task, at least in this case, of considering what happens at the boundaries for

interest rates. If we are not on an interest rate boundary within the finite difference

mesh, then adjusting our FDAs relating to interest rates is a non-issue. However,

consider what happens when interest rates become either very large or very small.

As interest rates become very large, the discount rate applied to future payoffs will

likewise be getting larger, and the option’s value, f(S, V, r, T ), will tend towards

zero as interest rates move towards infinity (ie. f(S, V,∞, T ) = 0). Any additional

increments or decrements in interest rates will have little impact on the option’s

value at this point. In other words, we could reasonably expect ∂f
∂r

to be relatively

constant for very high levels of the interest rate, suggesting that ∂2f
∂r2 ≃ 0. As for very

low levels of the interest rate, as r tends towards zero the term 1
2
σ2

rr
∂2f
∂r2 will become

smaller and relatively insignificant, assuming that ∂2f
∂r2 does not increase drastically.

In fact, it would be reasonable to suppose that ∂2f
∂r2 = 0 at the lowest point for r in

the finite difference mesh. As for what happens to ∂f
∂r

at the lower boundary for r,

we shall have to give it a new definition such that we don’t refer to points outside

of the finite difference mesh.

For a more complete instruction on how to implement this numerical procedure at

the finite difference mesh boundaries, please refer to appendix C.



Chapter 7

An example of stochastic volatility

and stochastic interest rates in

options pricing.

We are now going to run through a hypothetical example of stock options pricing

using the ADI method with the parameters in table 7.1. Figure 7.1 and 7.2 represent

the derivative prices and hedging sensitivities for different levels of the stock price,

volatility and interest rates.

Notice in figure 7.1(A) that the call option’s value is positively related to the stock

price, with the opposite being true for the put option. Given that a European call

option’s payoff at maturity is max(ST − K, 0), whilst the payoff for an otherwise

equivalent put option is max(K − ST , 0), it is hardly surprising that the graph for

call options slopes upward in the stock price dimension whilst the opposite is true

for put options. In short, a higher stock price, ceteris paribus, is favourable for call

option holders and unfavourable for put options holders. However, notice that both

graphs have only a very slight slope for heavily OTM options. It is unlikely that

such options will swing into the money, given volatility, meaning that a change in the

value of the underlying asset has only a very minor effect on the value of the option
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Figure 7.1: One dimension, being either stock price (S), volatility (V ), or interest

rates (r) is fixed for each of the graphs. Interest rate=.05, volatility=.3, and stock

price=50 for each of rows one, two and three respectively.
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Figure 7.2: Volatility and interest rates are set equal to .3 and .05 respectively for

each of these hedging sensitivities graphs.
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Table 7.1: These hypothetical parameter values are used to produce the graphs that

are to follow.
Parameter values.

∆t = .01 ρsv = -.3

∆s = 5 K = 50

∆v = .05 σr = .05

∆r = .01 κr = .5

T = 1 θr = .02

Smin = 10 σv = .2

Smax = 90 κv = 2

V min = .10 θv = .08

V max = .50 Rmax = .11

Rmin = .01

at these points. Indeed, this is reflected in our calculations for delta (∆ = ∂f
∂S

) in

figure 7.2(A) and (B). As an option moves more OTM, the delta of such an option

will move closer towards zero and the option’s value will be less sensitive to changes

in the underlying asset. The shape of the graph for delta looks much the same for

call and put options, the difference being that ∆ values range between 0 and 1 for

call options, whilst the range for put options is between 0 and −1. Again, this is no

surprise. Delta values for calls ( ∂c
∂S

) are positive because a higher underlying asset

price benefits call option holders, and the delta of a put option ( ∂p
∂S

) is negative

because a higher underlying asset price will result in a decline in put option value.

Hence, as the underlying asset price changes so will the corresponding delta of the

option, and the rate of change for delta is known as gamma Γ = ( ∂2f
∂S2 ). The under-

lying asset will always have a ∆ of 1, and consequently a Γ of zero. Because the

delta of options will change over time, periodic rebalancing of our option positions

would be required should we wish to maintain a delta neutral portfolio. These sen-

sitivities can also be used to create synthetic options through replication. However,

this does raise some concerns. Consider the case of a portfolio manager wishing to

create a protective put position synthetically over an indexed equity portfolio. This
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type of ‘portfolio insurance’ is a means of protecting the portfolio’s value should

an adverse fall in equity values occur. Further suppose that the replicated option

was approximately ATM, meaning that the gamma of the option being replicated

is likely to be large. Would the synthetic put option be effective in the case of a

market crash, for example? The answer, of course, is no. Replicating the delta of

an option is only effective in the case of small movements in the underlying asset.

Delta tells only part of the story. Gamma attempts to quantify the rate of change

in delta, and therefore gives an indication of how often we might expect to rebal-

ance a portfolio in order to maintain approximate delta neutrality. We can see from

figure 7.2(C) and (D) that Γ is identical for both European put and call options

with the same underlying parameters. Most of the change in ∆ occurs when the

option is approximately ATM, and then delta becomes relatively constant (Γ ≃ 0)

for options that are either heavily ITM or heavily OTM. There are two reasons for

this; firstly, heavily OTM options are likely to expire worthless anyway, and slight

changes in the underlying asset aren’t going to make much difference to the option’s

value (∆ ≃ 0 and Γ ≃ 0); secondly, options that are heavily ITM are most likely to

be exercised, meaning that the value of a heavily ITM European call option today,

for example, might be approximated by (St − Ke−rT ), such that ∆ ≃ 1 and Γ ≃ 0.

Finally, notice that Γ is always positive, meaning that delta is always increasing as

the underlying asset price increases.

Looking at the graphs in 7.1(A) and (B) we can see that the value of an option is

positively related to volatility; in other words, higher levels of volatility result in a

higher option value. Keep in mind that volatility in our SVSI model follows a mean

reverting process
[

dV = [θv − κvV ] dt + σv

√
V dz2

]

. Regardless of the current level

of volatility, reversion will always occur towards its long term theoretical level in this

model. Consequently, changes in volatility, whilst still having a positive effect on

option value, will not have such a pronounced effect when compared to a permanent

volatility increase. Also notice that the level of vega (= ∂f
∂V

) in figure 7.2(E) and

(F) is identical and always positive for European puts and calls. A higher level of

volatility gives all options a better chance of swinging into the money. Investors

taking a long position in puts and calls are less concerned about the downside of

volatility since they cannot lose more than the option premium. However, heavily
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ITM options still do have a significant downside potential, meaning that additional

volatility increments for these options are unlikely to add significantly to value. Like-

wise, options sitting deeply OTM are unlikely to be exercised, regardless of whether

volatility becomes very large, and hence vega is relatively small and insignificant.

These facts are evidenced by vega dropping off at the extremeties for stock price.

Note that the underlying asset always has a vega of zero, as movements in the un-

derlying are fully explained by its delta.

Lastly, let’s turn our attention to the effect of interest rates on the value of puts

and calls. Figure 7.1(E) and (F) shows that, at least in this case, volatility seems

far more important in determining the value of these basic derivatives. This can

be seen by comparing the slope of the steeper volatility dimension to that of the

interest rate dimension. However, we are dealing with only one year as our time

to maturity. Indeed, most stocks expire in nine months or less. Consequently, we

wouldn’t expect discounting to play such a large role for these comparatively short

maturity instruments. When we turn our attention to convertible bonds, however,

which tend to have maturity dates spanning many years into the future, then inter-

est rates are likely to play a much more important role. Higher interest rates will

result in a higher drift term for the stock price in the risk neutral world, and this will

result in higher values for call options and lower values for put options. As a result,

the values for ρ = ∂f
∂r

are positive for call options and negative for put options. The

effect of discounting, on the other hand, will be to lower the value of both call and

put options. ρ tends to be largest for deep ITM calls and OTM puts, and tends to

be most sensitive to changes in the underlying asset price for ATM options. Again,

the process followed by interest rates is mean reverting, so the overall effect of a

change in interest rates is not as large as a permanent change.



Chapter 8

An example of stochastic volatility

and stochastic interest rates in

fixed income derivatives pricing.

We now do a similar exercise as the previous section, except that we are now going

to use the ADI method to price fixed income instruments. The parameter values for

the interest rate and firm value processes will be identical to those used in the pre-

vious section. Additionally, suppose that we are dealing with a firm that has issued

one bond with a face value of $40, convertible into ten percent of the outstanding

stock post conversion (z = .10). Figure 8.1 summarises the results graphically.

Firstly, observe the relation between firm value and bond value in figure 8.1(D).

Given that the aggregate face value of bonds outstanding is 40 (l · FV = 1 × 40),

we can see that there is a ‘default region’ for firm values around and below this

amount. Indeed, this section of the graph is very steep, as reflected by the high

and rapidly declining value for delta in figure 8.1(E), and the value of each con-

vertible bond in the event of default is equal to (V
l
). Recall that the bonds, in

aggregate, will be worth ten percent of the firm’s outstanding stock should conver-

sion occur (i.e. z = .10). For very high levels of firm value, conversion is likely to

49
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bonds.
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occur immediately, the bondholders then receiving ten percent of the outstanding

stock post conversion, and the graph for delta becomes linear at this point with a

slope of fv = z = .1. We shall refer to this area as the ‘conversion region’. For

levels of firm value above the default region and below the conversion region, we see

that the value of each bond today is something less than its face value. Since we

have not incorporated dividends or coupons in this example, there is only one future

payoff, being the FV, and the bond’s value today is the present value of this amount.

We have already referred to figure 8.1(E) in discussing how the convertible bond’s

value varies with firm value. With this understanding of ∆, an interpretation of Γ

in figure 8.1(C)(2) follows quite naturally. In the default region where bond value

is increasing sharply in relation to firm value, it is plain to see that ∆ is large and

positive. However, as we move out of the default region ∆ becomes smaller and

more steady. This suggests that Γ, the rate of change in ∆, is first negative before

becoming relatively stable. As for the conversion region, this part of figure 8.1(D)

is linear with a slope of z = .1, as reflected by a ∆ = .1 and a Γ = 0.

As to whether increased volatility adds value to the convertible bond holder, this

will depend on the current level of firm value (i.e where we are on the curve in

figure 8.1(D)). Given that the curve is concave over the default region, increased

volatility whilst in this region will result in a decrease in convertible bond value. To

see why this is the case, consider that a one unit movement downward in firm value

whilst in the default region will result in a large decline in bond value, whereas a

one unit increase in firm value will result in a relatively smaller increase in bond

value. In short, increased volatility is not beneficial to the bond holder whilst in

the default region. As firm value begins to increase (approximately ≥ 100 in this

case), the curve in figure 8.1(D) begins to become convex and increased volatility

is then beneficial from the bond holder’s perspective. Indeed, it appears that vega

is greatest for firm values of around 260 in this example, as shown in figure 8.1(G).

For really high levels of firm value where conversion occurs immediately, volatility

has no bearing on this immediate payoff, and hence vega is zero.
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Finally, let’s turn our attention to ρ in figure 8.1(H). Because of the long maturity

of fixed income instruments when compared to stock options, for example, we can

logically expect that changes in interest rates are likely to have more of a pronounced

effect on bonds. We can see that ρ is largely negative, meaning that higher interest

rates are going to lower the bond’s value, which comes as no surprise. A firm value

of zero will result in bankruptcy and the bondholders recovering none of their in-

vestment; the bond’s value is zero in this scenario, regardless of interest rates, and

hence ρ is zero. As for the conversion region, we would expect that these bond’s

will be converted immediately, effectively removing the time value of money from

consideration. As a result, ρ is also zero for very high levels of firm value.



Chapter 9

Data.

For the purposes of data collection, we have used several sources. Firstly, the Mer-

gent BondSource Corporate Bond Securities Database has provided a wealth of

information regarding different bond issues, their trading prices and characteristics.

We can then apply the numerical techniques described earlier to assess which ap-

proach is most effective in derivatives pricing. Other papers, namely Bakshi et al.

(1997), have assessed the relative merits of different options pricing models in a

stock options context. The findings of papers working with stock options, however,

are not necessarily transferrable to convertible bonds, and therein lies the benefit of

our study. The unique characteristics of convertible bonds, in particular the longer

maturity, could reasonably be expected to have a significant influence on the ap-

propriate pricing approach. We conjecture that, whilst adding a stochastic interest

rate element may not be significantly beneficial in pricing short maturity derivatives,

the longer maturity of convertible bonds necessitates a slightly more complex SVSI

model. Secondly, through the St. Louis Fed FRED (Federal Reserve Economic

Database) we were able to obtain historical information on interest rates. Given

this data, we then undertook GMM procedures to back out parameters necessary

for pricing (θv, κv, σv, ρsv, θr, κr, σr).

For our interest rate data, we used daily treasury bill rates covering the period from

53
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Figure 9.1: Treasury bill rates obtained from the St. Louis Federal Reserve Economic

Database (FRED).

31/07/2001 to 27/03/2009. A graph of this data can be seen below. Recall that the

process for interest rates has been specified as: dr = [θr − κrr] dt + σr

√
rdz3. We

can then make the following definition rt+1 = rt + (θr − κrrt) · ∆t + εt such that:

εt = rt+1 − rt − (θr − κrrt) · ∆t

We would then expect that:

• E(εt) = 0

• E(εt · rt) = 0

• E(ε2
t ) = σ2

rrt · ∆t

We can then choose values for θr, κr and σr such that we minimise the squared
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Table 9.1: Estimated parameters for the interest rate process.

Variable value

θr .0074

κr .6054

σr .0632

deviation of the moments from their theoretical values. In other words, we wish to

minimise [(E(εt)−0)2 +(E(ε ·rt)−0)2 +(E(ε2)−σ2
r ·rt∆t)2] by choosing appropriate

parameter values. One way to do this is to use the ‘lsqnonlin’ command in Matlab,

guess the initial parameter values to begin with, and then let the computer run its

optimisation routine. The result is values for θr, κr and σr which can be used later

in pricing convertible bonds. Based on the FRED data, the estimated parameter

values relating to the interest rate process are given in table 9.1.

Estimating the parameters associated with firm value and volatility, however, is

significantly more troublesome. First, we need a data series of the firm value in

order to undertake our estimation procedures. Firm value is simply the sum of all

equity and debt claims. Unfortunately, the debt claims tend to be traded rather

infrequently; in other words, data relating to the marked value of debt claims is

sparse. On the other hand, we have equity claims that are thickly traded and his-

torical market price information that is easily accessible. Not only do we want a

good frequency of firm value data, but we also want data that is reliable in order for

the parameter estimates to be sensible. The approach we took was to assume that

the value of debt claims was some constant, α, of the firm’s value. Letting S, B and

E represent firm value, aggregate outstanding debt and total equity claims respec-

tively, we can then express the relationship mathematically as S = B+E. Therefore:
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S = α · S + E

S(1 − α) = E

S =
E

(1 − α)

Given the stock price series, we can then divide each observation by (1 − α) to get

a series for firm value. Of course, we need to estimate α first. Since B = α ·S, then

α = B
S
. In order to obtain an approximation of α, an average of total liabilities to

total assets was taken from the financial statements; in short, we used book value

approximations for B and S and then took an average of B
S

over a period of five

years to estimate α. Given the approximate series for firm value, we then under-

took a simulated GMM approach to estimate θv, κv, σv, and ρsv. The approach to

estimation can be explained step by step as follows:

1. Simulate two sets of T standard normal random variables, where T is a large

number. (For this study we use T = 1000000).

• Vt+1 = Vt + [θv − κvVt] ∆t + σv

√
Vtφ2

√
∆t

• St+1 = St + µSt∆t +
√

VtStφ1

√
∆t

2. Given the first set of normal variables and the equation for volatility, simulate

a path for volatility. Recall that ∆z ∼ N(0,
√

∆t).

3. Given the simulated path for volatility and our second set of standard normal

random variables, a simulated path for the firm value can be created.

4. Compare the actual moments from the data to the moments from our simula-

tions. We can then choose values for θv, κv, σv and ρsv such that we minimise

the sum of squared deviations of the moments from their simulated values. A

computer can run through this optimisation routine by doing iterations from

step two onwards.
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The moments we are interested in are:

• E{[∆ln(FV )]2}

• E{[∆ln(FV )]3}

• E{[∆ln(FV )]4}

• E{[∆ln(FVt) · ∆ln(FVt−1)]}

Keep in mind that parameters relating to the interest rate process will be estimated

only once. However, the parameters relating to volatility and firm value will have

to be estimated for each issuing firm. Given the parameters relating to firm value,

volatility and interest rates accompanied with the information provided in the Mer-

gent BondSource Database, we are now in a position to calculate the theoretical

values for convertible bonds issued by these firms. We concentrated on eight firms,

and the parameters are displayed in table 9.2.

There appears to be significant variability in σv. Indeed, Chevron Corp. appears

to have the lowest level of σv, suggesting that the level of volatility for this firm is

unlikely to vary much through time. Consequently, one would expect that adding

a stochastic volatility element to the pricing of Chevron’s bonds is unlikely to add

significantly to the accuracy of our pricing model in this extreme case. Interestingly,

ρ is positive for all firms, contrary to what we might expect from the leverage effect.

According to the leverage effect, higher levels of firm leverage add to the risk and

volatility of the firm and therefore lower firm value, leading to the suggestion that

ρ could be negative.
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Table 9.2: Estimated parameter values for the firm value processes.

Parameter values.

Firm: Ticker Symbol θv κv σv ρ

McDonalds MCD .1764 1.6601 .3178 .333

AT&T Inc T .2081 1.3556 .1711 .4219

JPMorgan Chase JPM .2306 0.6779 .2772 .6610

Chevron Corp. CVX .1763 1.2006 .0003 .2244

General Electric GE .2194 1.2201 .1791 .4872

Cisco Systems CSCO .2336 0.6991 .1269 .7655

Intel INTC .2334 0.7432 .1082 .7431

Hewlett Packard HPQ .2175 0.7844 .0987 .5792



Chapter 10

Results.

We now take selected transactions from the database, pricing these bonds using

several different models and then comparing how well each approach did in predicting

the traded price. Firstly, note that we applied four categories of models:

• SVSI (Stochastic volatility and stochastic interest rates)

• SV (Stochastic volatility)

• SI (Stochastic interest rates)

• Brennan and Schwartz (Volatility and interest rates are assumed constant)

The data suggests that the SV/SVSI models are most accurate in general, whilst the

simple Black-Scholes approach with assumed constant volatility and interest rates

was the least accurate. The largest pricing error occurred using the Brennan and

Schwartz model for the first transaction involving CVX. Although, with an average

pricing error of approximately 7%, the Brennan and Schwartz model doesn’t do

such a bad job. Indeed, the SV/SVSI models didn’t fare significantly better with an

average pricing error of around 5.5%. Keeping this in mind, we can then explore the

circumstances in which adding stochastic interest rates and volatility is definitely

59
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Table 10.1: Traded prices of bonds accompanied by their estimated values according

to different pricing models.

Prices.

Firm ticker Traded Price SVSI SV SI Brennan and Schwartz

MCD1 1000.00 987.35 1030.60 1008.70 1014.40

MCD1 987.45 1019.10 1059.10 1063.40 1060.70

MCD2 1000.00 1104.00 1073.80 1045.40 1062.20

MCD2 853.22 965.90 937.00 930.00 905.00

AT&T1 997.80 1003.30 923.16 1001.10 921.53

CVX1 1021.73 1064.60 1228.20 1064.90 1281.80

CVX1 1012.40 1026.10 1157.40 1025.90 1222.60

CVX1 1015.65 1014.00 1017.00 1010.70 1021.10

CVX1 1047.02 1034.70 1060.40 1029.30 1109.10

CSCO1 1038.25 973.52 974.71 993.10 995.70

CSCO1 1064.29 997.32 995.28 1001.20 997.44

CSCO1 1033.10 1012.10 1012.10 1012.10 1012.10

CSCO1 961.81 990.70 981.80 987.30 974.20

GE1 1108.38 1161.70 1084.10 1049.90 931.18

GE2 860.14 977.63 969.52 989.66 980.44

GE2 875.67 967.29 958.58 989.59 979.11

GE2 909.27 976.30 951.40 972.70 942.10

HPQ1 1000.00 1011.80 1021.60 1094.80 1105.90

HPQ1 921.50 996.25 968.78 1072.70 1025.20

HPQ1 1015.75 1016.00 1003.80 1026.50 1007.10

HPQ2 992.10 971.78 952.37 968.83 946.39

INTC1 1005.55 1048.50 984.47 1098.70 985.34

INTC1 895.70 1043.30 884.40 1026.40 867.00

INTC1 904.78 1036.10 860.96 1041.40 870.00

INTC1 942.89 1045.50 911.20 1054.10 870.50

JPM1 1000.00 925.70 926.47 1005.80 1010.00

JPM1 938.07 932.50 933.60 1006.40 1009.70

JPM1 968.19 929.3 928.7 1001.7 997.4

JPM1 918.19 871.39 845.57 933.67 901.61
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Table 10.2: The pricing error of each model as a percentage of the traded price.

Pricing percentage error.

Firm ticker SVSI SV SI Brennan and Schwartz

MCD1 -0.0127 0.0306 0.0087 0.0144

MCD1 0.0321 0.0726 0.0769 0.0742

MCD2 0.1040 0.0738 0.0454 0.0622

MCD2 0.1321 0.0982 0.0900 0.0607

AT&T1 0.0055 -0.0748 0.0033 -0.0764

CVX1 0.0420 0.2021 0.0423 0.2545

CVX1 0.0135 0.1432 0.0133 0.2076

CVX1 -0.0016 0.0013 -0.0049 0.0054

CVX1 -0.0118 0.0128 -0.0169 0.0593

CSCO1 -0.0623 -0.0612 -0.0435 -0.0410

CSCO1 -0.0629 -0.0648 -0.0593 -0.0628

CSCO1 -0.0203 -0.0203 -0.0203 -0.0203

CSCO1 0.0300 0.0208 0.0265 0.0129

GE1 0.0481 -0.0219 -0.0528 -0.1599

GE2 0.1366 0.1272 0.1506 0.1399

GE2 0.1046 0.0947 0.1301 0.1181

GE2 0.0737 0.0463 0.0698 0.0361

HPQ1 0.0118 0.0216 0.0948 0.1059

HPQ1 0.0811 0.0513 0.1641 0.1125

HPQ1 0.0002 -0.0118 0.0106 -0.0085

HPQ2 -0.0205 -0.0400 -0.0235 -0.0461

INTC1 0.0427 -0.0210 0.0926 -0.0201

INTC1 0.1648 -0.0126 0.1459 -0.0320

INTC1 0.1451 -0.0484 0.1510 -0.0384

INTC1 0.1088 -0.0336 0.1179 -0.0768

JPM1 -0.0743 -0.0735 0.0058 0.0100

JPM1 -0.0059 -0.0048 0.0728 0.0764

JPM1 -0.0402 -0.0408 0.0346 0.0302

JPM1 -0.0510 -0.0791 0.0169 -0.0181

Average 0.0315 0.0134 0.0463 0.0269
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Table 10.3: The absolute pricing error of each model as a percentage of the traded

price.

Absolute pricing percentage error.

Firm ticker SVSI SV SI Brennan and Schwartz

MCD1 0.0127 0.0306 0.0087 0.0144

MCD1 0.0321 0.0726 0.0769 0.0742

MCD2 0.1040 0.0738 0.0454 0.0622

MCD2 0.1321 0.0982 0.0900 0.0607

AT&T1 0.0055 0.0748 0.0033 0.0764

CVX1 0.0420 0.2021 0.0423 0.2545

CVX1 0.0135 0.1432 0.0133 0.2076

CVX1 0.0016 0.0013 0.0049 0.0054

CVX1 0.0118 0.0128 0.0169 0.0593

CSCO1 0.0623 0.0612 0.0435 0.0410

CSCO1 0.0629 0.0648 0.0593 0.0628

CSCO1 0.0203 0.0203 0.0203 0.0203

CSCO1 0.0300 0.0208 0.0265 0.0129

GE1 0.0481 0.0219 0.0528 0.1599

GE2 0.1366 0.1272 0.1506 0.1399

GE2 0.1046 0.0947 0.1301 0.1181

GE2 0.0737 0.0463 0.0698 0.0361

HPQ1 0.0118 0.0216 0.0948 0.1059

HPQ1 0.0811 0.0513 0.1641 0.1125

HPQ1 0.0002 0.0118 0.0106 0.0085

HPQ2 0.0205 0.0400 0.0235 0.0461

INTC1 0.0427 0.0210 0.0926 0.0201

INTC1 0.1648 0.0126 0.1459 0.0320

INTC1 0.1451 0.0484 0.1510 0.0384

INTC1 0.1088 0.0336 0.1179 0.0768

JPM1 0.0743 0.0735 0.0058 0.0100

JPM1 0.0059 0.0048 0.0728 0.0764

JPM1 0.0402 0.0408 0.0346 0.0302

JPM1 0.0510 0.0791 0.0169 0.0181

Average 0.0566 0.0553 0.0616 0.0683
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Table 10.4: The second transaction involving Intel (INTC)

Firm ticker Traded Price SVSI SV SI Brennan and Schwartz

INTC 895.70 1043.30 884.40 1026.40 867.00

preferable.

The Brennan and Schwartz pricing model is most likely to be a poor pricing model

when the spot level of interest rates or volatility is unusually high/low. However,

practitioners in derivatives pricing are likely to use an interest rate that corresponds

with the maturity of the instrument, the reason being that such an approach will

hopefully take into account any future movement in the spot rate. Assuming that

such spot rates prevail throughout the life of the asset would be a mistake, and these

are circumstances where the models can deliver some differences in the estimation

of price. Looking back at our graph of T-bill rates in the previous section, it can be

seen that interest-rates were in the region of 0-5% over the last ten tear period. At

the peak of T-bill rates in 2006-2007, not allowing for a mean reverting interest rate

had a significant impact on pricing. The second transaction involving Intel (INTC),

for example, occurred at a time when the T-bill rate was 4.37%. Consequently,

we can see a significant discrepancy between those models allowing for stochastic

interest rates (SVSI/SI) and those which don’t (SV/Brennan and Schwartz). In-

terestingly, it seems that investors believed this relatively high interest rate to be

more than just transitory, as reflected in the traded price. However, there is good

reason to believe that incorporating a stochastic interest rate provides a better in-

dication of value. An investor trading at the beginning of 2007 was unlikely to have

envisioned the coming recession and the accompanying sharp drop in interest rates.

The estimation of our interest rate process incorporates the whole period up until

2009, so our estimates suggest that interest rates revert to fairly low levels in the

long term. Investors would not have had the benefit of this perfect foresight.

The lines in the box plot represent the upper quartile, median and lower quartile

values. The whiskers extend to the extreme values within 1.5 × the inter-quartile
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Figure 10.1: Pricing errors for different models.

Table 10.5: Mean squared error for each model

Model Mean squared error

SVSI .00541

SV .00507

SI .00628

Brennan and Schwartz .00825
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Table 10.6: The third transaction for CSCO

Firm ticker Traded Price SVSI SV SI Brennan and Schwartz

CSCO 1033.10 1012.10 1012.10 1012.10 1012.10

range of the box. Outliers are defined as values more than 1.5× the inter-quartile

range away from the box. What seems to stand out most is the large outliers asso-

ciated with Brennan and Schwartz’s method. By contrast, the SVSI and SI models

have no ‘outliers’. Apart from one outlier, the SV model appears to have the least

dispersion. Indeed, the SV model has the lowest inter-quartile range of pricing er-

rors and the lowest mean pricing error. This is further reflected by the fact that the

SV model has the lowest mean squared error in predicting bond transaction prices,

with Brennan and Schwartz being the worst.

As to how the predictive abilities of each model vary with time to maturity, there

seems inadequate data to give a concrete conclusion. For the particulars associated

with each bond, please refer to appendix D. Most of these bonds have maturities

ranging from approximately four to ten years. There is only one bond that has a time

to maturity significantly greater than ten years, and this is the INTC bond with a

maturity of ten years. Strangely, the SVSI and SI models seem to do fairly poorly in

valuing this longer maturity security. The SV and Brennan and Schwartz methods

produce far smaller pricing errors for the four transactions associated with this bond.

Another interesting case is the third transaction for CSCO. Our models would sug-

gest that conversion should occur immediately, but the bond still traded at slightly

above conversion value. Since immediate conversion was considered optimal, there

were no pricing differences between the different models. This brings us to an im-

portant point: The models are more similar in their estimation of price the closer

we are to maturity, conversion or a bond call; under such circumstances allowing for

stochastic volatility or interest rates is of little consequence.



66

The pricing percentage error was positive on average for all models (See table 10.2).

Note that the error is calculated as Pm−Pt

Pt
, where Pt is the price at which the bond

traded and Pm is the estimated price using our model. This tendency of the mod-

els to overestimate rather than underestimate the price more on average could be

attributable to transaction costs and taxes. Investors are concerned with the pay-

off they receive net of these costs and hence will price securities accordingly. It is

reasonable to expect that any asset valuation model not incorporating taxes and

transactions costs will overvalue investments slightly. In the extreme hypothetical

case where the tax rate on payoffs is 100%, for example, the worth of any investment

would be zero.

In deciding which model to use one should always try to balance accuracy, com-

plexity, available time and circumstances. It may be reasonable to apply a more

basic model if we are dealing with a short maturity instrument. Additionally, if the

spot levels for interest rates and volatility are approximately at ‘normal’ levels, then

a more basic Brennan and Schwartz model would be a reasonable approximation.

However, determining whether the current values of volatility and interest rates are

at mean reverting levels necessitates an analysis of these parameters in itself. Con-

sequently, for longer maturity instruments such as bonds, logical reasoning might

lead us to apply the more thorough SVSI model. However, from what information

we have gathered, our data suggests that the SV model, with a lower mean squared

pricing error, is the best model to apply in practice.
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Conclusion.

It seems that the results of Bakshi et al. (1997) are transferrable to convertible

bonds. While it appears logically tempting to incorporate stochastic interest rates

into our pricing models, our data would suggest that its exclusion would be the best

option. Rather, perhaps it is best to use the slightly less complex SV model and treat

interest rates as constant. In terms of popularity amongst practitioners, however,

it seems that the SVSI model is still favoured in pricing fixed income derivatives.

As for any additional areas of research that could assist in making these pricing

models more accurate, I think it would be helpful to assess the effect of transaction

costs and taxes on the price at which these securities trade, especially since the vast

majority of fixed income derivatives are traded over the counter.
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Appendix A

A basic Black-Scholes framework

for options pricing.

This short set of notes summarises the more practical aspects of options pricing

using a basic Black-Scholes-Merton framework. Firstly, the BSM PDE shall be de-

rived, followed by some possible solutions to this PDE along with supplementary

code.

Suppose that the underlying asset, which we’ll suppose is a stock, follows GBM such

that:

dSt = µStdt + σStdWt

Additionally, suppose that there is an option whose value is dependant on the un-

derlying asset and time; mathematically we can express this as df = f(St, t). Using

a taylor series expansion, we can then write:
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df =
∂f

∂t
(dt) +

∂f

∂S
(dS) +

1

2

∂2f

∂t2
(∆t)2 +

1

2

∂2f

∂S2
(dS)2 +

∂2f

∂t∂S
(dt · dS) + . . .

Keeping in mind that dW = φ ·
√

dt, where φ is a standard normal random variable.

Given small values of dt, we’d expect that (dt)2 and dW ·dt = φ ·dt1.5 are both very

small. Also, E(dW 2
t ) = dt. As such, we can eliminate and substitute as follows:

df =
∂f

∂t
(dt) +

∂f

∂S
(dS) +

1

2

∂2f

∂S2
(dS)2

=
∂f

∂t
(dt) +

∂f

∂S
(dS) +

1

2

∂2f

∂S2
(µSdt + σSdW )2

=
∂f

∂t
(dt) +

∂f

∂S
(dS) +

1

2

∂2f

∂S2
(σ2S2dt)

=
∂f

∂t
(dt) +

∂f

∂S
(µSdt + σSdW ) +

1

2

∂2f

∂S2
(σ2S2dt)

=

[

∂f

∂t
+ µS

∂f

∂S
+

1

2
σ2S2 ∂2f

∂S2

]

dt + σS
∂f

∂S
dW

This is Ito’s Lemma. Another important aspect of stochastic calculus is the product

rule, derived below. Suppose that we have a function d(XtYt). Applying a taylor

series expansion, we get:

df =
∂f

∂Xt

(dXt) +
∂f

∂Yt

(dYt) +
1

2

∂2f

∂X2
t

(dXt)
2 +

1

2

∂2f

∂Y 2
t

(dYt)
2 +

∂2f

∂Yt∂Xt

(dYtdXt)

= Yt(dXt) + Xt(dYt) + 0 · (dXt)
2 + 0 · (dYt)

2 + 1 · (dYtdXt)

= Yt(dXt) + Xt(dYt) + (dYt · dXt)
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A.1 Continuously compounded returns and GBM.

Gt = ln(St)

dG =

[

∂G

∂t
+ µS

∂G

∂S
+

1

2
σ2S2∂2G

∂S2

]

dt + σS
∂G

∂S
dW

=

[

µ − 1

2
σ2

]

dt + σdW

Given this result, we can express the distribution of returns undeer GBM as:

∴ ln(ST ) − ln(ST ) ∼ φ

[

(µ − 1

2
σ2)T, σ

√
T

]

A.2 The Black-Scholes-Merton (BSM) PDE.

Suppose that we create a portfolio consisting of one option and −∆ = − ∂f
∂S

units of

the underlying asset.

Π = f − ∆S

dΠ = df − ∆dS

=

[

∂f

∂t
+ µS

∂f

∂S
+

1

2
σ2S2 ∂2f

∂S2

]

dt + σS
∂f

∂S
dW − ∂f

∂S
[µSdt + σSdW ]

=

[

∂f

∂t
+

1

2
σ2S2 ∂2f

∂S2

]

dt

Given that there is no random component to this portfolio return, the portfolio is

riskless and therefore must yield the risk-free rate.
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rΠ = rf − ∂f

∂S
rS =

[

∂f

∂t
+

1

2
σ2S2 ∂2f

∂S2

]

rf =
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂2f

∂S2

If we incorporate continuous dividends at a rate of q, then the PDE will become:

rf =
∂f

∂t
+ (r − q)S

∂f

∂S
+

1

2
σ2S2 ∂2f

∂S2

A.3 Solving the PDE

Since the vast majority of options traded are American in nature, except for a few

index options, we often have to use numerical techniques to incorporate the possi-

bility of early exercise.

A closed form solution is available in the pricing of European options, and the

formula is as follows:

c = S0N(d1) − Ke−rT N(d2)

p = Ke−rT N(−d2) − S0N(−d1)

Where d1 =
ln(

S0
K

)+(r+ 1

2
σ2)

σ
√

T
and d2 =

ln(
S0
K

)+(r− 1

2
σ2)

σ
√

T
= d1 − σ

√
T .

Numerical techniques could include:

• Finite difference techniques.

• Binomial tree.

• Trinomial tree.
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• Monte Carlo Simulation.

Note, however, that there are several significant assumptions implicit in our deriva-

tion of the BSM PDE. Some of the more important assumptions include:

• Lognormally distributed asset returns.

• The path of the underlying asset is continuous.

• Constant volatility.

• Constant interest rates.

• Delta hedging can occur continuously and without cost.

A.4 Finite difference techniques.

Effectively, what finite difference techniques do is approximate the partial derivatives

within our PDE usig a set of grid points. Given a certain value for the underlying

asset at maturity, we will know what the value of our option should be at that time.

We can then work through the grid iteratively and solve the PDE at each time step.

The result will yield a value for the option today. We shall focus on the Crank-

Nicholson (CN) finite difference technique; a method that uses equations from both

the implicit and explicit approaches.

rf =
∂f

∂t
+ (r − q)S

∂f

∂S
+

1

2
σ2S2 ∂2f

∂S2

Explicit equation:

rfi,j =

[

fi,j − fi−1,j

∆t

]

+ (r − q)Sj

[

fi,j+1 − fi,j−1

2∆S

]

+
1

2
σ2S2

j

[

fi,j+1 − 2fi,j + fi,j−1

(∆S)2

]
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Explicit equation shifted up one time period:

rfi+1,j =

[

fi+1,j − fi,j

∆t

]

+(r−q)Sj

[

fi+1,j+1 − fi+1,j−1

2∆S

]

+
1

2
σ2S2

j

[

fi+1,j+1 − 2fi+1,j + fi+1,j−1

(∆S)2

]

Implicit equation:

rfi,j =

[

fi+1,j − fi,j

∆t

]

+ (r − q)Sj

[

fi,j+1 − fi,j−1

2∆S

]

+
1

2
σ2S2

j

[

fi,j+1 − 2fi,j + fi,j−1

(∆S)2

]

If we then place an equal weight on the implicit equation and the explicit equation

moved up one period, the combined result will be:

1

2
[rfi+1,j + rfi,j] =

1

2

[

fi+1,j − fi,j

∆t
+

fi+1,j − fi,j

∆t

]

+(r − q)Sj
1

2

[

fi+1,j+1 − fi+1,j−1

2∆S
+

fi,j+1 − fi,j−1

2∆S

]

+
1

2
σ2S2

j

1

2

[

fi+1,j+1 − 2fi+1,j + fi+1,j−1

(∆S)2
+

fi,j+1 − 2fi,j + fi,j−1

(∆S)2

]

Rearranging this equation will then yield:

fi,j−1
1

2
cj∆t + fi,j

[

1 − 1

2
bj∆t

]

− fi,j+1
1

2
aj∆t

=fi+1,j−1
1

2
cj∆t + fi+1,j

[

1 − 1

2
bj∆t

]

− fi+1,j+1
1

2
aj∆t

Where:

• aj =
(r−q)Sj

2∆S
+

σ2S2
j

2(∆S)2

• bj = −r − σ2S2
j

∆S2

• cj =
−(r−q)Sj

2∆S
+

σ2S2
j

2(∆S)2
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This will result in a system of equations Afi = Bfi+1.

A =



















1 − 1
2
b0∆t −1

2
c0∆t 0 0 0

−1
2
a1∆t 1 − 1

2
b1∆t −1

2
c1∆t 0 0

0 −1
2
a2∆t 1 − 1

2
b2∆t −1

2
c2∆t 0

0 0 −1
2
a3∆t 1 − 1

2
b3∆t −1

2
c3∆t

0 0 0 −1
2
a4∆t 1 − 1

2
b4∆t



















B =



















1 + 1
2
b0∆t 1

2
c0∆t 0 0 0

1
2
a1∆t 1 + 1

2
b1∆t 1

2
c1∆t 0 0

0 1
2
a2∆t 1 + 1

2
b2∆t 1

2
c2∆t 0

0 0 1
2
a3∆t 1 + 1

2
b3∆t 1

2
c3∆t

0 0 0 1
2
a4∆t 1 + 1

2
b4∆t



















What about the boundaries? For very large and small values of S, we shall assume

that ∆ = ∂f
∂S

is constant. Consequently, Γ = ∂2f
∂S2 = 0. The PDE will then be reduced

to rf = ∂f
∂t

+ (r − q)S ∂f
∂S

. As a result, the values of aj, bj and cj will change at the

boundaries as follows:

• a0 = (r−q)S0

∆S

• b0 = −r − (r−q)S0

∆S

• bN = −r + (r−q)SN

∆S

• cN = − (r−q)SN

∆S

Dealing with dividends: A known discrete dividend can be dealt with by assuming

that the asset price, St, has two components, a part that is uncertain, S̃t, and a
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part that is the PV of the future dividend stream over the options’s life. If a cash

amount D is paid at time τ , then:

S̃t = St when t > τ

S̃t = St − PV (D) when t ≤ τ



Appendix B

Boundary conditions for the ADI

method when solving the

stochastic volatility PDE.

Case 1: The lower stock price boundary (S0):

fsv = 0. Therefore ξ7 = 0 and ξ14 = 0

fss = 0, so take away 1
2
VkS

2
j

[

f
i+1

2
j+1,k

−2f
i+1

2
j,k

+f
i+1

2
j−1,k

(∆S2)

]

Additionally, we shall have to define fs =

[

f
i+1

2
j+1,k

−f
i+1

2
j,k

(∆S)

]

, not fs =

[

f
i+1

2
j+1,k

−f
i+1

2
j−1,k

(2∆S)

]

. So

take away rSj

[

f
i+1

2
j+1,k

−f
i+1

2
j−1,k

(2∆S)

]

and add rSj

[

f
i+1

2
j+1,k

−f
i+1

2
j,k

(∆S)

]

. This results in new defini-

tions for some of the ξ values such that:

• ξ7 = ξ14 = 0

• ξ1 = ξ13 = 0

• ξ3 =
[

−rSj

(∆S)

]

and ξ11 =
[

rSj

(∆S)

]

.

• ξ2 =
[

r + 1
(∆τ/2)

+
rSj

(∆S)

]

and ξ12 =
[

−r + 1
(∆τ/2)

− rSj

(∆S)

]

77
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Case 2: The upper stock price boundary (SJ):

fsv = 0. Therefore ξ7 = 0 and ξ14 = 0

fss = 0, so take away 1
2
VkS

2
j

[

f
i+1

2
j+1,k

−2f
i+1

2
j,k

+f
i+1

2
j−1,k

(∆S2)

]

Because we cannot refer to points outside the finite difference grid, we shall redefine

fs =

[

f
i+1

2
j,k

−f
i+1

2
j−1,k

(∆S)

]

. As a result, take away rSj

[

f
i+1

2
j+1,k

−f
i+1

2
j−1,k

(2∆S)

]

and add rSj

[

f
i+1

2
j,k

−f
i+1

2
j−1,k

(∆S)

]

.

Consequently, some of the lambda values will change as follows:

• ξ7 = ξ14 = 0

• ξ3 = ξ11 = 0

• ξ2 =
[

r + 1
(∆τ/2)

− rSj

(∆S)

]

and ξ12 =
[

−r + 1
(∆τ/2)

+
rSj

(∆S)

]

.

• ξ1 =
[

rSj

(∆S)

]

and ξ13 =
[

− rSj

(∆S)

]

Case 3: The lower volatility boundary (V0):

fsv = 0. Therefore ξ7 = 0 and ξ14 = 0

We cannot refer to points outside the boundary, so ξ4 = ξ10 = 0.

fvv = 0, so you need to take away:

• 1
2
Vkσ

2
v

[

f i
j,k+1

−2f i
j,k

+f i
j,k−1

(∆V 2)

]

for the first half-step.

• 1
2
Vkσ

2
v

[

f i+1

j,k+1
−2f i+1

j,k
+f i+1

j,k−1

(∆V 2)

]

for the second half-step.
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Additionally, we need to redefine fv such that fv =
[

f i
j,k+1

−f i
j,k

(∆V )

]

. Therefore, we must

take away (θv − κv2Vk)
[

f i
j,k+1

−f i
j,k−1

2(∆V )

]

and add (θv − κv2Vk)
[

f i
j,k+1

−f i
j,k

(∆V )

]

. At the lower

volatility boundary, this will change certain ξ values as follows:

• ξ7 = ξ14 = 0

• ξ4 = ξ10 = 0

• ξ6 =
[

(θv−κv2Vk)
(∆V )

]

and ξ8 =
[

−(θv−κv2Vk)
(∆V )

]

.

• ξ5 =
[

1
(∆τ/2)

− (θv−κv2Vk)
(∆V )

]

and ξ9 =
[

1
(∆τ/2)

+ (θv−κv2Vk)
(∆V )

]

.

Case 4: The upper volatility boundary (VK):

fsv = 0. Therefore ξ7 = 0 and ξ14 = 0.

We cannot refer to points outside the boundary of our finite difference grid, so

ξ6 = ξ8 = 0.

fvv = 0, so you need to take away:

• 1
2
Vkσ

2
v

[

f i
j,k+1

−2f i
j,k

+f i
j,k−1

(∆V 2)

]

for the first half-step.

• 1
2
Vkσ

2
v

[

f i+1

j,k+1
−2f i+1

j,k
+f i+1

j,k−1

(∆V 2)

]

for the second half-step.

Also, we need to redefine fv such that it does not refer to points outside the boundary.

Therefore, fv =
[

f i
j,k

−f i
j,k−1

∆V

]

. Taking the second half-step as an example, we would

have to take away (θv − κv2Vk)
[

f i
j,k+1

−f i
j,k−1

2(∆V )

]

and add (θv − κv2Vk)
[

f i
j,k

−f i
j,k−1

(∆V )

]

. This

changes the ξ values as follows:

• ξ7 = ξ14 = 0.
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• ξ6 = ξ8 = 0.

• ξ4 =
[

−(θv−κv2Vk)
(∆V )

]

and ξ10 =
[

(θv−κv2Vk)
(∆V )

]

.

• ξ5 =
[

1
(∆τ/2)

+ (θv−κv2Vk)
(∆V )

]

and ξ9 =
[

1
(∆τ/2)

− (θv−κv2Vk)
(∆V )

]

.



Appendix C

Boundary conditions for the ADI

method when solving the SVSI

PDE.

Case 1: At the upper stock price boundary (SJ):

fsv = 0. Therefore: ξ9 = ξ18 = ξ27 = 0.

fss = 0, so take away 1
2
VkS

2
j

[

f
i+1

3
j+1,k,l

−2f
i+1

3
j,k,l

+f
i+1

3
j−1,k,l

(∆S)2

]

.

We cannot refer to points outside of the finite difference mesh, so we will have

to redefine fs =

[

f
i+1

3
j,k,l

−f
i+1

3
j−1,k,l

∆S

]

, not fs =

[

f
i+1

3
j+1,k,l

−f
i+1

3
j−1,k,l

2∆S

]

. Therefore, take away

rlSj

[

f
i+1

3
j+1,k,l

−f
i+1

3
j−1,k,l

2∆S

]

, and add rlSj

[

f
i+1

3
j,k,l

−f
i+1

3
j−1,k,l

∆S

]

. Consequently, we will get some of

the ξ values changing as follows:

• ξ9 = ξ18 = ξ27 = 0.

• ξ1 = ξ14 = ξ23 = 0.

81
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Additionally, alter some ξ values such that the new value for each ξ is incremented

or decremented to equal ξ̂. If we are on multiple boundaries, then a given lambda

value may have to be altered several times. For example, if we were on both a lower

stock price boundary and an upper interest rate boundary, the final value for ξ13

would be ξ̂13 = ξ13 +
[

VkS2
j

(∆S)2
− rlSj

∆S

]

+
[

σ2
rrl

(∆r)2
+ (θr−κr3rl)

∆r

]

. Note, however, that the ξ

values set equal to zero will always have no value, regardless of whether we are on

a boundary for another dimension. 1

• ξ̂2 = ξ2 +
[

− VkS2
j

(∆S)2
− rlSj

∆S

]

• ξ̂13 = ξ13 +
[

VkS2
j

(∆S)2
+

rlSj

∆S

]

• ξ̂22 = ξ22 +
[

VkS2
j

(∆S)2
+

rlSj

∆S

]

• ξ̂3 = ξ3 +
[

VkS2
j

2(∆S)2
− rlSj

2∆S
+

rlSj

∆S

]

• ξ̂15 = ξ15 +
[

− VkS2
j

2(∆S)2
+

rlSj

2∆S
− rlSj

∆S

]

• ξ̂24 = ξ24 +
[

− VkS2
j

2(∆S)2
+

rlSj

2∆S
− rlSj

∆S

]

Case 2: The lower stock price boundary (S0):

fsv = 0. Therefore: ξ9 = ξ18 = ξ27 = 0.

fss = 0, so take away 1
2
VkS

2
j

[

f
i+1

3
j+1,k,l

−2f
i+1

3
j,k,l

+f
i+1

3
j−1,k,l

(∆S)2
] .

Additionally, we shall have to redefine fs =

[

f
i+1

3
j+1,k,l

−f
i+1

3
j,k,l

∆S

]

, not fs =

[

f
i+1

3
j+1,k,l

−f
i+1

3
j−1,k,l

2∆S

]

.

So take away rlSj

[

f
i+1

3
j+1,k,l

−f
i+1

3
j−1,k,l

2∆S

]

and add rlSj

[

f
i+1

3
j+1,k,l

−f
i+1

3
j,k,l

∆S

]

.

This results in some new definitions for ξ values such that:

1The reason we alter some of the ξ values through increments and decrements rather than

providing new definitions is because such an approach will prove easier when writing the computer

code to solve this PDE.
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• ξ9 = ξ18 = ξ27 = 0.

• ξ3 = ξ15 = ξ24 = 0.

Some ξ values will also have to be incremented and decremented as follows:

• ξ̂1 = ξ1 +
[

VkS2
j

2(∆S)2
+

rlSj

2∆S
− rlSj

∆S

]

• ξ̂14 = ξ14 +
[

− VkS2
j

2(∆S)2
− rlSj

2∆S
+

rlSj

∆S

]

• ξ̂23 = ξ23 +
[

− VkS2
j

2(∆S)2
− rlSj

2∆S
+

rlSj

∆S

]

• ξ̂2 = ξ2 +
[

− VkS2
j

(∆S)2
+

rlSj

∆S

]

• ξ̂13 = ξ13 +
[

VkS2
j

(∆S)2
− rlSj

∆S

]

• ξ̂22 = ξ22 +
[

VkS2
j

(∆S)2
− rlSj

∆S

]

Case 3: The upper volatility boundary (VK):

fsv = 0. Therefore: ξ9 = ξ18 = ξ27 = 0.

fvv = 0, so take away 1
2
σ2

vVk

[

f i
j,k+1,l

−2f i
j,k,l

+f i
j,k−1,l

(∆V )2

]

.

Additionally, we need to redefine fv =
[

f i
j,k,l

−f i
j,k−1,l

∆V

]

, not fv =
[

f i
j,k+1,l

−f i
j,k−1,l

2∆V

]

.So we

need to add (θv − κv3Vk)
[

f i
j,k,l

−f i
j,k−1,l

∆V

]

and take away (θv − κv3Vk)
[

f i
j,k+1,l

−f i
j,k−1,l

2∆V

]

.

The ξ values will then change as follows:

• ξ9 = ξ18 = ξ27 = 0.

• ξ5 = ξ10 = ξ25 = 0.

• ξ̂4 = ξ4 +
[

σ2
vVk

(∆V )2
+ (θv−κv3Vk)

∆V

]

• ξ̂11 = ξ11 +
[

− σ2
vVk

(∆V )2
− (θv−κv3Vk)

∆V

]
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• ξ̂22 = ξ22 +
[

σ2
vVk

(∆V )2
+ (θv−κv3Vk)

∆V

]

• ξ̂6 = ξ6 +
[

− σ2
vVk

2(∆V )2
+ (θv−κv3Vk)

2∆V
− (θv−κv3Vk)

∆V

]

• ξ̂12 = ξ12 +
[

σ2
vVk

2(∆V )2
− (θv−κv3Vk)

2∆V
+ (θv−κv3Vk)

∆V

]

• ξ̂26 = ξ26 +
[

− σ2
vVk

2(∆V )2
+ (θv−κv3Vk)

2∆V
− (θv−κv3Vk)

∆V

]

Case 4: The lower volatility boundary (V0)

fsv = 0. Therefore: ξ9 = ξ18 = ξ27 = 0.

fvv = 0, so take away 1
2
σ2

vVk

[

f i
j,k+1,l

−2f i
j,k,l

+f i
j,k−1,l

(∆V )2

]

.

Also, redefine fv =
[

f i
j,k+1,l

−f i
j,k,l

∆V

]

, not fv =
[

f i
j,k+1,l

−f i
j,k−1,l

2∆V

]

, such that we do not refer

to points outside the grid. Consequently, we’ll have to add (θv−κv3Vk)
[

f i
j,k+1,l

−f i
j,k,l

∆V

]

and take away (θv −κv3Vk)
[

f i
j,k+1,l

−f i
j,k−1,l

2∆V

]

. Our ξ values will then change as follows:

• ξ9 = ξ18 = ξ27 = 0.

• ξ6 = ξ12 = ξ26 = 0.

• ξ̂5 = ξ5 +
[

− σ2
vVk

2(∆V )2
− (θv−κv3Vk)

2∆V
+ (θv−κv3Vk)

∆V

]

• ξ̂10 = ξ10 +
[

σ2
vVk

2(∆V )2
+ (θv−κv3Vk)

2∆V
− (θv−κv3Vk)

∆V

]

• ξ̂25 = ξ25 +
[

− σ2
vVk

2(∆V )2
− (θv−κv3Vk)

2∆V
+ (θv−κv3Vk)

∆V

]

• ξ̂4 = ξ4 +
[

σ2
vVk

(∆V )2
− (θv−κv3Vk)

∆V

]

• ξ̂11 = ξ11 +
[

− σ2
vVk

(∆V )2
+ (θv−κv3Vk)

∆V

]

• ξ̂22 = ξ22 +
[

σ2
vVk

(∆V )2
− (θv−κv3Vk)

∆V

]

Case 5: The upper interest rate boundary (rL):

frr = 0. Therefore, take away 1
2
σ2

rrl

[

f i
j,k,l+1

−2f i
j,k,l

+f i
j,k,l−1

(∆r)2

]

.
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Additionally, we will have to redefine fr =
[

f i
j,k,l

−f i
j,k,l−1

∆r

]

, not fr =
[

f i
j,k,l+1

−f i
j,k,l−1

2∆r

]

.

So add (θr − κr3rl)
[

f i
j,k,l

−f i
j,k,l−1

∆r

]

and take away (θr − κr3rl)
[

f i
j,k,l+1

−f i
j,k,l−1

2∆r

]

.

Some of the ξ values will then change as follows:

• ξ7 = ξ16 = ξ19 = 0.

• ξ̂4 = ξ4 +
[

σ2
rrl

(∆r)2
+ (θr−κr3rl)

∆r

]

• ξ̂13 = ξ13 +
[

σ2
rrl

(∆r)2
+ (θr−κr3rl)

∆r

]

• ξ̂20 = ξ20 +
[

− σ2
rrl

(∆r)2
− (θr−κr3rl)

∆r

]

• ξ̂8 = ξ8 +
[

− σ2
rrl

2(∆r)2
+ (θr−κr3rl)

2∆r
− (θr−κr3rl)

∆r

]

• ξ̂17 = ξ17 +
[

− σ2
rrl

2(∆r)2
+ (θr−κr3rl)

2∆r
− (θr−κr3rl)

∆r

]

• ξ̂21 = ξ21 +
[

σ2
rrl

2(∆r)2
− (θr−κr3rl)

2∆r
+ (θr−κr3rl)

∆r

]

Case 6: The lower interest rate boundary (r0):

frr = 0. Therefore, take away 1
2
σ2

rrl

[

f i
j,k,l+1

−2f i
j,k,l

+f i
j,k,l−1

(∆r)2

]

.

Additionally, we will have to redefine fr =
[

f i
j,k,l+1

−f i
j,k,l

∆r

]

, not fr =
[

f i
j,k,l+1

−f i
j,k,l−1

2∆r

]

.

So add (θr − κr3rl)
[

f i
j,k,l+1

−f i
j,k,l

∆r

]

and take away (θr − κr3rl)
[

f i
j,k,l+1

−f i
j,k,l−1

2∆r

]

.

Some of the ξ values will be altered as follows:

• ξ8 = ξ17 = ξ21 = 0.

• ξ̂7 = ξ7 +
[

− σ2
rrl

2(∆r)2
− (θr−κr3rl)

2∆r
+ (θr−κr3rl)

∆r

]

• ξ̂16 = ξ16 +
[

− σ2
rrl

2(∆r)2
− (θr−κr3rl)

2∆r
+ (θr−κr3rl)

∆r

]

• ξ̂19 = ξ19 +
[

σ2
rrl

2(∆r)2
+ (θr−κr3rl)

2∆r
− (θr−κr3rl)

∆r

]

• ξ̂4 = ξ4 +
[

σ2
rrl

(∆r)2
− (θr−κr3rl)

∆r

]

• ξ̂13 = ξ13 +
[

σ2
rrl

(∆r)2
− (θr−κr3rl)

∆r

]



86

• ξ̂20 = ξ20 +
[

− σ2
rrl

(∆r)2
+ (θr−κr3rl)

∆r

]



Appendix D

Characteristics of the bonds used

as examples.

Bond Characteristics.

Bond Par Time of transaction Maturity Date Shares/bond:

MCD1 1000 20-Aug-02 27-Aug-09 36

MCD2 1000 28-May-02 28-May-09 6.8528

AT&T1 1000 18-Jan-01 20-Jul-06 14.9783

CVX1 1000 20-Aug-01 15-Aug-08 18.6566

CSCO1 1000 31-Jul-03 15-May-10 48.6088

GE1 1000 18-Aug-98 31-Jul-03 11.8248

GE2 1000 22-May-02 31-Dec-08 19.9487

HPQ1 1000 10-Feb-04 18-Feb-14 29.0416

HPQ2 1000 25-Aug-05 31-Mar-09 25.308

INTC1 1000 14-Dec-05 15-Dec-35 31.52963

JPM1 1000 15-Jan-04 30-Jul-11 11.22
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Bond Characteristics.

Bond Coupon rate Coupons PA Maturity in years

MCD1 0 0 7.024657534

MCD2 0 0 7.005479452

AT&T1 0.01 2 5.504109589

CVX1 0.049 2 6.991780822

CSCO1 0.025 2 6.794520548

GE1 0.15 2 4.953424658

GE2 0.0125 2 6.616438356

HPQ1 0.03 2 10.03013699

HPQ2 0.025 2 3.6

INTC1 0.0295 2 30.02191781

JPM1 0.03 2 7.542465753

In many of the cases we used more than one bond issue for the same firm as part of

our data set. Consequently, we have used a subscript to distinguish different bond

issues. For example, MCD1 and MCD2 refer to the first and second bond issues

from McDonalds respectively. The majority of these bonds are callable, and all of

them are convertible. Shares/bond represents the number of shares into which each

individual bond is convertible. As for coupons, most of these bonds provide semi-

annual payments to bondholders. Additionally, all of the firms, with the exception

of Cisco, pay quarterly dividends. Whilst these dividend payments tend to be fairly

predictable, implementing the numerical procedure will necessitate an estimation

of dividends for the coming year along with an annual growth rate. Callable fea-

tures will only operate within specific dates during the bonds lifetime, and the call

price may vary during specified time periods. All of this information needs to be

incorporated into the numerical procedure in order to undertake the pricing process.


